首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Yield is the most important and complex trait for the genetic improvement of crops. Although much research into the genetic basis of yield and yield-associated traits has been reported, in each such experiment the genetic architecture and determinants of yield have remained ambiguous. One of the most intractable problems is the interaction between genes and the environment. We identified 85 quantitative trait loci (QTL) for seed yield along with 785 QTL for eight yield-associated traits, from 10 natural environments and two related populations of rapeseed. A trait-by-trait meta-analysis revealed 401 consensus QTL, of which 82.5% were clustered and integrated into 111 pleiotropic unique QTL by meta-analysis, 47 of which were relevant for seed yield. The complexity of the genetic architecture of yield was demonstrated, illustrating the pleiotropy, synthesis, variability, and plasticity of yield QTL. The idea of estimating indicator QTL for yield QTL and identifying potential candidate genes for yield provides an advance in methodology for complex traits.YIELD is the most important and complex trait in crops. It reflects the interaction of the environment with all growth and development processes that occur throughout the life cycle (Quarrie et al. 2006). Crop yield is directly and multiply determined by yield-component traits (such as seed weight and seed number). Yield-related traits (such as biomass, harvest index, plant architecture, adaptation, resistance to biotic and abiotic constraints) may also indirectly affect yield by affecting the yield-component traits or by other, unknown mechanisms. Increasing evidence suggests that “fine-mapped” quantitative trait loci (QTL) or genes identified as affecting crop yield involve diverse pathways, such as seed number (Ashikari et al. 2005; Tian et al. 2006b; Burstin et al. 2007; Xie et al. 2008; Xing et al. 2008; Xue et al. 2008), seed weight (Ishimaru 2003; Song et al. 2005; Shomura et al. 2008; Wang et al. 2008; Xie et al. 2006, 2008; Xing et al. 2008; Xue et al. 2008), flowering time (Cockram et al. 2007; Song et al. 2007; Xie et al. 2008; Xue et al. 2008), plant height (Salamini 2003; Ashikari et al. 2005; Xie et al. 2008; Xue et al. 2008), branching (Clark et al. 2006; Burstin et al. 2007; Xing et al. 2008), biomass yield (Quarrie et al. 2006; Burstin et al. 2007), resistance and tolerance to biotic and abiotic stresses (Khush 2001; Brown 2002; Yuan et al. 2002; Waller et al. 2005; Zhang 2007; Warrington et al. 2008), and root architecture (Hochholdinger et al. 2008).Many experiments have explored the genetic basis of yield and yield-associated traits (yield components and yield-related traits) in crops. Summaries of identified QTL have been published for wheat (MacCaferri et al. 2008), barley (Von Korff et al. 2008), rice, and maize (http://www.gramene.org/). The results show several common patterns. First, QTL for yield and yield-associated traits tend to be clustered in the genome, which suggests that the QTL of the yield-associated traits have pleiotropic effects on yield. Second, this kind of pleiotropy has not been well analyzed genetically. The QTL for yield (complicated factor), therefore, have not been associated with any yield-associated traits (relatively simple factors, such as plant height). Therefore, they are unlikely to predict accurately potential candidate genes for yield. Third, only a few loci (rarely >10) have been found for each of these traits. Thus, the genetic architecture of yield has remained ambiguous. Fourth, trials were carried out in a few environments and how the mode of expression of QTL for these complex traits might respond in different environments is unclear.In this study, the genetic architecture of crop yield was analyzed through the QTL mapping of seed yield and eight yield-associated traits in two related populations of rapeseed (Brassica napus) that were grown in 10 natural environments. The complexity of the genetic architecture of seed yield was demonstrated by QTL meta-analysis. The idea of estimating indicator QTL (QTL of yield-associated traits, which are defined as the potential genetic determinants of the colocalized QTL for yield) for yield QTL in conjunction with the identification of candidate genes is described.  相似文献   

2.
3.
A major question about cytokinesis concerns the role of the septin proteins, which localize to the division site in all animal and fungal cells but are essential for cytokinesis only in some cell types. For example, in Schizosaccharomyces pombe, four septins localize to the division site, but deletion of the four genes produces only a modest delay in cell separation. To ask if the S. pombe septins function redundantly in cytokinesis, we conducted a synthetic-lethal screen in a septin-deficient strain and identified seven mutations. One mutation affects Cdc4, a myosin light chain that is an essential component of the cytokinetic actomyosin ring. Five others cause frequent cell lysis during cell separation and map to two loci. These mutations and their dosage suppressors define a signaling pathway (including Rho1 and a novel arrestin) for repairing cell-wall damage. The seventh mutation affects the poorly understood RNA-binding protein Scw1 and severely delays cell separation when combined either with a septin mutation or with a mutation affecting the septin-interacting, anillin-like protein Mid2, suggesting that Scw1 functions in a pathway parallel to that of the septins. Taken together, our results suggest that the S. pombe septins participate redundantly in one or more pathways that cooperate with the actomyosin ring during cytokinesis and that a septin defect causes septum defects that can be repaired effectively only when the cell-integrity pathway is intact.THE fission yeast Schizosaccharomyces pombe provides an outstanding model system for studies of cytokinesis (McCollum and Gould 2001; Balasubramanian et al. 2004; Pollard and Wu 2010). As in most animal cells, successful cytokinesis in S. pombe requires an actomyosin ring (AMR). The AMR begins to assemble at the G2/M transition and involves the type II myosin heavy chains Myo2 and Myp2 and the light chains Cdc4 and Rlc1 (Wu et al. 2003). Myo2 and Cdc4 are essential for cytokinesis under all known conditions, Rlc1 is important at all temperatures but essential only at low temperatures, and Myp2 is essential only under stress conditions. As the AMR constricts, a septum of cell wall is formed between the daughter cells. The primary septum is sandwiched by secondary septa and subsequently digested to allow cell separation (Humbel et al. 2001; Sipiczki 2007). Because of the internal turgor pressure of the cells, the proper assembly and structural integrity of the septal layers are essential for cell survival.Septum formation involves the β-glucan synthases Bgs1/Cps1/Drc1, Bgs3, and Bgs4 (Ishiguro et al. 1997; Le Goff et al. 1999; Liu et al. 1999, 2002; Martín et al. 2003; Cortés et al. 2005) and the α-glucan synthase Ags1/Mok1 (Hochstenbach et al. 1998; Katayama et al. 1999). These synthases are regulated by the Rho GTPases Rho1 and Rho2 and the protein kinase C isoforms Pck1 and Pck2 (Arellano et al. 1996, 1997, 1999; Nakano et al. 1997; Hirata et al. 1998; Calonge et al. 2000; Sayers et al. 2000; Ma et al. 2006; Barba et al. 2008; García et al. 2009b). The Rho GTPases themselves appear to be regulated by both GTPase-activating proteins (GAPs) and guanine-nucleotide-exchange factors (GEFs) (Nakano et al. 2001; Calonge et al. 2003; Iwaki et al. 2003; Tajadura et al. 2004; Morrell-Falvey et al. 2005; Mutoh et al. 2005; García et al. 2006, 2009a,b). In addition, septum formation and AMR function appear to be interdependent. In the absence of a normal AMR, cells form aberrant septa and/or deposit septal materials at random locations, whereas a mutant defective in septum formation (bgs1) is also defective in AMR constriction (Gould and Simanis 1997; Le Goff et al. 1999; Liu et al. 1999, 2000). Both AMR constriction and septum formation also depend on the septation initiation network involving the small GTPase Spg1 (McCollum and Gould 2001; Krapp and Simanis 2008). Despite this considerable progress, many questions remain about the mechanisms and regulation of septum formation and its relationships to the function of the AMR.One major question concerns the role(s) of the septins. Proteins of this family are ubiquitous in fungal and animal cells and typically localize to the cell cortex, where they appear to serve as scaffolds and diffusion barriers for other proteins that participate in a wide variety of cellular processes (Longtine et al. 1996; Gladfelter et al. 2001; Hall et al. 2008; Caudron and Barral 2009). Despite the recent progress in elucidating the mechanisms of septin assembly (John et al. 2007; Sirajuddin et al. 2007; Bertin et al. 2008; McMurray and Thorner 2008), the details of septin function remain obscure. However, one prominent role of the septins and associated proteins is in cytokinesis. Septins concentrate at the division site in every cell type that has been examined, and in Saccharomyces cerevisiae (Hartwell 1971; Longtine et al. 1996; Lippincott et al. 2001; Dobbelaere and Barral 2004) and at least some Drosophila (Neufeld and Rubin 1994; Adam et al. 2000) and mammalian (Kinoshita et al. 1997; Surka et al. 2002) cell types, the septins are essential for cytokinesis. In S. cerevisiae, the septins are required for formation of the AMR (Bi et al. 1998; Lippincott and Li 1998). However, this cannot be their only role, because the AMR itself is not essential for cytokinesis in this organism (Bi et al. 1998; Korinek et al. 2000; Schmidt et al. 2002). Moreover, there is no evidence that the septins are necessary for AMR formation or function in any other organism. A further complication is that in some cell types, including most Caenorhabditis elegans cells (Nguyen et al. 2000; Maddox et al. 2007) and some Drosophila cells (Adam et al. 2000; Field et al. 2008), the septins do not appear to be essential for cytokinesis even though they localize to the division site.S. pombe has seven septins, four of which (Spn1, Spn2, Spn3, and Spn4) are expressed in vegetative cells and localize to the division site shortly before AMR constriction and septum formation (Longtine et al. 1996; Berlin et al. 2003; Tasto et al. 2003; Wu et al. 2003; An et al. 2004; Petit et al. 2005; Pan et al. 2007; Onishi et al. 2010). Spn1 and Spn4 appear to be the core members of the septin complex (An et al. 2004; McMurray and Thorner 2008), and mutants lacking either of these proteins do not assemble the others at the division site. Assembly of a normal septin ring also depends on the anillin-like protein Mid2, which colocalizes with the septins (Berlin et al. 2003; Tasto et al. 2003). Surprisingly, mutants lacking the septins are viable and form seemingly complete septa with approximately normal timing. These mutants do, however, display a variable delay in separation of the daughter cells, suggesting that the septins play some role(s) in the proper completion of the septum or in subsequent processes necessary for cell separation (Longtine et al. 1996; An et al. 2004; Martín-Cuadrado et al. 2005).It is possible that the septins localize to the division site and yet are nonessential for division in some cell types because their role is redundant with that of some other protein(s) or pathway(s). To explore this possibility in S. pombe, we screened for mutations that were lethal in combination with a lack of septins. The results suggest that the septins cooperate with the AMR during cytokinesis and that, in the absence of septin function, the septum is not formed properly, so that an intact system for recognizing and repairing cell-wall damage becomes critical for cell survival.  相似文献   

4.
Piwi proteins and their partner small RNAs play an essential role in fertility, germ-line stem cell development, and the basic control and evolution of animal genomes. However, little knowledge exists regarding piRNA biogenesis. Utilizing microfluidic chip analysis, we present a quantitative profile of zebrafish piRNAs expressed differentially between testis and ovary. The sex-specific piRNAs are derived from separate loci of repeat elements in the genome. Ovarian piRNAs can be categorized into groups that reach up to 92 members, indicating a sex-specific arrangement of piRNA genes in the genome. Furthermore, precursor piRNAs preferentially form a hairpin structure at the 3′end, which seem to favor the generation of mature sex-specific piRNAs. In addition, the mature piRNAs from both the testis and the ovary are 2′-O-methylated at their 3′ ends.SMALL RNAs, ranging from 19 to 30 nucleotides (nt) in length, constitute a large family of regulatory molecules with diverse functions in invertebrates, vertebrates, plants, and fungi (Bartel 2004; Nakayashiki 2005). Two major classes of small RNAs are microRNAs (miRNAs) and small interfering RNAs (siRNAs). The functions of small RNAs have been conserved through evolution; they have been shown to inhibit gene expression at the levels of mRNA degradation, translational repression, chromatin modification, heterochromatin formation, and DNA elimination (Mochizuki et al. 2002; Bartel 2004; Kim et al. 2005; Brodersen and Voinnet 2006; Lee and Collins 2006; Vaucheret 2006).Over the past few years, focus on the genetics of small RNAs has helped clarify the mechanisms behind the regulation of these molecules. While hundreds of small RNAs have been identified from mammalian somatic tissues, relatively little is known about small RNAs in germ cells. A recent breakthrough has been the identification of small RNAs that associate with Piwi proteins (piRNAs) from Drosophila and mammalian gonads (Aravin et al. 2001, 2006; Girard et al. 2006; Grivna et al. 2006; Vagin et al. 2006; Watanabe et al. 2006). piRNAs and their interacting proteins Ziwi/Zili have also been identified in zebrafish (Houwing et al. 2007, 2008). Increasing evidence indicates that piRNAs play roles mainly in germ cell differentiation and genomic stability (Carthew 2006; Lau et al. 2006; Vagin et al. 2006; Brennecke et al. 2007; Chambeyron et al. 2008; Klattenhoff and Theurkauf 2008; Kuramochi-Miyagawa et al. 2008; Kim et al. 2009; Lim et al. 2009; Unhavaithaya et al. 2009). Moreover, although piRNAs are mostly expressed in germ line cells, recent studies showed piRNA expression in nongerm cells, for example, T-cell lines (Jurkat cells and MT4) (Azuma-Mukai et al. 2008; Yeung et al. 2009), indicating other functions such as in the immune system. piRNAs do not appear to be derived from double-stranded RNA precursors, and their biogenesis mechanisms, although unclear, may be distinct from those of siRNA and miRNA. Recently, two distinct piRNA production pathways were further proposed: the “ping-pong” model (Brennecke et al. 2007; Gunawardane et al. 2007) and the Ago3-independent piRNA pathway centered on Piwi in somatic cells (Li et al. 2009; Malone et al. 2009). However, the mechanistic pathways of piRNA activity and their biogenesis are still largely unknown.Teleost fishes comprise >24,000 species, accounting for more than half of extant vertebrate species, displaying remarkable variation in morphological and physiological adaptations (see review in Zhou et al. 2001). Recently, Houwing et al. (2007, 2008) reported findings on Ziwi/Zili and associated piRNAs, implicating roles in germ cell differentiation, meiosis, and transposon silencing in the germline of the zebrafish. However, some of the identified zebrafish piRNAs are nonrepetitive and nontransposon-related piRNAs, suggesting that piRNAs may have additional unknown roles. In this study, we show that for males and females, piRNAs are specifically derived from separate loci of the repeat elements, and that ovarian piRNAs are far more often associated in groups. Genomic analysis of piRNAs indicates a tendency to folding at the 3′ end of the piRNA precursor, which may favor cleavage of the piRNA precursor to generate mature sex-specific piRNAs. Furthermore, methylation modification occurs at the 2′-O-hydroxyl group on the ribose of the final 3′ nucleotide in both the testis and the ovary.  相似文献   

5.
The importance of genes of major effect for evolutionary trajectories within and among natural populations has long been the subject of intense debate. For example, if allelic variation at a major-effect locus fundamentally alters the structure of quantitative trait variation, then fixation of a single locus can have rapid and profound effects on the rate or direction of subsequent evolutionary change. Using an Arabidopsis thaliana RIL mapping population, we compare G-matrix structure between lines possessing different alleles at ERECTA, a locus known to affect ecologically relevant variation in plant architecture. We find that the allele present at ERECTA significantly alters G-matrix structure—in particular the genetic correlations between branch number and flowering time traits—and may also modulate the strength of natural selection on these traits. Despite these differences, however, when we extend our analysis to determine how evolution might differ depending on the ERECTA allele, we find that predicted responses to selection are similar. To compare responses to selection between allele classes, we developed a resampling strategy that incorporates uncertainty in estimates of selection that can also be used for statistical comparisons of G matrices.THE structure of the genetic variation that underlies phenotypic traits has important consequences for understanding the evolution of quantitative traits (Fisher 1930; Lande 1979; Bulmer 1980; Kimura 1983; Orr 1998; Agrawal et al. 2001). Despite the infinitesimal model''s allure and theoretical tractability (see Orr and Coyne 1992; Orr 1998, 2005a,b for reviews of its influence), evidence has accumulated from several sources (artificial selection experiments, experimental evolution, and QTL mapping) to suggest that genes of major effect often contribute to quantitative traits. Thus, the frequency and role of genes of major effect in evolutionary quantitative genetics have been a subject of intense debate and investigation for close to 80 years (Fisher 1930; Kimura 1983; Orr 1998, 2005a,b). Beyond the conceptual implications, the prevalence of major-effect loci also affects our ability to determine the genetic basis of adaptations and species differences (e.g., Bradshaw et al. 1995, 1998).Although the existence of genes of major effect is no longer in doubt, we still lack basic empirical data on how segregating variation at such genes affects key components of evolutionary process (but see Carrière and Roff 1995). In other words, How does polymorphism at genes of major effect alter patterns of genetic variation and covariation, natural selection, and the likely response to selection? The lack of data stems, in part, from the methods used to detect genes of major effect: experimental evolution (e.g., Bull et al. 1997; Zeyl 2005) and QTL analysis (see Erickson et al. 2004 for a review) often detect such genes retrospectively after they have become fixed in experimental populations or the species pairs used to generate the mapping population. The consequences of polymorphism at these genes on patterns of variation, covariation, selection, and the response to selection—which can be transient (Agrawal et al. 2001)—are thus often unobserved.A partial exception to the absence of data on the effects of major genes comes from artificial selection experiments, in which a substantial evolutionary response to selection in the phenotype after a plateau is often interpreted as evidence for the fixation of a major-effect locus (Frankham et al. 1968; Yoo 1980a,b; Frankham 1980; Shrimpton and Robertson 1988a,b; Caballero et al. 1991; Keightley 1998; see Mackay 1990 and Hill and Caballero 1992 for reviews). However, many of these experiments report only data on the selected phenotype (e.g., bristle number) or, alternatively, the selected phenotype and some measure of fitness (e.g., Frankham et al. 1968, Yoo 1980b; Caballero et al. 1991; Mackay et al. 1994; Fry et al. 1995; Nuzhdin et al. 1995; Zur Lage et al. 1997), making it difficult to infer how a mutation will affect variation, covariation, selection, and evolutionary responses for a suite of traits that might affect fitness themselves. One approach is to document how variation at individual genes of major effect affects the genetic variance–covariance matrix (“G matrix”; Lande 1979), which represents the additive genetic variance and covariance between traits.Although direct evidence for variation at major-effect genes altering patterns of genetic variation, covariation, and selection is rare, there is abundant evidence for the genetic mechanisms that could produce these dynamics. A gene of major effect could have these consequences due to any of at least three genetic mechanisms: (1) pleiotropy, where a gene of major effect influences several traits, including potentially fitness, simultaneously, (2) physical linkage or linkage disequilibrium (LD), in which a gene of major effect is either physically linked or in LD with other genes that influence other traits under selection, and (3) epistasis, in which the allele present at a major-effect gene alters the phenotypic effect of other loci and potentially phenotypes under selection. Evidence for these three evolutionary genetic mechanisms leading to changes in suites of traits comes from a variety of sources, including mutation accumulation experiments (Clark et al. 1995; Fernandez and Lopez-Fanjul 1996), mutation induction experiments (Keightley and Ohnishi 1998), artificial selection experiments (Long et al. 1995), and transposable element insertions (Rollmann et al. 2006). For pleiotropy in particular, major-effect genes that have consequences on several phenotypic traits are well known from the domestication and livestock breeding literature [e.g., myostatin mutations in Belgian blue cattle and whippets (Arthur 1995; Grobet et al. 1997; Mosher et al. 2007), halothane genes in pigs (Christian and Rothschild 1991; Fujii et al. 1991), and Booroola and Inverdale genes in sheep (Amer et al. 1999; Visscher et al. 2000)]. While these data suggest that variation at major-effect genes could—and probably does—influence variation, covariation, and selection on quantitative traits, data on the magnitude of these consequences remain lacking.Recombinant inbred line (RIL) populations are a promising tool for investigating the influence of major-effect loci. During advancement of the lines from F2''s to RILs, alternate alleles at major-effect genes (and most of the rest of the genome) will be made homozygous, simplifying comparisons among genotypic classes. Because of the high homozygosity, individuals within RILs are nearly genetically identical, facilitating phenotyping of many genotypes under a range of environments. In addition, because of recombination, alternative alleles are randomized across genetic backgrounds—facilitating robust comparisons between sets of lines differing at a major-effect locus.Here we investigate how polymorphism at an artificially induced mutation, the erecta locus in Arabidopsis thaliana, affects the magnitude of these important evolutionary genetic parameters under ecologically realistic field conditions. We use the Landsberg erecta (Ler) × Columbia (Col) RIL population of A. thaliana to examine how variation at a gene of major effect influences genetic variation, covariation, and selection on quantitative traits in a field setting. The Ler × Col RIL population is particularly suitable, because it segregates for an artificially induced mutation at the erecta locus, which has been shown to influence a wide variety of plant traits. The Ler × Col population thus allows a powerful test of the effects of segregating variation at a gene—chosen a priori—with numerous pleiotropic effects. The ERECTA gene is a leucine-rich receptor-like kinase (LRR-RLK) (Torii et al. 1996) and has been shown to affect plant growth rates (El-Lithy et al. 2004), stomatal patterning and transpiration efficiency (Masle et al. 2005; Shpak et al. 2005), bacterial pathogen resistance (Godiard et al. 2003), inflorescence and floral organ size and shape (Douglas et al. 2002; Shpak et al. 2003, 2004), and leaf polarity (Xu et al. 2003; Qi et al. 2004).Specifically, we sought to answer the following questions: (1) Is variation at erecta significantly associated with changes to the G matrix? (2) Is variation at erecta associated with changes in natural selection on genetically variable traits? And (3) is variation at erecta associated with significantly different projected evolutionary responses to selection?  相似文献   

6.
The selection of a proper AUG start codon requires the base-pairing interactions between the codon on the mRNA and the anticodon of the initiator tRNA. This selection process occurs in a pre-initiation complex that includes multiple translation initiation factors and the small ribosomal subunit. To study how these initiation factors are involved in start codon recognition in multicellular organisms, we isolated mutants that allow the expression of a GFP reporter containing a non-AUG start codon. Here we describe the characterization of mutations in eif-1, which encodes the Caenorhabditis elegans translation initiation factor 1 (eIF1). Two mutations were identified, both of which are substitutions of amino acid residues that are identical in all eukaryotic eIF1 proteins. These residues are located in a structural region where the amino acid residues affected by the Saccharomyces cerevisiae eIF1 mutations are also localized. Both C. elegans mutations are dominant in conferring a non-AUG translation initiation phenotype and lead to growth arrest defects in homozygous animals. By assaying reporter constructs that have base changes at the AUG start codon, these mutants are found to allow expression from most reporters that carry single base changes within the AUG codon. This trend of non-AUG mediated initiation was also observed previously for C. elegans eIF2β mutants, indicating that these two factors play a similar role. These results support that eIF1 functions in ensuring the fidelity of AUG start codon recognition in a multicellular organism.TRANSLATION initiation is thought to be one of the most complex cellular processes in eukaryotes. It involves at least 12 translation initiation factors (eIFs) comprising over 30 polypeptides (Pestova et al. 2007). These factors bring together an initiator methionyl tRNA (Met-tRNAi), the small ribosomal subunit, and a mRNA to form a 48S initiation complex. An important role performed by this complex is to select an AUG codon to initiate translation of the mRNA. Since the first AUG at the 5′ end of most mRNAs is selected as the start site, it is believed that the initiation complex scans for an AUG start codon as it moves from the 5′-capped end of the mRNA toward the 3′ end, as proposed in the ribosomal scanning model (Kozak 1978; Kozak 1989). The recognition of the AUG start codon is mediated by the anticodon of the Met-tRNAi, and the matching base-pairing interactions between the codon of the mRNA and the anticodon determine the site of initiation (Cigan et al. 1988). These base-pairing interactions are essential, but are likely not the only components required for accurately selecting the correct AUG start codon. Numerous initiation factors along with base-pairing interactions have been shown to aid in the AUG recognition process (Pestova et al. 2007).Translation initiation factors involved in start codon selection fidelity were first identified through genetic studies performed in the yeast Saccharomyces cerevisiae. Mutant strains with a modified His4 gene that had an AUU instead of an AUG at the native start site were selected for the ability to survive on media lacking histidine (Donahue et al. 1988; Castilho-Valavicius et al. 1990). These mutants were found to be able to produce the His4 protein by using a downstream inframe UUG codon (the third codon within the His4 coding region) as the translation start site. Further analyses determined that non-AUG initiation occurred mostly from a UUG codon and not significantly from other codons (Huang et al. 1997). These mutants defined five genetic loci and were named sui1-sui5 (suppressor of initiation codon) on the basis of their ability to initiate translation at a non-AUG codon.The sui1 suppressors were found to have missense mutations in eIF1. These missense mutations showed semidominant or codominant properties in non-AUG translation initiation while deletion of the eIF1 gene led to lethality in yeast (Yoon and Donahue 1992). eIF1 is a highly conserved protein with a size of approximately 12 kDa that plays a vital role in multiple translation initiation steps. eIF1 is incorporated into a multifactor complex that includes eIF1A, eIF3, and eIF5 and stimulates the recruiting of the ternary complex (consisting of eIF2 · GTP and the charged Met-tRNAi) to the small ribosomal subunit to form the 43S pre-initiation complex (Singh et al. 2004). eIF1 acts synergistically with eIF1A to promote continuous ribosomal scanning for AUG codons by stabilizing an open conformation that allows mRNA to pass through the complex (Maag et al. 2005; Cheung et al. 2007; Passmore et al. 2007). It also mediates the assembly of the ribosomal initiation complex at the AUG start codon (Pestova et al. 1998). eIF1 dissociates from the complex upon recognition of the AUG codon and this dissociation is necessary to trigger a series of conformational changes leading to the translation elongation phase (Algire et al. 2005). Consistent with these roles, sui1 mutations reduce the affinity of eIF1 for the ribosome and cause premature release of eIF1 at non-AUG codons (Cheung et al. 2007). Other sui mutations support the involvement of four additional genes in translation initiation fidelity in yeast. Mutations have been isolated in the heterotrimeric eIF2 as SUI2 (α-subunit) (Cigan et al. 1989), SUI3 (β-subunit) (Donahue et al. 1988), and SUI4 (γ-subunit) (Huang et al. 1997), and a mutation in eIF5 corresponds to the SUI5 mutant (Huang et al. 1997).However, the genetic studies that identified these translation fidelity mutants were conducted only in yeast. It is not known if there are similar mechanisms regulating translation initiation fidelity in multicellular organisms. To address this question, we designed a genetic system to isolate C. elegans mutants that have reduced fidelity in AUG start codon selection (Zhang and Maduzia 2010). Mutants were selected on the basis of their ability to express a GFP reporter that contains a GUG codon in place of its native translation start site. Here we report the characterization of two mutants that have mutations in eIF1. Unlike yeast sui1 mutants, which preferred the UUG codon, these mutants are capable of using a subset of non-AUG codons for translation initiation. Our results are consistent with eIF1 playing a role in the fidelity of AUG codon selection, perhaps by discriminating base-pairing interactions between the codon and anticodon during start-site selection.  相似文献   

7.
8.
Animals search for foods and decide their behaviors according to previous experience. Caenorhabditis elegans detects chemicals with a limited number of sensory neurons, allowing us to dissect roles of each neuron for innate and learned behaviors. C. elegans is attracted to salt after exposure to the salt (NaCl) with food. In contrast, it learns to avoid the salt after exposure to the salt without food. In salt-attraction behavior, it is known that the ASE taste sensory neurons (ASEL and ASER) play a major role. However, little is known about mechanisms for learned salt avoidance. Here, through dissecting contributions of ASE neurons for salt chemotaxis, we show that both ASEL and ASER generate salt chemotaxis plasticity. In ASER, we have previously shown that the insulin/PI 3-kinase signaling acts for starvation-induced salt chemotaxis plasticity. This study shows that the PI 3-kinase signaling promotes aversive drive of ASER but not of ASEL. Furthermore, the Gq signaling pathway composed of Gqα EGL-30, diacylglycerol, and nPKC (novel protein kinase C) TTX-4 promotes attractive drive of ASER but not of ASEL. A putative salt receptor GCY-22 guanylyl cyclase is required in ASER for both salt attraction and avoidance. Our results suggest that ASEL and ASER use distinct molecular mechanisms to regulate salt chemotaxis plasticity.ANIMALS show various behaviors in response to environmental cues and modulate behaviors according to previous experience. To understand neuronal plasticity underlying learning, it is important to dissect neurons and molecules for sensing environmental stimuli, storing memory, and executing learned behaviors.The nematode Caenorhabditis elegans has only 302 neurons and functions of sensory neurons are well characterized (White et al. 1986; Bargmann 2006). C. elegans is attracted to odorants sensed by the AWC olfactory neurons or to salts sensed by the ASE gustatory neurons (Bargmann and Horvitz 1991; Bargmann et al. 1993). The ASE neuron class consists of a bilaterally symmetrical pair, ASE-left (ASEL) and ASE-right (ASER), which sense different sets of ions including Na+ and Cl, respectively (Pierce-Shimomura et al. 2001; Suzuki et al. 2008; Ortiz et al. 2009). ASEL is activated by an increase in salt concentration, whereas ASER is activated by a decrease in salt concentration (Suzuki et al. 2008). In the ASE gustatory neurons, a cyclic GMP (cGMP) signaling pathway mediates sensory transduction (Komatsu et al. 1996; Suzuki et al. 2008; Ortiz et al. 2009). ASEL and ASER express different sets of receptor-type guanylyl cyclases (gcys) (Ortiz et al. 2006). Of these, gcy-22, which is specifically expressed in ASER, is important for attraction to ASER-sensed ions such as Cl (Ortiz et al. 2009).Preference for salts changes according to previous experience (known as gustatory plasticity or salt chemotaxis learning) (Saeki et al. 2001; Jansen et al. 2002; Tomioka et al. 2006). When worms are grown on a medium that contains sodium chloride (NaCl) and food (Escherichia coli), they show attraction to NaCl by using ASE neurons (Bargmann and Horvitz 1991; Suzuki et al. 2008). In contrast, after exposure to the salt under starvation conditions, they show reduced attraction to or even avoid the salt (Saeki et al. 2001; Jansen et al. 2002; Tomioka et al. 2006). In C. elegans, it was proposed that preference for a sensory cue is defined by the sensory neuron that detects the cue (Troemel et al. 1997). ASE neurons play a major role for salt attraction (Bargmann and Horvitz 1991; Suzuki et al. 2008; Ortiz et al. 2009). However, little is known about sensory neurons that drive the learned salt avoidance; it remains unclear whether ASE neurons act as salt receptors for the learned avoidance.We have previously shown that an insulin/PI 3-kinase signaling pathway is essential for salt chemotaxis learning (Tomioka et al. 2006). In C. elegans, the insulin-like signaling is composed of daf-2, age-1, and akt-1, which encode homologs of insulin receptor, PI 3-kinase, and protein kinase B, respectively (Morris et al. 1996; Kimura et al. 1997; Paradis and Ruvkun 1998). Mutants of daf-2, age-1, and akt-1 show attraction to salt even after starvation/NaCl conditioning (Tomioka et al. 2006).daf-18 encodes a homolog of phosphatase PTEN (phosphatase and tensin homolog deleted on chromosome ten), which dephosphorylates phosphatidylinositol (3,4,5)-triphosphate and counteracts the insulin/PI 3-kinase signaling (Ogg and Ruvkun 1998; Gil et al. 1999; Mihaylova et al. 1999; Rouault et al. 1999; Solari et al. 2005). Mutants of daf-18, in which the PI 3-kinase signaling is activated, show reduced attraction to NaCl even without conditioning. Since the insulin/PI 3-kinase signaling acts in ASER, we proposed that the insulin/PI 3-kinase signaling attenuates the attractive drive of ASER (Tomioka et al. 2006).In C. elegans, diacylglycerol (DAG) regulates functions of motor neurons and sensory neurons. egl-30, which encodes the α-subunit of heterotrimeric G-protein Gq, facilitates production of DAG and enhances locomotory movements (Brundage et al. 1996; Lackner et al. 1999). In the AWC olfactory neurons, a novel protein kinase C-ɛ/η (nPKC-ɛ/η) ortholog TTX-4 (also known as PKC-1), which is one of DAG targets, plays an essential role in attraction behavior to AWC-sensed odors (Okochi et al. 2005; Tsunozaki et al. 2008). GOA-1 Goα regulates olfactory adaptation by antagonizing Gqα–DAG signaling (Matsuki et al. 2006).This study investigated the involvement of the ASE taste receptor neurons in the starvation-induced salt avoidance. We show that both ASEL and ASER contribute to salt chemotaxis learning. Activation of the PI 3-kinase signaling and the Gq/DAG/PKC signaling acted antagonistically in reversal of ASER function, whereas these signaling pathways did not have prominent effects on ASEL function. In ASER, GCY-22 was required for both salt attraction and avoidance. These results suggest that ASE neurons are important for bidirectional chemotaxis and also suggest that distinct molecular mechanisms regulate functions of ASEL and ASER in salt chemotaxis learning.  相似文献   

9.
Mechanisms of neuronal mRNA localization and translation are of considerable biological interest. Spatially regulated mRNA translation contributes to cell-fate decisions and axon guidance during development, as well as to long-term synaptic plasticity in adulthood. The Fragile-X Mental Retardation protein (FMRP/dFMR1) is one of the best-studied neuronal translational control molecules and here we describe the identification and early characterization of proteins likely to function in the dFMR1 pathway. Induction of the dFMR1 in sevenless-expressing cells of the Drosophila eye causes a disorganized (rough) eye through a mechanism that requires residues necessary for dFMR1/FMRP''s translational repressor function. Several mutations in dco, orb2, pAbp, rm62, and smD3 genes dominantly suppress the sev-dfmr1 rough-eye phenotype, suggesting that they are required for dFMR1-mediated processes. The encoded proteins localize to dFMR1-containing neuronal mRNPs in neurites of cultured neurons, and/or have an effect on dendritic branching predicted for bona fide neuronal translational repressors. Genetic mosaic analyses indicate that dco, orb2, rm62, smD3, and dfmr1 are dispensable for translational repression of hid, a microRNA target gene, known to be repressed in wing discs by the bantam miRNA. Thus, the encoded proteins may function as miRNA- and/or mRNA-specific translational regulators in vivo.THE subcellular localization and regulated translation of stored mRNAs contributes to cellular asymmetry and subcellular specialization (Lecuyer et al. 2007; Martin and Ephrussi 2009). In mature neurons, local protein synthesis at active synapses may contribute to synapse-specific plasticity that underlies persistent forms of memory (Casadio et al. 1999; Ashraf et al. 2006; Sutton and Schuman 2006; Richter and Klann 2009). During this process, synaptic activity causes local translation of mRNAs normally stored in translationally repressed synaptic mRNPs (Sutton and Schuman 2006; Richter and Klann 2009). While specific neuronal translational repressors and microRNAs have been implicated in this process, their involvement in local translation that underlies memory, as well as the underlying mechanisms, are generally not well understood (Schratt et al. 2006; Keleman et al. 2007; Kwak et al. 2008; Li et al. 2008; Richter and Klann 2009). Furthermore, it remains possible that there are neuron-specific, mRNA-specific, and stimulus-pattern specific pathways for neuronal translational control (Raab-Graham et al. 2006; Giorgi et al. 2007).The Fragile-X Mental Retardation protein (FMRP) is among the best studied of neuronal translational repressors, in part due to its association with human neurodevelopmental disease (Pieretti et al. 1991; Mazroui et al. 2002; Gao 2008). Consistent with function in synaptic translation required for memory formation, mutations in FMRP are associated with increased synaptic translation, enhanced LTD, increased synapse growth, and also with enhanced long-term memory (Zhang et al. 2001; Huber et al. 2002; Bolduc et al. 2008; Dictenberg et al. 2008).FMRP co-immunoprecipitates with components of the RNAi and miRNA machinery and appears to be required for aspects of miRNA function in neurons (Caudy et al. 2002; Ishizuka et al. 2002; Jin et al. 2004b; Gao 2008). In addition, FMRP associates with neuronal polyribosomes as well as with Staufen-containing ribonucleoprotein (mRNP) granules easily observed in neurites of cultured neurons (Feng et al. 1997; Krichevsky and Kosik 2001; Mazroui et al. 2002; Kanai et al. 2004; Barbee et al. 2006; Bramham and Wells 2007; Bassell and Warren 2008; Dictenberg et al. 2008). FMRP-containing neuronal mRNPs contain not only several ubiquitous translational control molecules, but also CaMKII and Arc mRNAs, whose translation is locally controlled at synapses (Rook et al. 2000; Krichevsky and Kosik 2001; Kanai et al. 2004; Barbee et al. 2006). Thus, FMRP-containing RNA particles are probably translationally repressed and transported along microtubules from the neuronal cell body to synaptic sites in dendrites where local synaptic activity can induce their translation (Kiebler and Bassell 2006; Dictenberg et al. 2008).The functions of FMRP/dFMR1 in mRNA localization as well as miRNA-dependent and independent forms of translational control is likely to require several other regulatory proteins. To identify such proteins, we used a previously designed and validated genetic screen (Wan et al. 2000; Jin et al. 2004a; Zarnescu et al. 2005). The overexpression of dFMR1 in the fly eye causes a “rough-eye” phenotype through a mechanism that requires (a) key residues in dFMR1 that mediate translational repression in vitro; (b) Ago1, a known components of the miRNA pathway; and (c) a DEAD-box helicase called Me31B, which is a highly conserved protein from yeast (Dhh1p) to humans (Rck54/DDX6) functioning in translational repression and present on neuritic mRNPs (Wan et al. 2000; Laggerbauer et al. 2001; Jin et al. 2004a; Coller and Parker 2005; Barbee et al. 2006; Chu and Rana 2006). To identify other Me31B-like translational repressors and neuronal granule components, we screened mutations in 43 candidate proteins for their ability to modify dFMR1 induced rough-eye phenotype. We describe the results of this genetic screen and follow up experiments to address the potential cellular functions of five genes identified as suppressors of sev-dfmr1.  相似文献   

10.
Naturally transformable bacteria acquire chromosomal DNA from related species at lower frequencies than from cognate DNA sources. To determine how genome location affects heterogamic transformation in bacteria, we inserted an nptI marker into random chromosome locations in 19 different strains of the Acinetobacter genus (>24% divergent at the mutS/trpE loci). DNA from a total of 95 nptI-tagged isolates was used to transform the recipient Acinetobacter baylyi strain ADP1. A total of >1300 transformation assays revealed that at least one nptI-tagged isolate for each of the strains/species tested resulted in detectable integration of the nptI marker into the ADP1 genome. Transformation frequencies varied up to ∼10,000-fold among independent nptI insertions within a strain. The location and local sequence divergence of the nptI flanking regions were determined in the transformants. Heterogamic transformation depended on RecA and was hampered by DNA mismatch repair. Our studies suggest that single-locus-based studies, and inference of transfer frequencies from general estimates of genomic sequence divergence, is insufficient to predict the recombination potential of chromosomal DNA fragments between more divergent genomes. Interspecies differences in overall gene content, and conflicts in local gene organization and synteny are likely important determinants of the genomewide variation in recombination rates between bacterial species.HORIZONTAL gene transfer (HGT) contributes to bacterial evolution by providing access to DNA evolved and retained in separate species or strains (Cohan 1994a,b; Bergstrom et al. 2000; Ochman et al. 2000; Feil et al. 2001; Koonin 2003; Lawrence and Hendrickson 2003; Fraser et al. 2007). Multilocus sequence typing (MLST) has provided strong evidence for frequent transfer and recombination of chromosomal DNA between related bacterial strains within the same species (Maiden et al. 1998; Enright et al. 2002). HGT occurring by natural transformation allows bacteria to exploit the presence of nucleic acids in their environment for the purposes of nutrition, DNA repair, reacquisition of lost genes, and/or acquisition of novel genetic diversity (Redfield 1993; Mehr and Seifert 1998; Dubnau 1999; Claverys et al. 2000; Szöllösi et al. 2006; Johnsen et al. 2009). It can be inferred from observations of the presence of extracellular DNA in most environments that bacteria are constantly exposed to DNA from a variety of sources, without such exposure necessarily producing observable changes in the genetic compositions of bacterial populations over evolutionary time (Thomas and Nielsen 2005; Nielsen et al. 2007a,b).The absence of sequence similarity between the donor DNA and the DNA of the recipient bacterium is the strongest barrier to the horizontal acquisition of chromosomal genes in bacteria (Matic et al. 1996; Vulic et al. 1997; Majewski 2001; Townsend et al. 2003) as illegitimate recombination occurs only at extremely low frequencies in bacteria (Hülter and Wackernagel 2008a). Single-locus transfer models have been extensively applied and have demonstrated a log-linear decrease in recombination frequencies with increasing sequence divergence for Bacillus subtilis (Roberts and Cohan, 1993; Zawadzki et al. 1995), Acinetobacter baylyi (Young and Ornston 2001), Escherichia coli (Shen and Huang 1986; Vulic et al. 1997), and Streptococcus pneumoniae (Majewski et al. 2000). For instance, heterogamic transformation between nonmutator isolates at the rpoB locus of B. mojavensis is undetectable at sequence divergences >16.7% (Zawadzki et al. 1995) and between S. pneumoniae isolates with sequence divergences >18% (Majewski et al. 2000). In A. baylyi, the nonmutator sequence divergence limit for detectable transformation at the pcaH locus of strain ADP1 was found to be 20% (Young and Ornston 2001), and up to 24% overall divergence yielded transformants at 16S rRNA loci in strain DSM587 (Strätz et al. 1996).Several recent studies also show that short stretches (<200 bp) of DNA sequence identity can facilitate additive or substitutive integration of longer stretches (>1000 bp) of heterologous DNA in bacteria (Prudhomme et al. 1991, 2002; de Vries and Wackernagel 2002; Hülter and Wackernagel 2008a). Thus, the uptake of DNA in bacteria can facilitate larger substitutions within gene sequences and the integration of additional DNA material on the basis of recombination initiated in flanking DNA stretches (either at one or both ends) with high sequence similarity (Nielsen et al. 2000). On the other hand, segments of heterologous DNA interrupting the synteny of homologous DNA have also been shown to be a barrier in intraspecies transformation in S. pneumoniae (Pasta and Sicard 1996, 1999).The various studies of the interspecies transfer potential of single genes demonstrate that the immediate local sequence divergence of the transferred locus is of high importance in determining recombination frequencies in hosts up to 20% divergent (at the housekeeping gene level). However, it can be hypothesized that the broader structural, organizational, and biochemical properties of the genome region surrounding a particular locus will determine its transfer potential to more divergent host species (Cohan 2001; Lawrence 2002). The interspecies transfer potential of various genome regions/loci between more diverged species (>20% at the housekeeping gene level) may therefore differ substantially from a log-linear model (determined experimentally for more closely related species) as local gene organization becomes less conserved with evolutionary time. The barriers to gene exchange between divergent bacterial species is likely a combination of inefficient recombination due to both mismatched base pairs (the main determinator in the log-linear model) and conflicting gene order and organization across the local recombining DNA regions. In addition, selective barriers due to negative effects on host fitness of the transferred DNA regions may become increasingly important for the removal of recombination events from the bacterial population. Recent bioinformatics-based genome analysis of E. coli and Salmonella genomes suggests various parts of the bacterial genome may have different suceptibilities to undergo evolutionarily successful recombination leading to temporal fragmentation of speciation (Lawrence 2002; Retchless and Lawrence 2007). Nevertheless, few studies have experimentally tested the effect of variable species and chromosome locations of genes on their transfer potential between bacteria (Ravin and Chen 1967; Ravin and Chakrabarti 1975; Siddiqui and Goldberg 1975; Cohan et al. 1991; Huang et al. 1991; Fall et al. 2007).Here, we determine to what extent genome location contributes to sexual isolation between the recipient A. baylyi strain ADP1 and 19 sequence divergent (24–27% divergent at the mutS/trpE loci) donor Acinetobacter strains and species (carrying a selectable nptI gene in a total of 95 random genome locations).  相似文献   

11.
12.
13.
Miguel Arenas  David Posada 《Genetics》2010,184(2):429-437
The coalescent with recombination is a very useful tool in molecular population genetics. Under this framework, genealogies often represent the evolution of the substitution unit, and because of this, the few coalescent algorithms implemented for the simulation of coding sequences force recombination to occur only between codons. However, it is clear that recombination is expected to occur most often within codons. Here we have developed an algorithm that can evolve coding sequences under an ancestral recombination graph that represents the genealogies at each nucleotide site, thereby allowing for intracodon recombination. The algorithm is a modification of Hudson''s coalescent in which, in addition to keeping track of events occurring in the ancestral material that reaches the sample, we need to keep track of events occurring in ancestral material that does not reach the sample but that is produced by intracodon recombination. We are able to show that at typical substitution rates the number of nonsynonymous changes induced by intracodon recombination is small and that intracodon recombination does not generally result in inflated estimates of the overall nonsynonymous/synonymous substitution ratio (ω). On the other hand, recombination can bias the estimation of ω at particular codons, resulting in apparent rate variation among sites and in the spurious identification of positively selected sites. Importantly, in this case, allowing for variable synonymous rates across sites greatly reduces the false-positive rate and recovers statistical power. Finally, coalescent simulations with intracodon recombination could be used to better represent the evolution of nuclear coding genes or fast-evolving pathogens such as HIV-1.We have implemented this algorithm in a computer program called NetRecodon, freely available at http://darwin.uvigo.es.THE coalescent (Kingman 1982; Hudson 1990) provides an efficient sampling of genealogical histories from a theoretical population evolving under a neutral Wright–Fisher model (Ewens 1979; Kingman 1982; Hudson 1990). Coalescent simulations are commonly used in molecular population genetics to understand the behavior and interactions among evolutionary processes under different scenarios (Innan et al. 2005), such as hypothesis testing (DeChaine and Martin 2006), evaluation and comparison of different analytical methods (Carvajal-Rodriguez et al. 2006), or estimation of population genetic parameters (Beaumont et al. 2002). Indeed, to obtain meaningful biological inferences from these simulations, it is very important that the underlying model is as realistic as possible. In this regard, a number of models have been developed during the last decade that consider different evolutionary processes such as recombination (Simonsen and Churchill 1997; Wiuf and Posada 2003), gene conversion (Wiuf and Hein 2000), selection (Hudson and Kaplan 1988, 1995), and gene flow or demographic history (Slatkin 1987; Pybus and Rambaut 2002).Despite these advances, and in the face of a plethora of coalescent simulators (Excoffier et al. 2000; Hudson 2002; Posada and Wiuf 2003; Spencer and Coop 2004; Mailund et al. 2005; Schaffner et al. 2005; Marjoram and Wall 2006; Arenas and Posada 2007; Hellenthal and Stephens 2007; Liang et al. 2007), it was not possible until very recently to simulate recombining protein-coding DNA sequences within this framework (Anisimova et al. 2003; Arenas and Posada 2007). Importantly, to our knowledge, the algorithms described or implemented so far allow recombination only between codons, not within them. The reason for this unrealistic constraint is that standard codon models describe the probabilities of change along a lineage from one codon to another (Yang 2006), whereas recombination can occur between any two nucleotides, potentially resulting in one or more lineages not being shared by all the positions of the codon. In other words, although the unit for substitution in coding sequences is the codon, the unit for recombination in these sequences is still the nucleotide. Here we describe a new algorithm that overcomes this limitation by allowing for the evolution of different positions of the same codon in distinct genealogies. Furthermore, we use this algorithm to evaluate the effect of intracodon recombination on the generation of nonsynonymous (NS) diversity and on the estimation of the ratio of nonsynonymous-to-synonymous substitution rates (ω or dN/dS) (Li and Gojobori 1983) and the hypotheses derived from it.  相似文献   

14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号