共查询到20条相似文献,搜索用时 10 毫秒
1.
John M. Kyriakis 《The Journal of biological chemistry》2014,289(14):9460-9462
The importance of reversible protein phosphorylation to cellular regulation cannot be overstated. In eukaryotic cells, protein kinase/phosphatase signaling pathways regulate a staggering number of cellular processes, including cell proliferation, cell death (apoptosis, necroptosis, necrosis), metabolism (at both the cellular and organismal levels), behavior and neurological function, development, and pathogen resistance. Although protein phosphorylation as a mode of eukaryotic cell regulation is familiar to most biochemists, many are less familiar with protein kinase/phosphatase signaling networks that function in prokaryotes. In this thematic minireview series, we present four minireviews that cover the important field of prokaryotic protein phosphorylation. 相似文献
2.
Corrales RM Molle V Leiba J Mourey L de Chastellier C Kremer L 《The Journal of biological chemistry》2012,287(31):26187-26199
Pathogenic mycobacteria survive within macrophages by residing in phagosomes, which they prevent from maturing and fusing with lysosomes. Although several bacterial components were seen to modulate phagosome processing, the molecular regulatory mechanisms taking part in this process remain elusive. We investigated whether the phagosome maturation block (PMB) could be modulated by signaling through Ser/Thr phosphorylation. Here, we demonstrated that mycolic acid cyclopropane synthase PcaA, but not MmaA2, was phosphorylated by mycobacterial Ser/Thr kinases at Thr-168 and Thr-183 both in vitro and in mycobacteria. Phosphorylation of PcaA was associated with a significant decrease in the methyltransferase activity, in agreement with the strategic structural localization of these two phosphoacceptors. Using a BCG ΔpcaA mutant, we showed that PcaA was required for intracellular survival and prevention of phagosome maturation in human monocyte-derived macrophages. The physiological relevance of PcaA phosphorylation was further assessed by generating PcaA phosphoablative (T168A/T183A) or phosphomimetic (T168D/T183D) mutants. In contrast to the wild-type and phosphoablative pcaA alleles, introduction of the phosphomimetic pcaA allele in the ΔpcaA mutant failed to restore the parental mycolic acid profile and cording morphotype. Importantly, the PcaA phosphomimetic strain, as the ΔpcaA mutant, exhibited reduced survival in human macrophages and was unable to prevent phagosome maturation. Our results add new insight into the importance of mycolic acid cyclopropane rings in the PMB and provide the first evidence of a Ser/Thr kinase-dependent mechanism for modulating mycolic acid composition and PMB. 相似文献
3.
Maria Fiuza Michal Letek Jade Leiba Almudena F. Villadangos José Vaquera Isabelle Zanella-Cléon Luís M. Mateos Virginie Molle José A. Gil 《The Journal of biological chemistry》2010,285(38):29387-29397
Corynebacteria grow by wall extension at the cell poles, with DivIVA being an essential protein orchestrating cell elongation and morphogenesis. DivIVA is considered a scaffolding protein able to recruit other proteins and enzymes involved in polar peptidoglycan biosynthesis. Partial depletion of DivIVA induced overexpression of cg3264, a previously uncharacterized gene that encodes a novel coiled coil-rich protein specific for corynebacteria and a few other actinomycetes. By partial depletion and overexpression of Cg3264, we demonstrated that this protein is an essential cytoskeletal element needed for maintenance of the rod-shaped morphology of Corynebacterium glutamicum, and it was therefore renamed RsmP (rod-shaped morphology protein). RsmP forms long polymers in vitro in the absence of any cofactors, thus resembling eukaryotic intermediate filaments. We also investigated whether RsmP could be regulated post-translationally by phosphorylation, like eukaryotic intermediate filaments. RsmP was phosphorylated in vitro by the PknA protein kinase and to a lesser extent by PknL. A mass spectrometric analysis indicated that phosphorylation exclusively occurred on a serine (Ser-6) and two threonine (Thr-168 and Thr-211) residues. We confirmed that mutagenesis to alanine (phosphoablative protein) totally abolished PknA-dependent phosphorylation of RsmP. Interestingly, when the three residues were converted to aspartic acid, the phosphomimetic protein accumulated at the cell poles instead of making filaments along the cell, as observed for the native or phosphoablative RsmP proteins, indicating that phosphorylation of RsmP is necessary for directing cell growth at the cell poles. 相似文献
4.
5.
Yogesh Chawla Sandeep Upadhyay Shazia Khan Sathya Narayanan Nagarajan Francesca Forti Vinay Kumar Nandicoori 《The Journal of biological chemistry》2014,289(20):13858-13875
The Mycobacterium tuberculosis protein kinase B (PknB) comprises an intracellular kinase domain, connected through a transmembrane domain to an extracellular region that contains four PASTA domains. The present study describes the comprehensive analysis of different domains of PknB in the context of viability in avirulent and virulent mycobacteria. We find stringent regulation of PknB expression necessary for cell survival, with depletion or overexpression of PknB leading to cell death. Although PknB-mediated kinase activity is essential for cell survival, active kinase lacking the transmembrane or extracellular domain fails to complement conditional mutants not expressing PknB. By creating chimeric kinases, we find that the intracellular kinase domain has unique functions in the virulent strain, which cannot be substituted by other kinases. Interestingly, we find that although the presence of the C-terminal PASTA domain is dispensable in the avirulent M. smegmatis, all four PASTA domains are essential in M. tuberculosis. The differential behavior of PknB vis-à-vis the number of essential PASTA domains and the specificity of kinase domain functions suggest that PknB-mediated growth and signaling events differ in virulent compared with avirulent mycobacteria. Mouse infection studies performed to determine the role of PknB in mediating pathogen survival in the host demonstrate that PknB is not only critical for growth of the pathogen in vitro but is also essential for the survival of the pathogen in the host. 相似文献
6.
Kevin Francis Vanja Stojkovi? Amnon Kohen 《The Journal of biological chemistry》2013,288(50):35961-35968
The hydride transfer reaction catalyzed by dihydrofolate reductase (DHFR) is a model for examining how protein dynamics contribute to enzymatic function. The relationship between functional motions and enzyme evolution has attracted significant attention. Recent studies on N23PP Escherichia coli DHFR (ecDHFR) mutant, designed to resemble parts of the human enzyme, indicated a reduced single turnover rate. NMR relaxation dispersion experiments with that enzyme showed rigidification of millisecond Met-20 loop motions (Bhabha, G., Lee, J., Ekiert, D. C., Gam, J., Wilson, I. A., Dyson, H. J., Benkovic, S. J., and Wright, P. E. (2011) Science 332, 234–238). A more recent study of this mutant, however, indicated that fast motions along the reaction coordinate are actually more dispersed than for wild-type ecDHFR (WT). Furthermore, a double mutant (N23PP/G51PEKN) that better mimics the human enzyme seems to restore both the single turnover rates and narrow distribution of fast dynamics (Liu, C. T., Hanoian, P., French, T. H., Hammes-Schiffer, S., and Benkovic, S. J. (2013) Proc. Natl. Acad. Sci. U.S.A. 110, 10159–11064). Here, we measured intrinsic kinetic isotope effects for both N23PP and N23PP/G51PEKN double mutant DHFRs over a temperature range. The findings indicate that although the C-H→C transfer and dynamics along the reaction coordinate are impaired in the altered N23PP mutant, both seem to be restored in the N23PP/G51PEKN double mutant. This indicates that the evolution of G51PEKN, although remote from the Met-20 loop, alleviated the loop rigidification that would have been caused by N23PP, enabling WT-like H-tunneling. The correlation between the calculated dynamics, the nature of C-H→C transfer, and a phylogenetic analysis of DHFR sequences are consistent with evolutionary preservation of the protein dynamics to enable H-tunneling from well reorganized active sites. 相似文献
7.
8.
9.
Sonali Jalan Rawat Caretha L. Creasy Jeffrey R. Peterson Jonathan Chernoff 《The Journal of biological chemistry》2013,288(12):8762-8771
The serine/threonine protein kinases Mst1 and Mst2 can be activated by cellular stressors including hydrogen peroxide. Using two independent protein interaction screens, we show that these kinases associate, in an oxidation-dependent manner, with Prdx1, an enzyme that regulates the cellular redox state by reducing hydrogen peroxide to water and oxygen. Mst1 inactivates Prdx1 by phosphorylating it at Thr-90 and Thr-183, leading to accumulation of hydrogen peroxide in cells. These results suggest that hydrogen peroxide-stimulated Mst1 activates a positive feedback loop to sustain an oxidizing cellular state. 相似文献
10.
Fiorella Galello Paula Portela Silvia Moreno Silvia Rossi 《The Journal of biological chemistry》2010,285(39):29770-29779
The specificity in phosphorylation by kinases is determined by the molecular recognition of the peptide target sequence. In Saccharomyces cerevisiae, the protein kinase A (PKA) specificity determinants are less studied than in mammalian PKA. The catalytic turnover numbers of the catalytic subunits isoforms Tpk1 and Tpk2 were determined, and both enzymes are shown to have the same value of 3 s−1. We analyze the substrate behavior and sequence determinants around the phosphorylation site of three protein substrates, Pyk1, Pyk2, and Nth1. Nth1 protein is a better substrate than Pyk1 protein, and both are phosphorylated by either Tpk1 or Tpk2. Both enzymes also have the same selectivity toward the protein substrates and the peptides derived from them. The three substrates contain one or more Arg-Arg-X-Ser consensus motif, but not all of them are phosphorylated. The determinants for specificity were studied using the peptide arrays. Acidic residues in the position P+1 or in the N-terminal flank are deleterious, and positive residues present beyond P-2 and P-3 favor the catalytic reaction. A bulky hydrophobic residue in position P+1 is not critical. The best substrate has in position P+4 an acidic residue, equivalent to the one in the inhibitory sequence of Bcy1, the yeast regulatory subunit of PKA. The substrate effect in the holoenzyme activation was analyzed, and we demonstrate that peptides and protein substrates sensitized the holoenzyme to activation by cAMP in different degrees, depending on their sequences. The results also suggest that protein substrates are better co-activators than peptide substrates. 相似文献
11.
12.
Kitanishi K Kobayashi K Uchida T Ishimori K Igarashi J Shimizu T 《The Journal of biological chemistry》2011,286(41):35522-35534
Two-component signal transduction systems regulate numerous important physiological functions in bacteria. In this study we have identified, cloned, overexpressed, and characterized a dimeric full-length heme-bound (heme:protein, 1:1 stoichiometry) globin-coupled histidine kinase (AfGcHK) from Anaeromyxobacter sp. strain Fw109-5 for the first time. The Fe(III), Fe(II)-O(2), and Fe(II)-CO complexes of the protein displayed autophosphorylation activity, whereas the Fe(II) complex had no significant activity. A H99A mutant lost heme binding ability, suggesting that this residue is the heme proximal ligand. Moreover, His-183 was proposed as the autophosphorylation site based on the finding that the H183A mutant protein was not phosphorylated. The phosphate group of autophosphorylated AfGcHK was transferred to Asp-52 and Asp-169 of a response regulator, as confirmed from site-directed mutagenesis experiments. Based on the amino acid sequences and crystal structures of other globin-coupled oxygen sensor enzymes, Tyr-45 was assumed to be the O(2) binding site at the heme distal side. The O(2) dissociation rate constant, 0.10 s(-1), was substantially increased up to 8.0 s(-1) upon Y45L mutation. The resonance Raman frequencies representing ν(Fe-O2) (559 cm(-1)) and ν(O-O) (1149 cm(-1)) of the Fe(II)-O(2) complex of Y45F mutant AfGcHK were distinct from those of the wild-type protein (ν(Fe-O2), 557 cm(-1); ν(O-O), 1141 cm(-1)), supporting the proposal that Tyr-45 is located at the distal side and forms hydrogen bonds with the oxygen molecule bound to the Fe(II) complex. Thus, we have successfully identified and characterized a novel heme-based globin-coupled oxygen sensor histidine kinase, AfGcHK, in this study. 相似文献
13.
Siew Wee Chan Chun Jye Lim Fusheng Guo Ivan Tan Thomas Leung Wanjin Hong 《The Journal of biological chemistry》2013,288(52):37296-37307
Whether the Hippo pathway has downstream targets other than YAP and TAZ is unknown. In this report, we have identified angiomotin (Amot) family members as novel substrates of Hippo core kinases. The N-terminal regions of Amot proteins contain a conserved HXRXXS consensus site for LATS1/2-mediated phosphorylation. Phospho-specific antibodies showed that Hippo core kinases could mediate phosphorylation of endogenous as well as exogenous Amot family members. Knockdown of LATS1 and LATS2 endogenously reduced the phosphorylation of Amots detected by the phospho-specific antibodies. Mutation of the serine to alanine within this HXRXXS site in Amot and AmotL2 established that this site was essential for Hippo core kinase-mediated phosphorylation. Wild-type and non-phosphorylated Amot (Amot-S175A) were targeted to actin filaments, whereas phospho-mimic Amot (Amot-S175D) failed to be localized with actin. Overexpression of LATS2 caused dissociation of Amot from actin but not Amot-S175A. Mapping of the actin-binding site of Amot showed that serine 175 of Amot was important for the actin-binding activity. Amot-S175A promoted, whereas Amot and Amot-S175D inhibited, cell proliferation. These results collectively suggest that the Hippo pathway negatively regulates the actin-binding activity of Amot family members through direct phosphorylation. 相似文献
14.
15.
16.
Tomoko Sunami Noel Byrne Ronald E. Diehl Kaoru Funabashi Dawn L. Hall Mari Ikuta Sangita B. Patel Jennifer M. Shipman Robert F. Smith Ikuko Takahashi Joan Zugay-Murphy Yoshikazu Iwasawa Kevin J. Lumb Sanjeev K. Munshi Sujata Sharma 《The Journal of biological chemistry》2010,285(7):4587-4594
p70 ribosomal S6 kinase (p70S6K) is a downstream effector of the mTOR signaling pathway involved in cell proliferation, cell growth, cell-cycle progression, and glucose homeostasis. Multiple phosphorylation events within the catalytic, autoinhibitory, and hydrophobic motif domains contribute to the regulation of p70S6K. We report the crystal structures of the kinase domain of p70S6K1 bound to staurosporine in both the unphosphorylated state and in the 3′-phosphoinositide-dependent kinase-1-phosphorylated state in which Thr-252 of the activation loop is phosphorylated. Unphosphorylated p70S6K1 exists in two crystal forms, one in which the p70S6K1 kinase domain exists as a monomer and the other as a domain-swapped dimer. The crystal structure of the partially activated kinase domain that is phosphorylated within the activation loop reveals conformational ordering of the activation loop that is consistent with a role in activation. The structures offer insights into the structural basis of the 3′-phosphoinositide-dependent kinase-1-induced activation of p70S6K and provide a platform for the rational structure-guided design of specific p70S6K inhibitors. 相似文献
17.
Hyun-A Seong Haiyoung Jung Hidenori Ichijo Hyunjung Ha 《The Journal of biological chemistry》2010,285(4):2397-2414
Cell survival and death-inducing signals are tightly associated with each other, and the decision as to whether a cell survives or dies is determined by controlling the relationship between these signals. However, the mechanism underlying the reciprocal regulation of such signals remains unclear. In this study, we reveal a functional association between PDK1 (3-phosphoinositide-dependent protein kinase 1), a critical mediator of cell survival, and ASK1 (apoptosis signal-regulating kinase 1), an apoptotic stress-activated MAPKKK. The physical association between PDK1 and ASK1 is mediated through the pleckstrin homology domain of PDK1 and the C-terminal regulatory domain of ASK1 and is decreased by ASK1-activating stimuli, such as H2O2, tumor necrosis factor α, thapsigargin, and ionomycin, as well as insulin, a PDK1 stimulator. Wild-type PDK1, but not kinase-dead PDK1, negatively regulates ASK1 activity by phosphorylating Ser967, a binding site for 14-3-3 protein, on ASK1. PDK1 functionally suppresses ASK1-mediated AP-1 transactivation and H2O2-mediated apoptosis in a kinase-dependent manner. On the other hand, ASK1 has been shown to inhibit PDK1 functions, including PDK1-mediated regulation of apoptosis and cell growth, by phosphorylating PDK1 at Ser394 and Ser398, indicating that these putative phosphorylation sites are involved in the negative regulation of PDK1 activity. These results provide evidence that PDK1 and ASK1 directly interact and phosphorylate each other and act as negative regulators of their respective kinases in resting cells. 相似文献
18.
Peng C Cho YY Zhu F Zhang J Wen W Xu Y Yao K Ma WY Bode AM Dong Z 《The Journal of biological chemistry》2011,286(9):6946-6954
The ribosomal S6 kinase 2 (RSK2) is a member of the p90 ribosomal S6 kinase (p90RSK) family of proteins and plays a critical role in proliferation, cell cycle, and cell transformation. Here, we report that RSK2 phosphorylates caspase-8, and Thr-263 was identified as a novel caspase-8 phosphorylation site. In addition, we showed that EGF induces caspase-8 ubiquitination and degradation through the proteasome pathway, and phosphorylation of Thr-263 is associated with caspase-8 stability. Finally, RSK2 blocks Fas-induced apoptosis through its phosphorylation of caspase-8. These data provide a direct link between RSK2 and caspase-8 and identify a novel molecular mechanism for caspase-8 modulation by RSK2. 相似文献
19.
20.
A Mechanism of Global Shape-dependent Recognition and Phosphorylation of Filamin by Protein Kinase A
Sujay Subbayya Ithychanda Xianyang Fang Maradumane L. Mohan Liang Zhu Kalyan C. Tirupula Sathyamangla V. Naga Prasad Yun-Xing Wang Sadashiva S. Karnik Jun Qin 《The Journal of biological chemistry》2015,290(13):8527-8538
Protein phosphorylation mediates essentially all aspects of cellular life. In humans, this is achieved by ∼500 kinases, each recognizing a specific consensus motif (CM) in the substrates. The majority of CMs are surface-exposed and are thought to be accessible to kinases for phosphorylation. Here we investigated the archetypical protein kinase A (PKA)-mediated phosphorylation of filamin, a major cytoskeletal protein that can adopt an autoinhibited conformation. Surprisingly, autoinhibited filamin is refractory to phosphorylation by PKA on a known Ser2152 site despite its CM being exposed and the corresponding isolated peptide being readily phosphorylated. Structural analysis revealed that although the CM fits into the PKA active site its surrounding regions sterically clash with the kinase. However, upon ligand binding, filamin undergoes a conformational adjustment, allowing rapid phosphorylation on Ser2152. These data uncover a novel ligand-induced conformational switch to trigger filamin phosphorylation. They further suggest a substrate shape-dependent filtering mechanism that channels specific exposed CM/kinase recognition in diverse signaling responses. 相似文献