首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Measles virus (MV), an enveloped RNA virus belonging to the Paramyxoviridae family, enters the cell through membrane fusion mediated by two viral envelope proteins, an attachment protein hemagglutinin (H) and a fusion (F) protein. The crystal structure of the receptor-binding head domain of MV-H bound to its cellular receptor revealed that the MV-H head domain forms a tetrameric assembly (dimer of dimers), which occurs in two forms (forms I and II). In this study, we show that mutations in the putative dimer-dimer interface of the head domain in either form inhibit the ability of MV-H to support membrane fusion, without greatly affecting its cell surface expression, receptor binding, and interaction with the F protein. Notably, some anti-MV-H neutralizing monoclonal antibodies are directed to the region around the dimer-dimer interface in form I rather than receptor-binding sites. These observations suggest that the dimer-dimer interactions of the MV-H head domain, especially that in form I, contribute to triggering membrane fusion, and that conformational shift of head domain tetramers plays a role in the process. Furthermore, our results indicate that although the stalk and transmembrane regions may be mainly responsible for the tetramer formation of MV-H, the head domain alone can form tetramers, albeit at a low efficiency.  相似文献   

2.
目的:本项目将通过构建中国仓鼠卵巢细胞(Chinese hamster ovary,CHO)真核表达系统获取小鼠Vsig4膜外端和免疫球蛋白Ig G3a-Fc段的融合蛋白,鉴定Vsig4-Fc和Vsig4纳米抗体的相互作用。方法:采用重合延伸PCR法融合小鼠Ig G3a-Fc和Vsig4胞外段的基因序列,将该融合基因插入真核表达载体中并转染CHO细胞。Western blotting鉴定转染细胞上清中的目标蛋白,通过连续两次亚克隆筛选,获得高表达小鼠Vsig4-Fc融合蛋白的单克隆,之后大量培养增殖转染细胞并收集细胞培养上清,选择Protein A柱纯化方法纯化Vsig4-Fc蛋白,最后经ELISA法鉴定Vsig4-Fc和纳米抗体的结合能力。结果:在CHO细胞中成功构建了小鼠Vsig4-Fc真核表达稳转系,并且在真核表达体系中获得可表达15 mg/L的双分子结构Vsig4-Fc的稳定转染细胞系。经鉴定小鼠Vsig4-Fc融合蛋白能与Vsig4纳米抗体结合。结论:重合延伸PCR法使得Vsig4和Fc基因片段的融合更为高效,两次亚克隆筛选优势细胞系大幅提高了真核蛋白的表达量,为进一步研究Vsig4的生物学功能奠定重要基础。  相似文献   

3.
Prm1 is a pheromone-induced membrane glycoprotein that promotes plasma membrane fusion in yeast mating pairs. HA-Prm1 migrates at twice its expected molecular weight on non-reducing SDS-PAGE gels and coprecipitates with Prm1-TAP, indicating that Prm1 is a disulfide-linked homodimer. The N terminus of a plasma membrane-localized GFP-Prm1 endocytic mutant projects into the cytoplasm, where it is protected from low pH quenching in live cells and from external protease in spheroplasts. In a revised topological map, Prm1 has four transmembrane domains and two large extracellular loops. Mutation of all four cysteines in the extracellular loops blocked disulfide bond formation and destabilized the Prm1 homodimer without preventing Prm1 transport to contact sites in mating pairs. Cys120 in loop 1 and Cys545 in loop 2 form disulfide cross-links in the Prm1 homodimer and are required for fusion activity. Cys120 lies between a hydrophobic segment formerly thought to be a transmembrane domain and an amphipathic helix. An interaction between either of these regions and the opposing membrane could promote fusion.  相似文献   

4.
One of the best characterized fusion proteins, the influenza virus hemagglutinin (HA), mediates fusion between the viral envelope and the endosomal membrane during viral entry into the cell. In the initial conformation of HA, its fusogenic subunit, the transmembrane protein HA2, is locked in a metastable conformation by the receptor-binding HA1 subunit of HA. Acidification in the endosome triggers HA2 refolding toward the final lowest energy conformation. Is the fusion process driven by this final conformation or, as often suggested, by the energy released by protein restructuring? Here we explored structural properties as well as the fusogenic activity of the full sized trimeric HA2(1–185) (here called HA2*) that presents the final conformation of the HA2 ectodomain. We found HA2* to mediate fusion between lipid bilayers and between biological membranes in a low pH-dependent manner. Two mutations known to inhibit HA-mediated fusion strongly inhibited the fusogenic activity of HA2*. At surface densities similar to those of HA in the influenza virus particle, HA2* formed small fusion pores but did not expand them. Our results confirm that the HA1 subunit responsible for receptor binding as well as the transmembrane and cytosolic domains of HA2 is not required for fusion pore opening and substantiate the hypothesis that the final form of HA2 is more important for fusion than the conformational change that generates this form.  相似文献   

5.
Several conserved domains critical for E1E2 assembly and hepatitis C virus entry have been identified in E1 and E2 envelope glycoproteins. However, the role of less conserved domains involved in cross-talk between either glycoprotein must be defined to fully understand how E1E2 undergoes conformational changes during cell entry. To characterize such domains and to identify their functional partners, we analyzed a set of intergenotypic E1E2 heterodimers derived from E1 and E2 of different genotypes. The infectivity of virions indicated that Con1 E1 did not form functional heterodimers when associated with E2 from H77. Biochemical analyses demonstrated that the reduced infectivity was not related to alteration of conformation and incorporation of Con1 E1/H77 E2 heterodimers but rather to cell entry defects. Thus, we generated chimeric E1E2 glycoproteins by exchanging different domains of each protein in order to restore functional heterodimers. We found that both the ectodomain and transmembrane domain of E1 influenced infectivity. Site-directed mutagenesis highlighted the role of amino acids 359, 373, and 375 in transmembrane domain in entry. In addition, we identified one domain involved in entry within the N-terminal part of E1, and we isolated a motif at position 219 that is critical for H77 function. Interestingly, using additional chimeric E1E2 complexes harboring substitutions in this motif, we found that the transmembrane domain of E1 acts as a partner of this motif. Therefore, we characterized domains of E1 and E2 that have co-evolved inside a given genotype to optimize their interactions and allow efficient entry.  相似文献   

6.
FGFRL1 (fibroblast growth factor receptor like 1) is the fifth and most recently discovered member of the fibroblast growth factor receptor (FGFR) family. With up to 50% amino acid similarity, its extracellular domain closely resembles that of the four conventional FGFRs. Its intracellular domain, however, lacks the split tyrosine kinase domain needed for FGF-mediated signal transduction. During embryogenesis of the mouse, FGFRL1 is essential for the development of parts of the skeleton, the diaphragm muscle, the heart, and the metanephric kidney. Since its discovery, it has been hypothesized that FGFRL1 might act as a decoy receptor for FGF ligands. Here we present several lines of evidence that support this notion. We demonstrate that the FGFRL1 ectodomain is shed from the cell membrane of differentiating C2C12 myoblasts and from HEK293 cells by an as yet unidentified protease, which cuts the receptor in the membrane-proximal region. As determined by ligand dot blot analysis, cell-based binding assays, and surface plasmon resonance analysis, the soluble FGFRL1 ectodomain as well as the membrane-bound receptor are capable of binding to some FGF ligands with high affinity, including FGF2, FGF3, FGF4, FGF8, FGF10, and FGF22. We furthermore show that ectopic expression of FGFRL1 in Xenopus embryos antagonizes FGFR signaling during early development. Taken together, our data provide strong evidence that FGFRL1 is indeed a decoy receptor for FGFs.  相似文献   

7.
Dendritic cells (DCs) are the most potent antigen-presenting cells of the immune system. Depending on their maturation status, they prime T cells to induce adaptive immunity or tolerance. DCs express CD155, an immunoglobulin-like receptor binding CD226 present on T and natural killer (NK) cells. CD226 represents an important co-stimulator during T cell priming but also serves as an activating receptor on cytotoxic T and NK cells. Here, we report that cells of the T and NK cell lineage of CD155−/− mice express markedly elevated protein levels of CD226 compared with wild type (WT). On heterozygous CD155+/− T cells, CD226 up-regulation is half-maximal, implying an inverse gene-dosis effect. Moreover, CD226 up-regulation is independent of antigen-driven activation because it occurs already in thymocytes and naïve peripheral T cells. In vivo, neutralizing anti-CD155 antibody elicits up-regulation of CD226 on T cells demonstrating, that the observed modulation can be triggered by interrupting CD155-CD226 contacts. Adoptive transfers of WT or CD155−/− T cells into CD155−/− or WT recipients, respectively, revealed that CD226 modulation is accomplished in trans. Analysis of bone marrow chimeras showed that regulators in trans are of hematopoietic origin. We demonstrate that DCs are capable of manipulating CD226 levels on T cells in vivo but not in vitro, suggesting that the process of T cells actively scanning antigen-presenting DCs inside secondary lymphoid organs is required for CD226 modulation. Hence, a CD226 level divergent from WT may be exploited as a sensor to detect abnormal DC/T-cell cross-talk as illustrated for T cells in mice lacking CCR7.  相似文献   

8.
Although PKD is broadly expressed and involved in numerous cellular processes, its function in osteoclasts has not been previously reported. In this study, we found that PKD2 is the main PKD isoform expressed in osteoclastic cells. PKD phosphorylation, indicative of the activated state, increased after 2–3 days of treatment of bone marrow macrophages with M-CSF and RANKL, corresponding to the onset of preosteoclast fusion. RNAi against PKD2 and treatment with the PKD inhibitor CID755673 showed that PKD activity is dispensable for induction of bone marrow macrophages into tartrate-resistant acid phosphatase-positive preosteoclasts in culture but is required for the transition from mononucleated preosteoclasts to multinucleated osteoclasts. Loss of PKD activity reduced expression of DC-STAMP in RANKL-stimulated cultures. Overexpression of DC-STAMP was sufficient to rescue treatment with CID755673 and restore fusion into multinucleated osteoclasts. From these data, we conclude that PKD activity promotes differentiation of osteoclast progenitors through increased expression of DC-STAMP.  相似文献   

9.
D C Siess  S L Kozak    D Kabat 《Journal of virology》1996,70(6):3432-3439
Chinese hamster ovary (CHO) cells are naturally resistant to infection by amphotropic and ecotropic murine retroviruses, but they become susceptible after expressing corresponding receptors rRAM-1 and mCAT-1, respectively, and they then form abundant syncytia when exposed to these viruses. The fusogenic activities of CHO cell clones increase much more strongly with levels of receptor expression than do their susceptibilities to infection, suggesting that the assembly of receptor clusters may limit syncytium formation. However, other cell lines are not fusogenic, even if they express larger amounts of receptors. Our results suggest that a factor that is relatively abundant or active in CHO cells may functionally interact with rRAM-1 and mCAT-1 in a pathway that enables receptor-bearing membranes to fuse with membranes that contain viral envelope glycoproteins. In the case of CHO/rRAM-1 cells, syncytia form at foci of amphotropic 4070A virus infection by fusion-from-within of infected with uninfected cells. This fusogenic propensity is a sole property of the uninfected CHO/rRAM-1 cells, which fuse in cocultures with any cells infected with 4070A virus. With CHO/mCAT-1 cells, fusogenicity is even greater and involves fusion-from-without by ecotropic virion particles. In contrast to infection, which behaves as expected for a process limited by ecotropic virus attachment to single receptors, fusion-from-without increases dramatically for cells that express the highest levels of mCAT-1. We propose that infection and syncytium formation are limited at distinct steps of a common pathway that requires virus binding to a single receptor, assembly of multivalent virus-receptor complexes, structural changes in viral envelope glycoproteins, and membrane fusion. The limiting step in syncytium formation is a cellular process that depends on receptor clustering and is relatively active in CHO cells.  相似文献   

10.
Osteoporosis is associated with both atherosclerosis and vascular calcification attributed to hyperlipidemia. However, the cellular and molecular mechanisms explaining the parallel progression of these diseases remain unclear. Here, we used low-density lipoprotein receptor knockout (LDLR(-/-)) mice to elucidate the role of LDLR in regulating the differentiation of osteoclasts, which are responsible for bone resorption. Culturing wild-type osteoclast precursors in medium containing LDL-depleted serum decreased receptor activator of NF-κB ligand (RANKL)-induced osteoclast formation, and this defect was additively rescued by simultaneous treatment with native and oxidized LDLs. Osteoclast precursors constitutively expressed LDLR in a RANKL-independent manner. Osteoclast formation from LDLR(-/-) osteoclast precursors was delayed, and the multinucleated cells formed in culture were smaller and contained fewer nuclei than wild-type cells, implying impaired cell-cell fusion. Despite these findings, RANK signaling, including the activation of Erk and Akt, was normal in LDLR(-/-) preosteoclasts, and RANKL-induced expression of NFATc1 (a master regulator of osteoclastogenesis), cathepsin K, and tartrate-resistant acid phosphatase was equivalent in LDLR-null and wild-type cells. In contrast, the amounts of the osteoclast fusion-related proteins v-ATPase V(0) subunit d2 and dendritic cell-specific transmembrane protein in LDLR(-/-) plasma membranes were reduced when compared with the wild type, suggesting a correlation with impaired cell-cell fusion, which occurs on the plasma membrane. LDLR(-/-) mice consistently exhibited increased bone mass in vivo. This change was accompanied by decreases in bone resorption parameters, with no changes in bone formation parameters. These findings provide a novel mechanism for osteoclast differentiation and improve the understanding of the correlation between osteoclast formation and lipids.  相似文献   

11.
Drosophila body wall muscles are multinucleated syncytia formed by successive fusions between a founder myoblast and several fusion competent myoblasts. Initial fusion gives rise to a bi/trinucleate precursor followed by more fusion cycles forming a mature muscle. This process requires the functions of various molecules including the transmembrane myoblast attractants Dumbfounded (Duf) and its paralogue Roughest (Rst), a scaffold protein Rolling pebbles (Rols) and a guanine nucleotide exchange factor Loner. Fusion completely fails in a duf, rst mutant, and is blocked at the bi/trinucleate stage in rols and loner single mutants. We analysed the transmembrane and intracellular domains of Duf, by mutating conserved putative signaling sites and serially deleting the intracellular domain. These were tested for their ability to translocate and interact with Rols and Loner and to rescue the fusion defect in duf, rst mutant embryos. Studying combinations of double mutants, further tested the function of Rols, Loner and other fusion molecules. Here we show that serial truncations of the Duf intracellular domain successively compromise its function to translocate and interact with Rols and Loner in addition to affecting myoblast fusion efficiency in embryos. Putative phosphorylation sites function additively while the extreme C terminus including a PDZ binding domain is dispensable for its function. We also show that fusion is completely blocked in a rols, loner double mutant and is compromised in other double mutants. These results suggest an additive function of the intracellular domain of Duf and an early function of Rols and Loner which is independent of Duf.  相似文献   

12.
Genetic mutations in osteoclastogenic genes are closely associated with osteopetrotic bone diseases. Genetic defects in OSTM1 (osteopetrosis-associated transmembrane protein 1) cause autosomal recessive osteopetrosis in humans. In particular, OSTM1 mutations that exclude the transmembrane domain might lead to the production of a secreted form of truncated OSTM1. However, the precise role of the secreted form of truncated OSTM1 remains unknown. In this study, we analyzed the functional role of truncated OSTM1 in osteoclastogenesis. Here, we showed that a secreted form of truncated OSTM1 binds to the cell surface of osteoclast (OC) precursors and inhibits the formation of multinucleated OCs through the reduction of cell fusion and survival. Truncated OSTM1 significantly inhibited the expression of OC marker genes through the down-regulation of the BLIMP1 (B lymphocyte-induced maturation protein 1)-NFATc1 (nuclear factor of activated T cells c1) axis. Finally, we demonstrated that truncated OSTM1 reduces lipopolysaccharide-induced bone destruction in vivo. Thus, these findings suggest that autosomal recessive osteopetrosis patients with an OSTM1 gene mutation lacking the transmembrane domain produce a secreted form of truncated OSTM1 that inhibits osteoclastogenesis.  相似文献   

13.
Homeostatic bone remodeling is vital to maintain healthy bone tissue. Although the receptor activator of nuclear factor κB ligand (RANKL)/RANK axis is considered the master regulator of osteoclastogenesis, the underlying mechanisms including cell fusion remain incompletely defined. Here, we introduce a new axis in the formation of multinucleated cells via RANK signaling: the progranulin (PGRN)/PIRO (PGRN-induced receptor-like gene during osteoclastogenesis) axis. When mouse bone marrow-derived macrophages were stimulated with PGRN in the presence of RANKL, explosive OC formation was observed. PGRN knockdown experiments suggested that endogenous PGRN is an essential component of the RANKL/RANK axis. Our efforts for identifying genes that are induced by PGRN unveiled a remarkably induced (20-fold) gene named PIRO. Substantial PGRN and PIRO expression was detected after 2 and 3 days, respectively, suggesting that their sequential induction. PIRO was predicted to be a five transmembrane domain-containing receptor-like molecule. The tissue distribution of PGRN and PIRO mRNA expression suggested that bone marrow cells are the most suitable niche. Mouse and human PIRO are part of a multigene family. Knockdown experiments suggested that PIRO is a direct target for the formation of multinucleated cells by PGRN. PGRN levels were also substantially higher in ovariectomized mice than in sham control mice. These observations suggest that PGRN and PIRO form a new regulatory axis in osteoclastogenesis that is included in RANK signaling in cell fusion and OC resorption of osteoclastogenesis, which may offer a novel therapeutic modality for osteoporosis and other bone-associated diseases.  相似文献   

14.
Myomaker (also called Tmem8c), a new membrane activator of myocyte fusion was recently discovered in mice. Using whole mount in situ hybridization on zebrafish embryos at different stages of embryonic development, we show that myomaker is transiently expressed in fast myocytes forming the bulk of zebrafish myotome. Zebrafish embryos injected with morpholino targeted against myomaker were alive after yolk resorption and appeared morphologically normal, but they were unable to swim, even under effect of a tactile stimulation. Confocal observations showed a marked phenotype characterized by the persistence of mononucleated muscle cells in the fast myotome at developmental stages where these cells normally fuse to form multinucleated myotubes. This indicates that myomaker is essential for myocyte fusion in zebrafish. Thus, there is an evolutionary conservation of myomaker expression and function among Teleostomi.  相似文献   

15.
Clones for a novel transmembrane receptor termed FGFRL1 were isolated from a subtracted, cartilage-specific cDNA library prepared from chicken sterna. Homologous sequences were identified in other vertebrates, including man, mouse, rat and fish, but not in invertebrates such as Caenorhabditis elegans and Drosophila. FGFRL1 was expressed preferentially in skeletal tissues as demonstrated by Northern blotting and in situ hybridization. Small amounts of the FGFRL1 mRNA were also detected in other tissues such as skeletal muscle and heart. The novel protein contained three extracellular Ig-like domains that were related to the members of the fibroblast growth factor (FGF) receptor family. However, it lacked the intracellular protein tyrosine kinase domain required for signal transduction by transphosphorylation. When expressed in cultured cells as a fusion protein with green fluorescent protein, FGFRL1 was specifically localized to the plasma membrane where it might interact with FGF ligands. Recombinant FGFRL1 protein was produced in a baculovirus system with intact disulfide bonds. Similar to FGF receptors, the expressed protein interacted specifically with heparin and with FGF2. When overexpressed in MG-63 osteosarcoma cells, the novel receptor had a negative effect on cell proliferation. Taken together our data are consistent with the view that FGFRL1 acts as a decoy receptor for FGF ligands.  相似文献   

16.
A spontaneous mutation in Bruton's tyrosine kinase (Btk) induces a defect in B-cell development that results in the immunodeficiency diseases X-linked agammaglobulinemia in humans and X-linked immunodeficiency (Xid) in mice. Here we show an unexpected role of Btk in osteoclast formation. When bone marrow cells derived from Xid mice were stimulated with receptor activator of NF-kappaB ligand, an osteoclast differentiation factor, they did not completely differentiate into mature multinucleated osteoclasts. Moreover, we found that the defects appeared to occur at the stage in which mononuclear preosteoclasts fuse to generate multinucleated cells. Supporting this notion, macrophages from Xid mice also failed to form multinucleated foreign body giant cells. The fusion defect of the Xid mutant osteoclasts was caused by decreased expression of nuclear factor of activated T cells c1 (NFATc1), a master regulator of osteoclast differentiation, as well as reduced expression of various osteoclast fusion-related molecules, such as the d2 isoform of vacuolar H(+)-ATPase V0 domain and the dendritic cell-specific transmembrane protein. This deficiency was completely rescued by the introduction of a constitutively active form of NFATc1 into bone marrow-derived macrophages. Our data provide strong evidence that Btk plays a critical role in osteoclast multinucleation by modulating the activity of NFATc1.  相似文献   

17.
Osteoclasts are large multinucleated cells that arise from the fusion of cells from the monocyte/macrophage lineage. Osteoclastogenesis is mediated by macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor-kB ligand (RANKL) and involves a complex multistep process that requires numerous other elements, many of which remain undefined. The primary aim of this project was to identify novel factors which regulate osteoclastogenesis. To carry out this investigation, microarray analysis was performed comparing two pre-osteoclast cell lines generated from RAW264.7 macrophages: one that has the capacity to fuse forming large multinucleated cells and one that does not fuse. It was found that CD109 was up-regulated by>17-fold in the osteoclast forming cell line when compared to the cell line that does not fuse, at day 2 of the differentiation process. Results obtained with microarray were confirmed by RT-qPCR and Western blot analyses in the two cell lines, in the parental RAW264.7 cell line, as well as primary murine monocytes from bone marrow. A significant increase of CD109 mRNA and protein expression during osteoclastogenesis occurred in all tested cell types. In order to characterize the role of CD109 in osteoclastogenesis, CD109 stable knockdown cell lines were established and fusion of osteoclast precursors into osteoclasts was assessed. It was found that CD109 knockdown cell lines were less capable of forming large multinucleated osteoclasts. It has been shown here that CD109 is expressed in monocytes undergoing RANKL-induced osteoclastogenesis. Moreover, when CD109 expression is suppressed in vitro, osteoclast formation decreases. This suggests that CD109 might be an important regulator of osteoclastogenesis. Further research is needed in order to characterize the role played by CD109 in regulation of osteoclast differentiation.  相似文献   

18.
The Mycobacterium tuberculosis protein kinase B (PknB) comprises an intracellular kinase domain, connected through a transmembrane domain to an extracellular region that contains four PASTA domains. The present study describes the comprehensive analysis of different domains of PknB in the context of viability in avirulent and virulent mycobacteria. We find stringent regulation of PknB expression necessary for cell survival, with depletion or overexpression of PknB leading to cell death. Although PknB-mediated kinase activity is essential for cell survival, active kinase lacking the transmembrane or extracellular domain fails to complement conditional mutants not expressing PknB. By creating chimeric kinases, we find that the intracellular kinase domain has unique functions in the virulent strain, which cannot be substituted by other kinases. Interestingly, we find that although the presence of the C-terminal PASTA domain is dispensable in the avirulent M. smegmatis, all four PASTA domains are essential in M. tuberculosis. The differential behavior of PknB vis-à-vis the number of essential PASTA domains and the specificity of kinase domain functions suggest that PknB-mediated growth and signaling events differ in virulent compared with avirulent mycobacteria. Mouse infection studies performed to determine the role of PknB in mediating pathogen survival in the host demonstrate that PknB is not only critical for growth of the pathogen in vitro but is also essential for the survival of the pathogen in the host.  相似文献   

19.
Our previous studies showed that an angled boomerang-shaped structure of the influenza hemagglutinin (HA) fusion domain is critical for virus entry into host cells by membrane fusion. Because the acute angle of ∼105° of the wild-type fusion domain promotes efficient non-leaky membrane fusion, we asked whether different angles would still support fusion and thus facilitate virus entry. Here, we show that the G13A fusion domain mutant produces a new leaky fusion phenotype. The mutant fusion domain structure was solved by NMR spectroscopy in a lipid environment at fusion pH. The mutant adopted a boomerang structure similar to that of wild type but with a shallower kink angle of ∼150°. G13A perturbed the structure of model membranes to a lesser degree than wild type but to a greater degree than non-fusogenic fusion domain mutants. The strength of G13A binding to lipid bilayers was also intermediate between that of wild type and non-fusogenic mutants. These membrane interactions provide a clear link between structure and function of influenza fusion domains: an acute angle is required to promote clean non-leaky fusion suitable for virus entry presumably by interaction of the fusion domain with the transmembrane domain deep in the lipid bilayer. A shallower angle perturbs the bilayer of the target membrane so that it becomes leaky and unable to form a clean fusion pore. Mutants with no fixed boomerang angle interacted with bilayers weakly and did not promote any fusion or membrane perturbation.  相似文献   

20.
In the endoplasmic reticulum (ER), a number of thioredoxin (Trx) superfamily proteins are present to enable correct disulfide bond formation of secretory and membrane proteins via Trx-like domains. Here, we identified a novel transmembrane Trx-like protein 4 (TMX4), in the ER of mammalian cells. TMX4, a type I transmembrane protein, was localized to the ER and possessed a Trx-like domain that faced the ER lumen. A maleimide alkylation assay showed that a catalytic CXXC motif in the TMX4 Trx-like domain underwent changes in its redox state depending on cellular redox conditions, and, in the normal state, most of the endogenous TMX4 existed in the oxidized form. Using a purified recombinant protein containing the Trx-like domain of TMX4 (TMX4-Trx), we confirmed that this domain had reductase activity in vitro. The redox potential of this domain (−171.5 mV; 30 °C at pH 7.0) indicated that TMX4 could work as a reductase in the environment of the ER. TMX4 had no effect on the acceleration of ER-associated degradation. Because TMX4 interacted with calnexin and ERp57 by co-immunoprecipitation assay, the role of TMX4 may be to enable protein folding in cooperation with these proteins consisting of folding complex in the ER.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号