首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Tailed double-stranded DNA viruses (order Caudovirales) represent the dominant morphotype among viruses infecting bacteria. Analysis and comparison of complete genome sequences of tailed bacterial viruses provided insights into their origin and evolution. Structural and genomic studies have unexpectedly revealed that tailed bacterial viruses are evolutionarily related to eukaryotic herpesviruses. Organisms from the third domain of life, Archaea, are also infected by viruses that, in their overall morphology, resemble tailed viruses of bacteria. However, high-resolution structural information is currently unavailable for any of these viruses, and only a few complete genomes have been sequenced so far. Here we identified nine proviruses that are clearly related to tailed bacterial viruses and integrated into chromosomes of species belonging to four different taxonomic orders of the Archaea. This more than doubled the number of genome sequences available for comparative studies. Our analyses indicate that highly mosaic tailed archaeal virus genomes evolve by homologous and illegitimate recombination with genomes of other viruses, by diversification, and by acquisition of cellular genes. Comparative genomics of these viruses and related proviruses revealed a set of conserved genes encoding putative proteins similar to virion assembly and maturation, as well as genome packaging proteins of tailed bacterial viruses and herpesviruses. Furthermore, fold prediction and structural modeling experiments suggest that the major capsid proteins of tailed archaeal viruses adopt the same topology as the corresponding proteins of tailed bacterial viruses and eukaryotic herpesviruses. Data presented in this study strongly support the hypothesis that tailed viruses infecting archaea share a common ancestry with tailed bacterial viruses and herpesviruses.  相似文献   

2.
Holmes EC 《Journal of virology》2011,85(11):5247-5251
Despite recent advances in our understanding of diverse aspects of virus evolution, particularly on the epidemiological scale, revealing the ultimate origins of viruses has proven to be a more intractable problem. Herein, I review some current ideas on the evolutionary origins of viruses and assess how well these theories accord with what we know about the evolution of contemporary viruses. I note the growing evidence for the theory that viruses arose before the last universal cellular ancestor (LUCA). This ancient origin theory is supported by the presence of capsid architectures that are conserved among diverse RNA and DNA viruses and by the strongly inverse relationship between genome size and mutation rate across all replication systems, such that pre-LUCA genomes were probably both small and highly error prone and hence RNA virus-like. I also highlight the advances that are needed to come to a better understanding of virus origins, most notably the ability to accurately infer deep evolutionary history from the phylogenetic analysis of conserved protein structures.  相似文献   

3.
Orf virus, the prototype parapoxvirus, is responsible for contagious ecthyma in sheep and goats. The central region of the viral genome codes for proteins highly conserved among vertebrate poxviruses and which are frequently essential for viral proliferation. Analysis of the recently published genome sequence of orf virus revealed that among such essential proteins, the protein orfv075 is an orthologue of D13, the rifampin resistance gene product critical for vaccinia virus morphogenesis. Previous studies showed that D13, arranged as "spicules," is necessary for the formation of vaccinia virus immature virions, a mandatory intermediate in viral maturation. We have determined the three-dimensional structure of recombinant orfv075 at approximately 25-A resolution by electron microscopy of two-dimensional crystals. orfv075 organizes as trimers with a tripod-like main body and a propeller-like smaller domain. The molecular envelope of orfv075 shows unexpectedly good agreement to that of a distant homologue, VP54, the major capsid protein of Paramecium bursaria Chlorella virus type 1. Our structural analysis suggests that orfv075 belongs in the double-barreled capsid protein family found in many double-stranded DNA icosahedral viruses and supports the hypothesis that the nonicosahedral poxviruses and the large icosahedral DNA viruses are evolutionarily related.  相似文献   

4.
Structure of the Bluetongue Virus Capsid   总被引:31,自引:21,他引:10       下载免费PDF全文
  相似文献   

5.
6.
Ascoviruses, iridoviruses, asfarviruses and poxviruses are all cytoplasmic DNA viruses. The evolutionary origins of cytoplasmic DNA viruses have never been fully addressed. Morphological, genetic and molecular data were used to test if all four cytoplasmic virus families (Ascoviridae, Iridoviridae, Asfarviridae, and Poxvirirdae) evolved from nuclear replicating baculoviruses and how the four virus groups are related. Molecular phylogenetic analyses using DNA polymerase predicted that cytoplasmic DNA viruses might have evolved from nuclear replicating baculoviruses, and that poxviruses and asfarviruses share a common ancestor with iridoviruses. These three cytoplasmic viruses again shared a common ancestor with ascoviruses. Morphological and genetic data predicted the same evolutionary trend as molecular data predicted. A genome sequence comparison showed that ascoviruses have more baculovirus protein homologues than do iridoviruses, which suggested that ascoviruses have evolved from baculoviruses and iridoviruses evolved from ascoviruses. Poxviruses showed genetic and morphological similarity to other cytoplamic viruses, such as ascoviruses, suggesting it has undergone reticulate evolution via hybridization, recombination and lateral gene transfer with other viruses. Within the ascovirus family, we tested if molecular phylogenetic analyses agree with biological inference; that is, ascovirus had an evolutionary trend of increasing genome size, expanding host range and widening tissue tropism for these viruses. Both molecular and biological data predicted this evolutionary trend. The phylogenetic relationship among the four species of ascovirus was predicted to be that TnAV-2 and HvAV-3 shared a common ancestor with SfAV-1 and the three virus species again shared a common ancestor with DpAV-4.  相似文献   

7.
Numerous small, RNA-containing insect viruses are currently classified as picornaviruses, or as 'picorna-like', since they superficially resemble the true picornaviruses. Considerable evidence now suggests that several of these viruses are members of a distinct family. We have determined the gene sequence of the capsid proteins and the 2.4 A resolution crystal structure of the cricket paralysis virus. While the genome sequence indicates that the insect picorna-like viruses represent a distinct lineage compared to true picornaviruses, the capsid structure demonstrates that the two groups are related. These viral genomes are, thus, best viewed as composed of exchangeable modules that have recombined.  相似文献   

8.
Ascoviruses, iridoviruses, asfarviruses and poxviruses are all cytoplasmic DNA viruses. The evolutionary origins of cytoplasmic DNA viruses have never been fully addressed. Morphological, genetic and molecular data were used to test if all four cytoplasmic virus families (Ascoviridae, Iridoviridae, Asfarviridae, and Poxvirirdae) evolved from nuclear replicating baculoviruses and how the four virus groups are related. Molecular phylogenetic analyses using DNA polymerase predicted that cytoplasmic DNA viruses might have evolved from nuclear replicating baculoviruses, and that poxviruses and asfarviruses share a common ancestor with iridoviruses. These three cytoplasmic viruses again shared a common ancestor with ascoviruses. Morphological and genetic data predicted the same evolutionary trend as molecular data predicted. A genome sequence comparison showed that ascoviruses have more baculovirus protein homologues than do iridoviruses, which suggested that ascoviruses have evolved from baculoviruses and iridoviruses evolved from ascoviruses. Poxviruses showed genetic and morphological similarity to other cytoplamic viruses, such as ascoviruses, suggesting it has undergone reticulate evolution via hybridization, recombination and lateral gene transfer with other viruses. Within the ascovirus family, we tested if molecular phylogenetic analyses agree with biological inference; that is, ascovirus had an evolutionary trend of increasing genome size, expanding host range and widening tissue tropism for these viruses. Both molecular and biological data predicted this evolutionary trend. The phylogenetic relationship among the four species of ascovirus was predicted to be that TnAV-2 and HvAV-3 shared a common ancestor with SfAV-1 and the three virus species again shared a common ancestor with DpAV-4.   相似文献   

9.
Infectious pancreatic necrosis virus of fish, infectious bursal disease virus of chickens, Tellina virus and oyster virus of bivalve molluscs, and drosophila X virus of Drosophila melanogaster are naked icosahedral viruses with an electron microscopic diameter of 58 to 60 nm. The genome of each of these viruses consists of two segments of double-stranded RNA (molecular weight range between 2.6 x 10(6) and 2.2 x 10(6), and the virion, capsid proteins fall into three size class categories (large, medium, and small; ranging from 100,000 to 27,000) as determined by polyacrylamide slab gel electrophoresis. The hydrodynamic properties of the five viruses are similar as determined by analytical ultracentrifugation and laser quasi-elastic, light-scattering spectroscopy. The calculated particle weights range between 55 x 10(6) and 81 x 10(6). Tryptic peptide comparisons of 125I-labeled virion proteins showed that five viruses are different from each other, although there was considerable overlap in the peptide maps of the three aquatic viruses, indicting a degree of relatedness. Cross-neutralization tests indicated that drosophila X, infectious pancreatic necrosis, and infectious bursal disease viruses were different from each other and from oyster and Tellina viruses. The same test showed oyster and Tellina viruses to be related. The biochemical and biophysical properties of the five viruses cannt be included in the family Reoviridae or in any of the present virus genera.  相似文献   

10.
The assembly of infectious poliovirus virions requires a proteolytic cleavage between an asparagine-serine amino acid pair (the maturation cleavage site) in VP0 after encapsidation of the genomic RNA. In this study, we have investigated the effects that mutations in the maturation cleavage site have on P1 polyprotein processing, assembly of subviral intermediates, and encapsidation of the viral genomic RNA. We have made mutations in the maturation cleavage site which change the asparagine-serine amino acid pair to either glutamine-glycine or threonine-serine. The mutations were created by site-directed mutagenesis of P1 cDNAs which were recombined into wild-type vaccinia virus to generate recombinant vaccinia viruses. The P1 polyproteins expressed from the recombinant vaccinia viruses were analyzed for proteolytic processing and assembly defects in cells coinfected with a recombinant vaccinia virus (VV-P3) that expresses the poliovirus 3CD protease. A trans complementation system using a defective poliovirus genome was utilized to assess the capacity of the mutant P1 proteins to encapsidate genomic RNA (D. C. Ansardi, D. C. Porter, and C. D. Morrow, J. Virol. 67:3684-3690, 1993). The mutant P1 proteins containing the glutamine-glycine amino acid pair (VP4-QG) and the threonine-serine pair (VP4-TS) were processed by 3CD provided in trans from VV-P3. The processed capsid proteins VP0, VP3, and VP1 derived from the mutant precursor VP4-QG were unstable and failed to assemble into subviral structures in cells coinfected with VV-P3. However, the capsid proteins derived from VP4-QG did assemble into empty-capsid-like structures in the presence of the defective poliovirus genome. In contrast, the capsid proteins derived from processing of the VP4-TS mutant assembled into subviral intermediates both in the presence and in the absence of the defective genome RNA. By a sedimentation analysis, we determined that the capsid proteins derived from the VP4-TS precursor encapsidated the defective genome RNA. However, the cleavage of VP0 to VP4 and VP2 was delayed, resulting in the accumulation of provirions. The maturation cleavage of the VP0 protein containing the VP4-TS mutation was accelerated by incubation of the provirions at 37 degrees C. The results of these studies demonstrate that mutations in the maturation cleavage site have profound effects on the subsequent capability of the capsid proteins to assemble and provide evidence for the existence of the provirion as an assembly intermediate.  相似文献   

11.
Gene overlap occurs when two or more genes are encoded by the same nucleotides. This phenomenon is found in all taxonomic domains, but is particularly common in viruses, where it may increase the information content of compact genomes or influence the creation of new genes. Here we report a global comparative study of overlapping open reading frames (OvRFs) of 12,609 virus reference genomes in the NCBI database. We retrieved metadata associated with all annotated open reading frames (ORFs) in each genome record to calculate the number, length, and frameshift of OvRFs. Our results show that while the number of OvRFs increases with genome length, they tend to be shorter in longer genomes. The majority of overlaps involve +2 frameshifts, predominantly found in dsDNA viruses. Antisense overlaps in which one of the ORFs was encoded in the same frame on the opposite strand (−0) tend to be longer. Next, we develop a new graph-based representation of the distribution of overlaps among the ORFs of genomes in a given virus family. In the absence of an unambiguous partition of ORFs by homology at this taxonomic level, we used an alignment-free k-mer based approach to cluster protein coding sequences by similarity. We connect these clusters with two types of directed edges to indicate (1) that constituent ORFs are adjacent in one or more genomes, and (2) that these ORFs overlap. These adjacency graphs not only provide a natural visualization scheme, but also a novel statistical framework for analyzing the effects of gene- and genome-level attributes on the frequencies of overlaps.  相似文献   

12.
正Dear Editor,Previous studies had described the adaptation of enterovirus 71 (EV-A71) strains that enabled entry and viral replication in Chinese Hamster Ovary (CHO) cell line(Zaini and Mc Minn 2012; Zaini et al. 2012). These adapted  相似文献   

13.
Cis-acting RNA signals are required for replication of positive-strand viruses such as the picornaviruses. Although these generally have been mapped to the 5' and/or 3' termini of the viral genome, RNAs derived from human rhinovirus type 14 are unable to replicate unless they contain an internal cis-acting replication element (cre) located within the genome segment encoding the capsid proteins. Here, we show that the essential cre sequence is 83-96 nt in length and located between nt 2318-2413 of the genome. Using dicistronic RNAs in which translation of the P1 and P2-P3 segments of the polyprotein were functionally dissociated, we further demonstrate that translation of the cre sequence is not required for RNA replication. Thus, although it is located within a protein-coding segment of the genome, the cre functions as an RNA entity. Computer folds suggested that cre sequences could form a stable structure in either positive- or minus-strand RNA. However, an analysis of mutant RNAs containing multiple covariant and non-covariant nucleotide substitutions within these putative structures demonstrated that only the predicted positive-strand structure is essential for efficient RNA replication. The absence of detectable minus-strand synthesis from RNAs that lack the cre suggests that the cre is required for initiation of minus-strand RNA synthesis. Since a lethal 3' noncoding region mutation could be partially rescued by a compensating mutation within the cre, the cre appears to participate in a long-range RNA-RNA interaction required for this process. These data provide novel insight into the mechanisms of replication of a positive-strand RNA virus, as they define the involvement of an internally located RNA structure in the recognition of viral RNA by the viral replicase complex. Since internally located RNA replication signals have been shown to exist in several other positive-strand RNA virus families, these observations are potentially relevant to a wide array of related viruses.  相似文献   

14.
Adeno-associated virus proteins: origin of the capsid components.   总被引:19,自引:16,他引:3       下载免费PDF全文
The three primary capsid proteins (A, B, and C) of adeno-associated viruses have been shown previously to contain overlapping amino acid sequences (R. McPherson and J. Rose, J. Virol. 46:523-529, 1983). In the present study we demonstrate definitively that these proteins are encoded in the right half of the adeno-associated virus 2 genome, and one or both of the smallest adeno-associated RNA species (2.3- or 2.6-kilobase RNA) account for their synthesis. Protein A (90 kilodaltons) apparently initiates from a site within the intervening sequence, which is intact in the larger (unspliced) 2.6-kilobase mRNA, and may read through one or more termination codons, including a strong stop signal (UAA) that lies 31 bases downstream from the end of the intervening sequence. Proteins B (72 kilodaltons) and C (60 kilodaltons) are not derived from protein A but apparently originate from independent, in-frame initiations that lie downstream from the splice junction. It thus seems likely that production of the three adeno-associated virus capsid proteins involves at least two mRNA species. The B and C proteins presumably arise from the spliced 2.3-kilobase RNA, whereas protein A should be generated by the 2.6-kilobase RNA or a hitherto unidentified spliced RNA species.  相似文献   

15.
Studies on viral capsid architectures and coat protein folds have revealed the evolutionary lineages of viruses branching to all three domains of life. A widespread group of icosahedral tailless viruses, the PRD1-adenovirus lineage, was the first to be established. A double β-barrel fold for a single major capsid protein is characteristic of these viruses. Similar viruses carrying genes coding for two major capsid proteins with a more complex structure, such as Thermus phage P23-77 and haloarchaeal virus SH1, have been isolated. Here, we studied the host range, life cycle, biochemical composition, and genomic sequence of a new isolate, Haloarcula hispanica icosahedral virus 2 (HHIV-2), which resembles SH1 despite being isolated from a different location. Comparative analysis of these viruses revealed that their overall architectures are very similar except that the genes for the receptor recognition vertex complexes are unrelated even though these viruses infect the same hosts.  相似文献   

16.
Packaging in a yeast double-stranded RNA virus.   总被引:2,自引:1,他引:1       下载免费PDF全文
W Yao  K Muqtadir    J A Bruenn 《Journal of virology》1995,69(3):1917-1919
The yeast virus ScV-L1 has only two genes, cap and pol, which encode the capsid polypeptide and the viral polymerase, respectively. The second gene is translated only as a cap-pol fusion protein. This fusion protein is responsible for recognition of a specific small stem and loop region of the viral plus strands, of 19 to 31 bases in length, ensuring packaging specificity. We have used a related virus, ScV-La, which has about 29% codon identity with ScV-L1 in the most conserved region of the pol gene, to map the region in pol that is responsible for packaging L1. Characterization of a number of chimeric viral proteins that recognize L1 but have the La capsid region delimits the region necessary for recognition of L1 to a 76- to 82-codon portion of pol. In addition, we show that overproduction of the La capsid polypeptide results in curing of the ScV-La virus, analogous to the production of plants resistant to RNA viruses by virtue of systemic production of viral coat protein.  相似文献   

17.
Supercharged proteins are a recently identified class of proteins that have the ability to efficiently deliver functional macromolecules into mammalian cells. They were first developed as bioengineering products, but were later found in the human proteome. In this work, we show that this class of proteins with unusually high net positive charge is frequently found among viral structural proteins, more specifically among capsid proteins. In particular, the capsid proteins of viruses from the Flaviviridae family have all a very high net charge to molecular weight ratio (> +1.07/kDa), thus qualifying as supercharged proteins. This ubiquity raises the hypothesis that supercharged viral capsid proteins may have biological roles that arise from an intrinsic ability to penetrate cells. Dengue virus capsid protein was selected for a detailed experimental analysis. We showed that this protein is able to deliver functional nucleic acids into mammalian cells. The same result was obtained with two isolated domains of this protein, one of them being able to translocate lipid bilayers independently of endocytic routes. Nucleic acids such as siRNA and plasmids were delivered fully functional into cells. The results raise the possibility that the ability to penetrate cells is part of the native biological functions of some viral capsid proteins.  相似文献   

18.
We have determined the complete DNA sequence of the short unique region in the genome of herpes simplex virus type 1, strain 17, and have interpreted it in terms of messenger RNAs and encoded proteins. The sequence contains variable regions whose length differs between DNA clones. The clones used for most of the analysis gave a short unique length of 12,979 base-pairs. We consider that this region contains 12 genes, which are expressed by mRNAs which have separate promoters, but may share 3'-termination sites, so that all but two mRNAs belong to one of four 3'-coterminal "families": 79% of the sequence is considered to be polypeptide coding. One pair of genes has an extensive out-of-frame overlap of coding sequences. The proteins encoded in the short unique region include two immediate-early species, two virion surface glycoproteins, and a DNA-binding species. Six of the genes have little or no previous characterization. From the nature of the amino acid sequences predicted for their encoded proteins, we deduce that several of these proteins may be membrane-associated.  相似文献   

19.
We have succeeded in engineering changes into the genome of influenza B virus. First, model RNAs containing the chloramphenicol acetyltransferase gene flanked by the noncoding sequences of the HA or NS genes of influenza B virus were transfected into cells which were previously infected with an influenza B helper virus. Like those of the influenza A viruses, the termini of influenza B virus genes contain cis-acting signals which are sufficient to direct replication, expression, and packaging of the RNA. Next, a full-length copy of the HA gene from influenza B/Maryland/59 virus was cloned. Following transfection of this RNA, we rescued transfectant influenza B viruses which contain a point mutation introduced into the original cDNA. A series of mutants which bear deletions or changes in the 5' noncoding region of the influenza B/Maryland/59 virus HA gene were constructed. We were able to rescue viruses which contained deletions of 10 or 33 nucleotides at the 5' noncoding region of the HA gene. The viability of these viruses implies that this region of the genome is flexible in sequence and length.  相似文献   

20.
R Gajardo  P Vende  D Poncet    J Cohen 《Journal of virology》1997,71(3):2211-2216
Rotavirus maturation and stability of the outer capsid are calcium-dependent processes. It has been shown previously that the concentration of Ca2+-solubilizing outer capsid proteins from rotavirus particles is dependent on the virus strain. This property of viral particles has been associated with the gene coding for VP7 (gene 9). In this study the correlation between VP7 and resistance to low [Ca2+] was confirmed by analyzing the origin of gene 9 from reassortant viruses prepared under the selective pressure of low [Ca2+]. After chemical mutagenesis, we selected mutant viruses of the bovine strain RF that are more resistant to low [Ca2+]. The genes coding for the VP7 proteins of these independent mutants have been sequenced. Sequence analysis confirmed that these mutants are independent and revealed that all mutant VP7 proteins have proline 75 changed to leucine and have an outer capsid that solubilized at low [Ca2+]. The mutation of proline 279 to serine is found in all but two mutants. The phenotype of mutants having a single proline change can be distinguished from the phenotype of mutants having two proline changes. Sequence analysis showed that position 75 is in a region (amino acids 65 to 78) of great variability and that proline 75 is present in most of the bovine strains. In contrast, proline 279 is in a conserved region and is conserved in all the VP7 sequences in data banks. This region is rich in oxygenated residues that are correctly allocated in the metal-coordinating positions of the Ca2+-binding EF-hand structure pattern, suggesting that this region is important in the Ca2+ binding of VP7.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号