首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Cytophaga hutchinsonii glides rapidly over surfaces and employs a novel collection of cell-associated proteins to digest crystalline cellulose. HimarEm1 transposon mutagenesis was used to isolate a mutant with an insertion in CHU_0170 (sprP) that was partially deficient in gliding motility and was unable to digest filter paper cellulose. SprP is similar in sequence to the Porphyromonas gingivalis type IX secretion system (T9SS) protein PorP that is involved in the secretion of gingipain protease virulence factors and to the Flavobacterium johnsoniae T9SS protein SprF that is needed to deliver components of the gliding motility machinery to the cell surface. We developed an efficient method to construct targeted nonpolar mutations in C. hutchinsonii and deleted sprP. The deletion mutant was defective in gliding and failed to digest cellulose, and complementation with sprP on a plasmid restored both abilities. Sequence analysis predicted that CHU_3105 is secreted by the T9SS, and deletion of sprP resulted in decreased levels of extracellular CHU_3105. The results suggest that SprP may function in protein secretion. The T9SS may be required for motility and cellulose utilization because cell surface proteins predicted to be involved in both processes have C-terminal domains that are thought to target them to this secretion system. The efficient genetic tools now available for C. hutchinsonii should allow a detailed analysis of the cellulolytic, gliding motility, and protein secretion machineries of this common but poorly understood bacterium.  相似文献   

2.
Many Gram-negative bacteria use the multi-protein type II secretion system (T2SS) to selectively translocate virulence factors from the periplasmic space into the extracellular environment. In Vibrio cholerae the T2SS is called the extracellular protein secretion (Eps) system,which translocates cholera toxin and several enzymes in their folded state across the outer membrane. Five proteins of the T2SS, the pseudopilins, are thought to assemble into a pseudopilus, which may control the outer membrane pore EpsD, and participate in the active export of proteins in a “piston-like” manner. We report here the 2.0 Å resolution crystal structure of an N-terminally truncated variant of EpsH, a minor pseudopilin from Vibrio cholerae. While EpsH maintains an N-terminal α-helix and C-terminal β-sheet consistent with the type 4a pilin fold, structural comparisons reveal major differences between the minor pseudopilin EpsH and the major pseudopilin GspG from Klebsiella oxytoca: EpsH contains a large β-sheet in the variable domain, where GspG contains an α-helix. Most importantly, EpsH contains at its surface a hydrophobic crevice between its variable and conserved β-sheets, wherein a majority of the conserved residues within the EpsH family are clustered. In a tentative model of a T2SS pseudopilus with EpsH at its tip, the conserved crevice faces away from the helix axis. This conserved surface region may be critical for interacting with other proteins from the T2SS machinery.  相似文献   

3.
The type VI secretion system (T6SS) is a widespread, versatile protein secretion system in pathogenic Proteobacteria. Several T6SSs are tightly regulated by various regulatory systems at multiple levels. However, the signals and/or regulatory mechanisms of many T6SSs remain unexplored. Here, we report on an acid-induced regulatory mechanism activating T6SS in Agrobacterium tumefaciens, a plant pathogenic bacterium causing crown gall disease in a wide range of plants. We monitored the secretion of the T6SS hallmark protein hemolysin-coregulated protein (Hcp) from A. tumefaciens and found that acidity is a T6SS-inducible signal. Expression analysis of the T6SS gene cluster comprising the imp and hcp operons revealed that imp expression and Hcp secretion are barely detected in A. tumefaciens grown in neutral minimal medium but are highly induced with acidic medium. Loss- and gain-of-function analysis revealed that the A. tumefaciens T6SS is positively regulated by a chvG/chvI two-component system and negatively regulated by exoR. Further epistasis analysis revealed that exoR functions upstream of the chvG sensor kinase in regulating T6SS. ChvG protein levels are greatly increased in the exoR deletion mutant and the periplasmic form of overexpressed ExoR is rapidly degraded under acidic conditions. Importantly, ExoR represses ChvG by direct physical interaction, but disruption of the physical interaction allows ChvG to activate T6SS. The phospho-mimic but not wild-type ChvI response regulator can bind to the T6SS promoter region in vitro and activate T6SS with growth in neutral minimal medium. We present the first evidence of T6SS activation by an ExoR-ChvG/ChvI cascade and propose that acidity triggers ExoR degradation, thereby derepressing ChvG/ChvI to activate T6SS in A. tumefaciens.  相似文献   

4.
Type II secretion systems (T2SS) translocate virulence factors from the periplasmic space of many pathogenic bacteria into the extracellular environment. The T2SS of Vibrio cholerae and related species is called the extracellular protein secretion (Eps) system that consists of a core of multiple copies of 11 different proteins. The pseudopilins, EpsG, EpsH, EpsI, EpsJ and EpsK, are five T2SS proteins that are thought to assemble into a pseudopilus, which is assumed to interact with the outer membrane pore, and may actively participate in the export of proteins. We report here biochemical evidence that the minor pseudopilins EpsI and EpsJ from Vibrio species interact directly with one another. Moreover, the 2.3 Å resolution crystal structure of a complex of EspI and EpsJ from Vibrio vulnificus represents the first atomic resolution structure of a complex of two different pseudopilin components from the T2SS. Both EpsI and EpsJ appear to be structural extremes within the family of type 4a pilin structures solved to date, with EpsI having the smallest, and EpsJ the largest, “variable pilin segment” seen thus far. A high degree of sequence conservation in the EpsI:EpsJ interface indicates that this heterodimer occurs in the T2SS of a large number of bacteria. The arrangement of EpsI and EpsJ in the heterodimer would correspond to a right-handed helical character of proteins assembled into a pseudopilus.  相似文献   

5.
Caulobacter crescentus is a gram-negative bacterium that produces a two-dimensional crystalline array on its surface composed of a single 98-kDa protein, RsaA. Secretion of RsaA to the cell surface relies on an uncleaved C-terminal secretion signal. In this report, we identify two genes encoding components of the RsaA secretion apparatus. These components are part of a type I secretion system involving an ABC transporter protein. These genes, lying immediately 3′ of rsaA, were found by screening a Tn5 transposon library for the loss of RsaA transport and characterizing the transposon-interrupted genes. The two proteins presumably encoded by these genes were found to have significant sequence similarity to ABC transporter and membrane fusion proteins of other type I secretion systems. The greatest sequence similarity was found to the alkaline protease (AprA) transport system of Pseudomonas aeruginosa and the metalloprotease (PrtB) transport system of Erwinia chrysanthemi. The prtB and aprA genes were introduced into C. crescentus, and their products were secreted by the RsaA transport system. Further, defects in the S-layer protein transport system led to the loss of this heterologous secretion. This is the first report of an S-layer protein secreted by a type I secretion apparatus. Unlike other type I secretion systems, the RsaA transport system secretes large amounts of its substrate protein (it is estimated that RsaA accounts for 10 to 12% of the total cell protein). Such levels are expected for bacterial S-layer proteins but are higher than for any other known type I secretion system.  相似文献   

6.
Infection of the vascular system by Pseudomonas aeruginosa (Pa) occurs during bacterial dissemination in the body or in blood-borne infections. Type 3 secretion system (T3SS) toxins from Pa induce a massive retraction when injected into endothelial cells. Here, we addressed the role of type 2 secretion system (T2SS) effectors in this process. Mutants with an inactive T2SS were much less effective than wild-type strains at inducing cell retraction. Furthermore, secretomes from wild-typeswere sufficient to trigger cell-cell junction opening when applied to cells, while T2SS-inactivated mutants had minimal activity. Intoxication was associated with decreased levels of vascular endothelial (VE)-cadherin, a homophilic adhesive protein located at endothelial cell-cell junctions. During the process, the protein was cleaved in the middle of its extracellular domain (positions 335 and 349). VE-cadherin attrition was T3SS-independent but T2SS-dependent. Interestingly, the epithelial (E)-cadherin was unaffected by T2SS effectors, indicating that this mechanism is specific to endothelial cells. We showed that one of the T2SS effectors, the protease LasB, directly affected VE-cadherin proteolysis, hence promoting cell-cell junction disruption. Furthermore, mouse infection with Pa to induce acute pneumonia lead to significant decreases in lung VE-cadherin levels, whereas the decrease was minimal with T2SS-inactivated or LasB-deleted mutant strains. We conclude that the T2SS plays a pivotal role during Pa infection of the vascular system by breaching the endothelial barrier, and propose a model in which the T2SS and the T3SS cooperate to intoxicate endothelial cells.  相似文献   

7.
The bacterial flagellum consists of a long extracellular filament that is rotated by a motor embedded in the cell envelope. While flagellar assembly has been extensively studied,1 the disassembly process remains less well understood. In addition to the programmed flagellar ejection that occurs during the life cycle of Caulobacter crescentus, we and others have recently shown that many bacterial species lose their flagella under starvation conditions, leaving relic structures in the outer membrane.2–7 However, it remains unknown whether the programmed flagellar ejection of C. crescentus leaves similar relics or not. Here, we imaged the various stages of the C. crescentus life cycle using electron cryo-tomography (cryo-ET) and found that flagellar relic subcomplexes, akin to those produced in the starvation-induced process, remain as a result of flagellar ejection during cell development. This similarity suggests that the programmed flagellar ejection of C. crescentus might share a common evolutionary path with the more general, and likely more ancient,3 starvation-related flagellar loss.  相似文献   

8.
9.
The Dot/Icm type IVB secretion system (T4BSS) is a pivotal determinant of Legionella pneumophila pathogenesis. L. pneumophila translocate more than 100 effector proteins into host cytoplasm using Dot/Icm T4BSS, modulating host cellular functions to establish a replicative niche within host cells. The T4BSS core complex spanning the inner and outer membranes is thought to be made up of at least five proteins: DotC, DotD, DotF, DotG and DotH. DotH is the outer membrane protein; its targeting depends on lipoproteins DotC and DotD. However, the core complex structure and assembly mechanism are still unknown. Here, we report the crystal structure of DotD at 2.0 Å resolution. The structure of DotD is distinct from that of VirB7, the outer membrane lipoprotein of the type IVA secretion system. In contrast, the C-terminal domain of DotD is remarkably similar to the N-terminal subdomain of secretins, the integral outer membrane proteins that form substrate conduits for the type II and the type III secretion systems (T2SS and T3SS). A short β-segment in the otherwise disordered N-terminal region, located on the hydrophobic cleft of the C-terminal domain, is essential for outer membrane targeting of DotH and Dot/Icm T4BSS core complex formation. These findings uncover an intriguing link between T4BSS and T2SS/T3SS.  相似文献   

10.
A type III secretion system (T3SS) is utilized by a large number of gram-negative bacteria to deliver effectors directly into the cytosol of eukaryotic host cells. One essential component of a T3SS is an ATPase that catalyzes the unfolding of proteins, which is followed by the translocation of effectors through an injectisome. Here we demonstrate a functional role of the ATPase SsaN, a component of Salmonella pathogenicity island 2 T3SS (T3SS-2) in Salmonella enterica serovar Typhimurium. SsaN hydrolyzed ATP in vitro and was essential for T3SS function and Salmonella virulence in vivo. Protein-protein interaction analyses revealed that SsaN interacted with SsaK and SsaQ to form the C ring complex. SsaN and its complex co-localized to the membrane fraction under T3SS-2 inducing conditions. In addition, SsaN bound to Salmonella pathogenicity island 2 (SPI-2) specific chaperones, including SsaE, SseA, SscA, and SscB that facilitated translocator/effector secretion. Using an in vitro chaperone release assay, we demonstrated that SsaN dissociated a chaperone-effector complex, SsaE and SseB, in an ATP-dependent manner. Effector release was dependent on a conserved arginine residue at position 192 of SsaN, and this was essential for its enzymatic activity. These results strongly suggest that the T3SS-2-associated ATPase SsaN contributes to T3SS-2 effector translocation efficiency.  相似文献   

11.
12.
Porphyromonas gingivalis is a gram-negative oral anaerobic pathogen and is one of the key causative agents of periodontitis. P. gingivalis utilises a range of virulence factors, including the cysteine protease RgpB, to drive pathogenesis and these are exported and attached to the cell surface via the type IX secretion system (T9SS). All cargo proteins possess a conserved C-terminal signal domain (CTD) which is recognised by the T9SS, and the outer membrane β-barrel protein PorV (PG0027/LptO) can interact with cargo proteins as they are exported to the bacterial surface. Using a combination of solution nuclear magnetic resonance (NMR) spectroscopy, biochemical analyses, machine-learning-based modelling and molecular dynamics (MD) simulations, we present a structural model of a PorV:RgpB-CTD complex from P. gingivalis. This is the first structural insight into CTD recognition by the T9SS and shows how the conserved motifs in the CTD are the primary sites that mediate binding. In PorV, interactions with extracellular surface loops are important for binding the CTD, and together these appear to cradle and lock RgpB-CTD in place. This work provides insight into cargo recognition by PorV but may also have important implications for understanding other aspects of type-IX dependent secretion.  相似文献   

13.
Flavobacterium johnsoniae, a member of phylum Bacteriodetes, is a gliding bacterium that digests insoluble chitin and many other polysaccharides. A novel protein secretion system, the type IX secretion system (T9SS), is required for gliding motility and for chitin utilization. Five potential chitinases were identified by genome analysis. Fjoh_4555 (ChiA), a 168.9-kDa protein with two glycoside hydrolase family 18 (GH18) domains, was targeted for analysis. Disruption of chiA by insertional mutagenesis resulted in cells that failed to digest chitin, and complementation with wild-type chiA on a plasmid restored chitin utilization. Antiserum raised against recombinant ChiA was used to detect the protein and to characterize its secretion by F. johnsoniae. ChiA was secreted in soluble form by wild-type cells but remained cell associated in strains carrying mutations in any of the T9SS genes, gldK, gldL, gldM, gldNO, sprA, sprE, and sprT. Western blot and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analyses suggested that ChiA was proteolytically processed into two GH18 domain-containing proteins. Proteins secreted by T9SSs typically have conserved carboxy-terminal domains (CTDs) belonging to the TIGRFAM families TIGR04131 and TIGR04183. ChiA does not exhibit strong similarity to these sequences and instead has a novel CTD. Deletion of this CTD resulted in accumulation of ChiA inside cells. Fusion of the ChiA CTD to recombinant mCherry resulted in secretion of mCherry into the medium. The results indicate that ChiA is a soluble extracellular chitinase required for chitin utilization and that it relies on a novel CTD for secretion by the F. johnsoniae T9SS.  相似文献   

14.
Caulobacter crescentus is an oligotrophic bacterium that lives in dilute organic environments such as soil and freshwater. This bacterium represents an interesting model for cellular differentiation and regulation because daughter cells after division have different forms: one is motile while the other is non-motile and can adhere to surfaces. Interestingly, the known genome of C. crescentus does not contain genes predicted to code for outer membrane porins of the OmpF/C general diffusion type present in enteric bacteria or those coding for specific porins selective for classes of substrates. Instead, genes coding for 67 TonB-dependent outer membrane receptors have been identified, suggesting that active transport of specific nutrients may be the norm. Here, we report that high channel-forming activity was observed with crude outer membrane extracts of C. crescentus in lipid bilayer experiments, indicating that the outer membrane of C. crescentus contained an ion-permeable channel with a single-channel conductance of about 120 pS in 1M KCl. The channel-forming protein with an apparent molecular mass of about 20 kDa was purified to homogeneity. Partial protein sequencing of the protein indicated it was a member of the OmpW family of outer membrane proteins from Gram-negative bacteria. This channel was not observed in reconstitution experiments with crude outer membrane extracts of an OmpW deficient C. crescentus mutant. Biophysical analysis of the C. crescentus OmpW suggested that it has features that are special for general diffusion porins of Gram-negative outer membranes because it was not a wide aqueous channel. Furthermore, OmpW of C. crescentus seems to be different to known OmpW porins and has a preference for ions, in particular cations. A putative model for OmpW of C. crescentus was built on the basis of the known 3D-structures of OmpW of Escherichia coli and OprG of Pseudomonas aeruginosa using homology modeling. A comparison of the two known structures with the model of OmpW of C. crescentus suggested that it has a more hydrophilic interior and possibly a larger diameter.  相似文献   

15.
Bacterial invasion plays a critical role in the establishment of Pseudomonas aeruginosa infection and is aided by two major virulence factors – surface appendages and secreted proteases. The second messenger cyclic diguanylate (c-di-GMP) is known to affect bacterial attachment to surfaces, biofilm formation and related virulence phenomena. Here we report that MorA, a global regulator with GGDEF and EAL domains that was previously reported to affect virulence factors, negatively regulates protease secretion via the type II secretion system (T2SS) in P. aeruginosa PAO1. Infection assays with mutant strains carrying gene deletion and domain mutants show that host cell invasion is dependent on the active domain function of MorA. Further investigations suggest that the MorA-mediated c-di-GMP signaling affects protease secretion largely at a post-translational level. We thus report c-di-GMP second messenger system as a novel regulator of T2SS function in P. aeruginosa. Given that T2SS is a central and constitutive pump, and the secreted proteases are involved in interactions with the microbial surroundings, our data broadens the significance of c-di-GMP signaling in P. aeruginosa pathogenesis and ecological fitness.  相似文献   

16.
The intracellular pathogenic bacterium Brucella generates a replicative vacuole (rBCV) derived from the endoplasmic reticulum via subversion of the host cell secretory pathway. rBCV biogenesis requires the expression of the Type IV secretion system (T4SS) VirB, which is thought to translocate effector proteins that modulate membrane trafficking along the endocytic and secretory pathways. To date, only a few T4SS substrates have been identified, whose molecular functions remain unknown. Here, we used an in silico screen to identify putative T4SS effector candidate proteins using criteria such as limited homology in other bacterial genera, the presence of features similar to known VirB T4SS effectors, GC content and presence of eukaryotic-like motifs. Using β-lactamase and CyaA adenylate cyclase reporter assays, we identified eleven proteins translocated into host cells by Brucella, five in a VirB T4SS-dependent manner, namely BAB1_0678 (BspA), BAB1_0712 (BspB), BAB1_0847 (BspC), BAB1_1671 (BspE) and BAB1_1948 (BspF). A subset of the translocated proteins targeted secretory pathway compartments when ectopically expressed in HeLa cells, and the VirB effectors BspA, BspB and BspF inhibited protein secretion. Brucella infection also impaired host protein secretion in a process requiring BspA, BspB and BspF. Single or combined deletions of bspA, bspB and bspF affected Brucella ability to replicate in macrophages and persist in the liver of infected mice. Taken together, these findings demonstrate that Brucella modulates secretory trafficking via multiple T4SS effector proteins that likely act coordinately to promote Brucella pathogenesis.  相似文献   

17.
Bacterial lipoproteins are peripherally anchored membrane proteins that play a variety of roles in bacterial physiology and virulence in monoderm (single membrane-enveloped, e.g., gram-positive) and diderm (double membrane-enveloped, e.g., gram-negative) bacteria. After export of prolipoproteins through the cytoplasmic membrane, which occurs predominantly but not exclusively via the general secretory or Sec pathway, the proteins are lipid-modified at the cytoplasmic membrane in a multistep process that involves sequential modification of a cysteine residue and cleavage of the signal peptide by the signal II peptidase Lsp. In both monoderms and diderms, signal peptide processing is preceded by acylation with a diacylglycerol through preprolipoprotein diacylglycerol transferase (Lgt). In diderms but also some monoderms, lipoproteins are further modified with a third acyl chain through lipoprotein N-acyl transferase (Lnt). Fully modified lipoproteins that are destined to be anchored in the inner leaflet of the outer membrane (OM) are selected, transported and inserted by the Lol (lipoprotein outer membrane localization) pathway machinery, which consists of the inner-membrane (IM) ABC transporter-like LolCDE complex, the periplasmic LolA chaperone and the OM LolB lipoprotein receptor. Retention of lipoproteins in the cytoplasmic membrane results from Lol avoidance signals that were originally described as the “+ 2 rule”. Surface localization of lipoproteins in diderms is rare in most bacteria, with the exception of several spirochetal species. Type 2 (T2SS) and type 5 (T5SS) secretion systems are involved in secretion of specific surface lipoproteins of γ-proteobacteria. In the model spirochete Borrelia burgdorferi, surface lipoprotein secretion does not follow established sorting rules, but remains dependent on N-terminal peptide sequences. Secretion through the outer membrane requires maintenance of lipoproteins in a translocation-competent unfolded conformation, likely through interaction with a periplasmic holding chaperone, which delivers the proteins to an outer membrane lipoprotein flippase. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.  相似文献   

18.
Bacteria must control the progression of their cell cycle in response to nutrient availability. This regulation can be mediated by guanosine tetra- or pentaphosphate [(p)ppGpp], which are synthesized by enzymes of the RelA/SpoT homologue (Rsh) family, particularly under starvation conditions. Here, we study the effects of (p)ppGpp on the cell cycle of Caulobacter crescentus, an oligotrophic bacterium with a dimorphic life cycle. C. crescentus divides asymmetrically, producing a motile swarmer cell that cannot replicate its chromosome and a sessile stalked cell that is replication competent. The swarmer cell rapidly differentiates into a stalked cell in appropriate conditions. An artificial increase in the levels of (p)ppGpp in nonstarved C. crescentus cells was achieved by expressing a truncated relA gene from Escherichia coli, encoding a constitutively active (p)ppGpp synthetase. By combining single-cell microscopy, flow cytometry approaches, and swarming assays, we show that an increase in the intracellular concentration of (p)ppGpp is sufficient to slow down the swarmer-to-stalked cell differentiation process and to delay the initiation of chromosome replication. We also present evidence that the intracellular levels of two master regulators of the cell cycle of C. crescentus, DnaA and CtrA, are modulated in response to (p)ppGpp accumulation, even in the absence of actual starvation. CtrA proteolysis and DnaA synthesis seem indirectly inhibited by (p)ppGpp accumulation. By extending the life span of the motile nonreproductive swarmer cell and thus promoting dispersal and foraging functions over multiplication under starvation conditions, (p)ppGpp may play a central role in the ecological adaptation of C. crescentus to nutritional stresses.  相似文献   

19.
The type VI secretion system (T6SS) is a versatile secretion machine dedicated to various functions in Gram-negative bacteria, including virulence toward eukaryotic cells and antibacterial activity. Activity of T6SS might be followed in vitro by the release of two proteins, Hcp and VgrG, in the culture supernatant. Citrobacter rodentium, a rodent pathogen, harbors two T6SS gene clusters, cts1 and cts2. Reporter fusion and Hcp release assays suggested that the CTS1 T6SS was not produced or not active. The cts1 locus is composed of two divergent operons. We therefore developed a new vector allowing us to swap the two divergent endogenous promoters by Ptac and PBAD using the λ red recombination technology. Artificial induction of both promoters demonstrated that the CTS1 T6SS is functional as shown by the Hcp release assay and confers on C. rodentium a growth advantage in antibacterial competition experiments with Escherichia coli.  相似文献   

20.
Gram-negative bacteria have evolved several secretory pathways to release enzymes or toxins into the surrounding environment or into the target cells. The type II secretion system (T2SS) is conserved in Gram-negative bacteria and involves a set of 12 to 16 different proteins. Components of the T2SS are located in both the inner and outer membranes where they assemble into a supramolecular complex spanning the bacterial envelope, also called the secreton. The T2SS substrates transiently go through the periplasm before they are translocated across the outer membrane and exposed to the extracellular milieu. The T2SS is unique in its ability to promote secretion of large and sometimes multimeric proteins that are folded in the periplasm. The present review describes recently identified protein-protein interactions together with structural and functional advances in the field that have contributed to improve our understanding on how the type II secretion apparatus assembles and on the role played by individual proteins of this highly sophisticated system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号