首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The PPARγ2 gene is a key regulator of both proliferation and preadipocyte differentiation in mammals. Herein its genotype and allele frequencies were analyzed using PCR-SSCP in eight pig breeds (N = 416). Two kinds of polymorphisms of the PPARγ2 gene were detected, including a previously reported shift SNP A177G (Met59Val) in exon 1 and a novel silent mutation G876A in exon 5. The results revealed that European pig breeds carry a higher allele A frequency at the A177G locus and a fixed GG genotype at the G876A locus. Allele A at the G876A locus was only found in Jinhua pigs. The association between haplotype (A177G/G876A) and carcass and meat quality traits was analyzed in a Pietrain x Jinhua F2 population (N = 248). The PPARγ2 gene was found to be significantly associated with backfat thickness at the shoulder (p < 0.05), 6-7(th) ribs (p < 0.01), last rib (p < 0.01), gluteus medius (p <0.05) and ham weight (p < 0.01). Significant effects of different haplotypes on ham weight and backfat thickness at the 6-7(th) ribs, last rib, and gluteus medius were also observed.  相似文献   

2.
Several quantitative trait loci (QTL) for different meat quality traits have been localized on the q arm of porcine chromosome 2 at position 55-78 cM. Association analyses were performed in a commercial Landrace × Chinese-European (LCE) crossbred population (n = 446) slaughtered at approximately 127 kg and an average age of 198 days with records for performance (growth, fat and meat accretion) and meat quality [intramuscular fat (IMF), Minolta L*, Minolta a*, Minolta b* and pH at 45 m]. Polymorphisms within positional candidate genes cloned from homologous regions on human chromosome 19, ubiquitin-like 5 (UBL5- AM950288:g.566G>A), resistin (RETN- AM157180:g.1473A>G causing substitution p.Ala36Thr), insulin receptor (INSR- AM950289:g.589T>C) and complement factor D (adipsin) (CFD- AM950287:g. 306C>T) were located at positions 62.1, 64.0, 68.0 and 70.7 cM respectively on the current USDA USMARC map of porcine chromosome 2 and had the following allele frequencies in the LCE: UBL5 566G - 0.57; RETN 1473G - 0.84; INSR 589C - 0.70; and CFD 306C - 0.73. The effects of alleles within the candidate genes on the recorded traits were estimated using an animal model. Significant effects (P < 0.05) were found for pH(45) in m. semimembranosus (m. sm.) (UBL5), IMF (RETN) and Minolta L* (RETN, CFD). Differences between phenotypic means of homozygotes at UBL5, RETN and either RETN or CFD explained 0.34 SD for pH(45) in m. sm., 0.47 SD for IMF and 0.68 SD for Minolta L* respectively. Suggestive effects (P < 0.10) on IMF (UBL5, CFD), Minolta a* (INSR, CFD) and Minolta b* (INSR) were also observed. Our results support the localization of further QTL for meat quality traits in this region and suggest that there are several genes affecting different meat quality traits.  相似文献   

3.
Pork quality is an economically important trait and one of the main selection criteria for breeding in the swine industry. In this genome-wide association study (GWAS), 455 pigs from a porcine Large White × Minzhu intercross population were genotyped using the Illumina PorcineSNP60K Beadchip, and phenotyped for intramuscular fat content (IMF), marbling, moisture, color L*, color a*, color b* and color score in the longissimus muscle (LM). Association tests between each trait and the SNPs were performed via the Genome Wide Rapid Association using the Mixed Model and Regression-Genomic Control (GRAMMAR-GC) approach. From the Ensembl porcine database, SNP annotation was implemented using Sus scrofa Build 9. A total of 45 SNPs showed significant association with one or multiple meat quality traits. Of the 45 SNPs, 36 were located on SSC12. These significantly associated SNPs aligned to or were in close approximation to previously reported quantitative trait loci (QTL) and some were located within introns of previously reported candidate genes. Two haplotype blocks ASGA0100525-ASGA0055225-ALGA0067099-MARC0004712-DIAS0000861, and ASGA0085522-H3GA0056170 were detected in the significant region. The first block contained the genes MYH1, MYH2 and MYH4. A SNP (ASGA0094812) within an intron of the USP43 gene was significantly associated with five meat quality traits. The present results effectively narrowed down the associated regions compared to previous QTL studies and revealed haplotypes and candidate genes on SSC12 for meat quality traits in pigs.  相似文献   

4.
A Duroc–Pietrain resource population was built to detect quantitative trait loci (QTL) that affect growth, carcass composition, and pork quality. The data were analyzed by applying three least-squares Mendelian models: a line-cross (LC) model, a half-sib (HS) model, and a combined LC and HS model (CB), which enabled the detection of QTL that had fixed, equal, and different allele frequencies for alternate breed alleles, respectively. Permutation tests were performed to determine 5% chromosome-wide and 5% genome-wide threshold values. A total of 40 (137) QTL were detected at the 5% genome-wide (chromosome-wide) level for the 35 traits analyzed. Of the 137 QTL detected, 62 were classified as the LC type (LC-QTL), 47 as the HS type (HS-QTL), and 28 as the CB type (CB-QTL). The results indicate that implementation of a series of model-based framework is not only beneficial to detect QTL, but also provides us with a new and more robust interpretation from which further methodology could be developed. G. Liu and J. J. Kim contributed equally to this work.  相似文献   

5.

Background

Understanding the genetic mechanisms that underlie meat quality traits is essential to improve pork quality. To date, most quantitative trait loci (QTL) analyses have been performed on F2 crosses between outbred pig strains and have led to the identification of numerous QTL. However, because linkage disequilibrium is high in such crosses, QTL mapping precision is unsatisfactory and only a few QTL have been found to segregate within outbred strains, which limits their use to improve animal performance. To detect QTL in outbred pig populations of Chinese and Western origins, we performed genome-wide association studies (GWAS) for meat quality traits in Chinese purebred Erhualian pigs and a Western Duroc × (Landrace × Yorkshire) (DLY) commercial population.

Methods

Three hundred and thirty six Chinese Erhualian and 610 DLY pigs were genotyped using the Illumina PorcineSNP60K Beadchip and evaluated for 20 meat quality traits. After quality control, 35 985 and 56 216 single nucleotide polymorphisms (SNPs) were available for the Chinese Erhualian and DLY datasets, respectively, and were used to perform two separate GWAS. We also performed a meta-analysis that combined P-values and effects of 29 516 SNPs that were common to Erhualian, DLY, F2 and Sutai pig populations.

Results

We detected 28 and nine suggestive SNPs that surpassed the significance level for meat quality in Erhualian and DLY pigs, respectively. Among these SNPs, ss131261254 on pig chromosome 4 (SSC4) was the most significant (P = 7.97E-09) and was associated with drip loss in Erhualian pigs. Our results suggested that at least two QTL on SSC12 and on SSC15 may have pleiotropic effects on several related traits. All the QTL that were detected by GWAS were population-specific, including 12 novel regions. However, the meta-analysis revealed seven novel QTL for meat characteristics, which suggests the existence of common underlying variants that may differ in frequency across populations. These QTL regions contain several relevant candidate genes.

Conclusions

These findings provide valuable insights into the molecular basis of convergent evolution of meat quality traits in Chinese and Western breeds that show divergent phenotypes. They may contribute to genetic improvement of purebreds for crossbred performance.

Electronic supplementary material

The online version of this article (doi:10.1186/s12711-015-0120-x) contains supplementary material, which is available to authorized users.  相似文献   

6.
The aim of the present study was to detect quantitative trait loci (QTL) for innate and adaptive immunity in pigs. For this purpose, a Duroc × Pietrain F2 resource population (DUPI) with 319 offspring was used to map QTL for the immune traits blood antibodies and interferon-gamma using 122 microsatellites covering all autosomes. Antibodies response to Mycoplasma hyopneumoniae and tetanus toxoid vaccine and the interferon-gamma (IFNG) serum concentration were measured at three different time points and were used as phenotypes. The differences of antibodies and interferon concentration between different time points were also used for the linkage mapping. Line-cross and imprinting QTL analysis, including two-QTL, were performed using QTL Express. A total of 30 QTL (12, 6, and 12 for mycoplasma, tetanus antibody, and IFNG, respectively) were identified at the 5% chromosome-wide-level significant, of which 28 were detected by line-cross and 2 by imprinting model. In addition, two QTL were identified on chromosome 5 using the two-QTL approach where both loci were in repulsion phase. Most QTL were detected on pig chromosomes 2, 5, 11, and 18. Antibodies were increased over time and immune traits were found to be affected by sex, litter size, parity, and month of birth. The results demonstrated that antibody and IFNG concentration are influenced by multiple chromosomal areas. The flanking markers of the QTL identified for IFNG on SSC5 did incorporate the position of the porcine IFNG gene. The detected QTL will allow further research in these QTL regions for candidate genes and their utilization in selection to improve the immune response and disease resistance in pig.  相似文献   

7.
An F2 cross between Duroc and Large White pigs was carried out in order to detect quantitative trait loci (QTL) for 11 meat quality traits (L*, a* and b* Minolta coordinates and water-holding capacity (WHC) of two ham muscles, ultimate pH of two ham and one loin muscles), 13 production traits (birth weight, average daily gain during post-weaning and fattening periods, carcass fat depths at three locations, estimated lean meat content, carcass length and weights of five carcass cuts) and three stress hormone-level traits (cortisol, adrenaline and noradrenaline). Animals from the three generations of the experimental design (including 456 F2 pigs) were genotyped for 91 microsatellite markers covering all the autosomes. A total of 56 QTL were detected: 49 reached the chromosome-wide level (suggestive QTL with a maximal probability of 0.05) and seven were significant at the genome-wide level (with a probability varying from 6 × 10(-4) to 3 × 10(-3)). Twenty suggestive QTL were identified for ultimate pH, colour measurements and WHC on chromosome (SSC) 5, 6, 7, 8, 9, 11, 13, 14, 15 and 17. For production traits, 33 QTL were detected on all autosomes except SSC6, 8 and 9. Seven of these QTL, located on SSC2, 3, 10, 13, 16 and 17, exceeded the genome-wide significance threshold. Finally, three QTL were identified for levels of stress hormones: a QTL for cortisol level on SSC7 in the cortisol-binding globulin gene region, a QTL for adrenaline level on SSC10 and a QTL for noradrenaline level on SSC13. Among all the detected QTL, seven are described for the first time: a QTL for ultimate pH measurement on SSC5, two QTL affecting birth weight on SSC2 and 10, two QTL for growth rate on SSC15 (during fattening) and 17 (during post-weaning) and two QTL affecting the adrenaline and noradrenaline levels. For each QTL, only one to five of the six F1 sires were found to be heterozygous. It means that all QTL are segregating in at least one of the founder populations used in this study. These results suggest that both meat quality and production traits can be improved in purebred Duroc and Large White pigs through marker-assisted selection. It is of particular interest for meat quality traits, which are difficult to include in classical selection programmes.  相似文献   

8.
Ai H  Ren J  Zhang Z  Ma J  Guo Y  Yang B  Huang L 《Animal genetics》2012,43(4):383-391
Growth and fatness are economically important traits in pigs. In this study, a genome scan was performed to detect quantitative trait loci (QTL) for 14 growth and fatness traits related to body weight, backfat thickness and fat weight in a large-scale White Duroc × Erhualian F(2) intercross. A total of 76 genome-wide significant QTL were mapped to 16 chromosomes. The most significant QTL was found on pig chromosome (SSC) 7 for fatness with unexpectedly small confidence intervals of ~2 cM, providing an excellent starting point to identify causal variants. Common QTL for both fatness and growth traits were found on SSC4, 5, 7 and 8, and shared QTL for fat deposition were detected on SSC1, 2 and X. Time-series analysis of QTL for body weight at six growth stages revealed the continuously significant effects of the QTL on SSC4 at the fattening period and the temporal-specific expression of the QTL on SSC7 at the foetus and fattening stages. For fatness traits, Chinese Erhualian alleles were associated with increased fat deposition except that at the major QTL on SSC7. For growth traits, most of White Duroc alleles enhanced growth rates except for those at three significant QTL on SSC6, 7 and 9. The results confirmed many previously reported QTL and also detected novel QTL, revealing the complexity of the genetic basis of growth and fatness in pigs.  相似文献   

9.
We herein report the results of a whole genome scan performed in a Piétrain × Large White intercross counting 525 offspring to map QTL influencing economically important growth and carcass traits. We report experiment-wide significant lod scores (> 4.6 for meatiness and fat deposition on chromosome SSC2, and for average daily gain and carcass length on chromosome SSC7. Additional suggestive lod scores (> 3.3) for fat deposition are reported on chromosomes SSC1, SSC7 and SSC13. A significant dominance deviation was found for the QTL on SSC1, while the hypothesis of an additive QTL could not be rejected for the QTL on SSC7 and SSC13. No evidence for imprinted QTL could be found for QTL other than the one previously reported on SSC2.  相似文献   

10.
Soybean (Glycine max (L.) Merr.) isoflavone is important for human health and plant defense system. To identify novel quantitative trait loci (QTL) and epistatic QTL underlying isoflavone content in soybean, F5:6, F5:7 and F5:8 populations of 130 recombinant inbred (RI) lines, derived from the cross of soybean cultivar ‘Zhong Dou 27′ (high isoflavone) and ‘Jiu Nong 20′ (low isoflavone), were analyzed with 95 new SSR markers. A new linkage map including 194 SSR markers and covering 2,312 cM with mean distance of about 12 cM between markers was constructed. Thirty four QTL for both individual and total seed isoflavone contents of soybean were identified. Six, seven, ten and eleven QTL were associated with daidzein (DZ), glycitein (GC), genistein (GT) and total isoflavone (TI), respectively. Of them 23 QTL were newly identified. The qTIF_1 between Satt423 and Satt569 shared the same marker Satt569 with qDZF_2, qGTF_1 and qTIF_2. The qGTD2_1 between Satt186 and Satt226 was detected in four environments and explained 3.41%-10.98% of the phenotypic variation. The qGTA2_1, overlapped with qGCA2_1 and detected in four environments, was close to the previously identified major QTL for GT, which were responsible for large a effects. QTL (qDZF_2, qGTF_1 and qTIF_2) between Satt144-Satt569 were either clustered or pleiotropic. The qGCM_1, qGTM_1 and qTIM_1 between Satt540-Sat_244 explained 2.02%–9.12% of the phenotypic variation over six environments. Moreover, the qGCE_1 overlapped with qGTE_1 and qTIE_1, the qTIH_2 overlapped with qGTH_1, qGCI_1 overlapped with qDZI_1, qTIL_1 overlapped with qGTL_1, and qTIO_1 overlapped with qGTO_1. In this study, some of unstable QTL were detected in different environments, which were due to weak expression of QTL, QTL by environment interaction in the opposite direction to a effects, and/or epistasis. The markers identified in multi-environments in this study could be applied in the selection of soybean cultivars for higher isoflavone content and in the map-based gene cloning.  相似文献   

11.
12.
 Soybean cyst nematode (SCN), Heterodera glycines Ichinohe, causes severe damage to soybean [Glycine max (L.) Merr] throughout North America and worldwide. Molecular markers associated with loci conferring SCN resistance would be useful in breeding programs using marker-assisted selection (MAS). In this study, 200 F2:3 families derived from two contrasting parents, SCN-resistant ‘Peking’ with relatively low protein and oil concentrations, and SCN-susceptible ‘Essex’ with high protein and oil concentrations, were used to determine loci underlying the SCN resistance and seed composition. Three different SCN Race isolates (1, 3, and 5) were used to screen both parents and F2:3 families. The parents were surveyed with 216 restriction fragment length polymorphism (RFLP) probes with five different restriction enzymes. Fifty-six were polymorphic and contrasted with trait data from bioassays to identify molecular markers associated with loci controlling resistance to SCN and seed composition. Five RFLP markers, A593 and T005 on linkage group (LG) B, A018 on LG E, and K014 and B072 on LG H, were significantly linked to resistance loci for Race 1 isolate, which jointly explained 57.7% of the total phenotypic variation. Three markers (B072 and K014, both on LG H; T005 on LG B) were associated with resistance to the Race 3 isolate and jointly explained 21.4% of the total phenotypic variation. Two markers (K011 on LG I, A963 on LG E) associated with resistance to the Race 5 isolate together explained 14.0% of the total phenotypic variation. In the same population we also identified two RFLP markers (B072 on LG H, B148 on LG F) associated with loci conferring protein concentration, which jointly explained 32.3% of the total phenotypic variation. Marker B072 was also linked to loci controlling the concentration of seed oil, which explained 21% of the total phenotypic variation. Clustering among quantitative trait loci (QTLs) conditioning resistance to different SCN Race isolates and seed protein and oil concentrations may exist in this population. We believe that markers located near these QTLs could be used to select for new SCN resistance and higher levels of seed protein and oil concentrations in breeding improved soybean cultivars. Received: 3 March 1998 / Accepted: 18 August 1998  相似文献   

13.
14.
The traditional production of the Iberian breed pig involves a long production cycle. It might be shortened by using Iberian pigs crossed with Duroc and by reducing the growing phase, but the age-related changes on productive performance and carcass quality should be addressed. Thus, productive performance, live measurements and carcass and primal cut traits were evaluated on Iberian × Duroc 50:50 crossed pigs according to animal age at the beginning of the free-range finishing phase (Montanera): 10, 12 and 14 months old (IBxD10 (n = 15), IBxD12 (n = 17) and IBxD14 (n = 18) animal batches, respectively) and gender (immunologically castrated female -consisted of the Improvac® vaccination- and surgically castrated males). During the growing period, animals were fed with restrictions; 1.49, 1.29 and 1.20 ± 0.023 (mean ± SEM) kg/day of commercial feeds to start Montanera with similar BW; 103.9, 102.9 and 102.1 ± 0.22 kg, for IBxD10, IBxD12 and IBxD14, respectively. IBxD14 animals yielded the highest average daily gain (ADG) and BW after Montanera, as well as larger rump height and croup width. In contrast, these animals had the lowest carcass yield. Although animals from IBxD10 yielded hams of inferior size, this could be of interest to the sector, as there is a certain segment of the market that demands hams of smaller size and, generally, this is difficult to obtain with the traditional Montanera production system. The gender had no major effects on performance and carcass and primal cut traits, so both immunologically castrated female and surgically castrated males are suitable for finishing in Montanera.  相似文献   

15.
Barley is a major feed source for livestock in the western regions of North America. Feed quality of beef cattle has been neglected as a selection criterion because of lack of understanding of the feed characteristics that could be responsive to selection and would improve feedlot performance. A Steptoe × Morex population was planted in irrigated and rain-fed environments, and collected data were used to evaluate the genetic variation in dry matter and starch digestibilities, acid detergent fiber, protein and starch contents, and to map quantitative trait loci controlling the variation in these traits. Transgressive genotypes indicate the wide genetic variation of these traits. High heritability estimates for these traits suggest that early selection for these traits during breeding would be achievable. A total of 32 main effect QTL and five epistatic QTL were identified which conditioned feed traits on different barley chromosomes. QTL for acid detergent fiber and starch contents overlapped on chromosome 6H at the Nar7 locus. Tight negative correlation between the two traits suggest the usability of Nar7 as anchor marker in marker-assisted selection programs to develop barley with low acid detergent fiber and high starch content.  相似文献   

16.
Enterotoxigenic Escherichia coli (ETEC) is a major cause of diarrhoea in neonatal and postweaning pigs. F41 is one of ETEC fimbriae that adhere to the small intestinal epithelium and lead to development of diarrhoea. The genetic architecture of susceptibility to ETEC F41 remains elusive in pigs. In this study, we determined the in vitro adhesion phenotypes of ETEC F41 in a total of 835 F2 animals from a White Duroc × Erhualian intercross, and performed a genome scan using both F2 and half-sib analyses with 183 microsatellite markers to detect quantitative trait loci (QTL) for porcine susceptibility to ETEC F41. The two analyses consistently revealed a 1% genome-wide significant QTL on pig chromosome 4. Moreover, we determined F41 adhesion phenotypes in 14 purebred Erhualian and 14 White Duroc pigs. The results showed that both the founder breeds are segregating for the F41 adhesion phenotype, while less percentage of Erhualian pigs were adhesive to ETEC F41 compared to White Duroc pigs.  相似文献   

17.
Puberty is a fundamental development process experienced by all reproductively competent adults, yet the specific factors regulating age at puberty remain elusive in pigs. In this study, we performed a genome scan to identify quantitative trait loci (QTL) affecting age at puberty in gilts using a White Duroc × Erhualian intercross. A total of 183 microsatellites covering 19 porcine chromosomes were genotyped in 454 F2 gilts and their parents and grandparents in the White Duroc × Erhualian intercross. A linear regression method was used to map QTL for age at puberty via QTLexpress. One 1% genome-wise significant QTL and one 0.1% genome-wise significant QTL were detected at 114 cM (centimorgan) on SSC1 and at 54 cM on SSC7, respectively. Moreover, two suggestive QTL were found on SSC8 and SSC17, respectively. This study confirmed the QTL for age at puberty previously identified on SSC1, 7 and 8, and reports for the first time a QTL for age at puberty in gilts on SSC17. Interestingly, the Chinese Erhualian alleles were not systematically favourable for younger age at puberty.  相似文献   

18.
Baseline erythroid indices are increasingly involved as risk factors for common complex diseases in humans. However, little is known about the genetic architecture of baseline erythroid traits in pigs. In this study, hematocrit (Hct), hemoglobin (Hgb), mean corpuscular hemoglobin (MCH), mean corpuscular hemoglobin concentration (MCHC), mean corpuscular volume (MCV), red blood cell (RBC), and red cell distribution width (RDW) were measured in 1420 (day 18), 1410 (day 46), and 1033 (day 240) F(2) pigs from a White Duroc x Erhualian intercross resource population. The entire resource population was genotyped for 183 microsatellite loci across the pig genome, and the quantitative trait loci (QTL) analysis was performed for all erythroid-related traits measured with QTL Express based on a least-squares method. A total of 101 QTL, including 46 genome-wide significant QTL and 55 chromosome-wide significant QTL, regulating erythroid traits were found on all pig chromosomes (SSC) except for SSC15 and SSC18. The genome-wide significant QTL were mainly localized on SSC1, 7, 8, 10, and X. These results confirmed most of QTL previously identified in the swine. More importantly, this study detected age-specific QTL for baseline erythroid traits in pigs for the first time. Notably, the QTL for MCV and MCH on day 18 on SSC8 with small intervals of 3 and 4 cM, respectively, provided a good starting point for identifying causal genes underlying MCV and MCH in the future.  相似文献   

19.
Seed maturity is a critical process of seed vigor establishment. In this study, one rice population of recombinant inbred lines (RILs) was used to determine the genetic characteristics of seed vigor, including the germination potential (GP), germination rate (GR), germination index (GI), and time for 50 % of germination (T50), at 4, 5, and 6 weeks after heading in 2 years. Significant differences of seed vigor were observed among two parents and RIL population; the heritability of four traits was more than 90 % at three maturity stages. A total of 19 additive and 2 epistatic quantitative trait loci (QTL) for seed vigor were identified using QTL Cartographer and QTLNetwork program, respectively, in 2012, while 16 simple sequence repeat (SSR) markers associated with seed vigor were detected using bulked segregant analysis (BSA) in 2013. The phenotypic variation explained by each additive, epistatic QTL, and QTL × seed maturity interaction ranged from 9.19 to 22.94 %, 7.23 to 7.75 %, and 0.05 to 0.63 %, respectively. Ten additive QTLs were stably expressed in 2 years which might play important roles in establishment of seed vigor in different environments. By comparing chromosomal positions of ten stably expressed additive QTLs with those previously identified, they might be true QTLs for seed vigor; the regions of QTLs for seed vigor are likely to coincide with QTLs for seed dormancy, seed reserve mobilization, low-temperature germinability, and seedling growth. Using four selected RILs, three cross-combinations were predicted to improve seed vigor; 9 to 10 elite alleles could be pyramided by each combination. The selected RILs and the identified QTLs might be applicable for the improvement of seed vigor by marker-assisted selection (MAS) in rice.  相似文献   

20.
Wang C  Chen Y  Ku L  Wang T  Sun Z  Cheng F  Wu L 《PloS one》2010,5(11):e14068

Background

An understanding of the genetic determinism of photoperiod response of flowering is a prerequisite for the successful exchange of germplasm across different latitudes. In order to contribute to resolve the genetic basis of photoperiod sensitivity in maize, a set of 201 recombinant inbred lines (RIL), derived from a temperate and tropical inbred line cross were evaluated in 5 field trials spread in short- and long-day environments.

Methodology/Principal Findings

Firstly, QTL analyses for flowering time and photoperiod sensitivity in maize were conducted in individual photoperiod environments separately, and then, the total genetic effect was partitioned into additive effect (A) and additive-by-environment interaction effect (AE) by using a mixed-model-based composite interval mapping (MCIM) method.

Conclusions/Significance

Seven putative QTL were found associated with DPS thermal time based on the data estimated in individual environments. Nine putative QTL were found associated with DPS thermal time across environments and six of them showed significant QTL×enviroment (QE) interactions. Three QTL for photoperiod sensitivity were identified on chromosome 4, 9 and 10, which had the similar position to QTL for DPS thermal time in the two long-day environment. The major photoperiod sensitive loci qDPS10 responded to both short and long-day photoperiod environments and had opposite effects in different photoperiod environment. The QTL qDPS3, which had the greatest additive effect exclusively in the short-day environment, were photoperiod independent and should be classified in autonomous promotion pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号