首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
A multi-copy and small plasmid pBMB2062 from Bacillus thuringiensis kurstaki YBT-1520 strain was cloned and characterized and its distribution was analyzed using dot-blot analysis with the ORF1 fragment as a probe. Bacillus species of 84 serotypes were evaluated. The pBMB2062 plasmid was found to be present in commercial B. thuringiensis kurstaki (H3abc) and aizawai (H7) insecticides of various serotypes, and one Bacillus cereus UW85 strain (produced Zwittermicin fungicide and Cry toxin synergist). The sequences of 7 pBMB2062-like plasmids from randomly selected Bacillus species (positive signal in the dot-blot analysis) were highly conserved. Two open reading frames (ORFs), ORF1 and ORF2, were present in this plasmid. ORF1 was found to be necessary for plasmid replication, whereas ORF2 did not play a role in replication or stability. Based on its sequence homology, ORF2 was a putative solitary antitoxin. Furthermore, the copy number of the replicon of pBMB2062 was higher than those of ori1030 and ori44 based on the thermogenic data, and ori2062 could drive the stable replication of a recombinant plasmid (11 kb total size) in B. thuringiensis.  相似文献   

3.
4.
In this work, a fundamental regulatory role of formate on thuringiensin production by resting cell of Bacillus thuringiensis YBT-032 was investigated. Nicotinamide adenine dinucleotide (NADH) production and formate dehydrogenase activity increased with formate addition from 0.5 to 2.0 g/L, respectively. However, with the formate addition of 1.5 g/L, the activities of pyruvate kinase and glucose 6-phosphate dehydrogenase reached a peak and increased by 316 and 150% relative to those of the control, respectively. In addition, intracellular production of pyruvate, aspartate, citrate and adenine were significantly enhanced by 75, 66, 32 and 78% as well. An improvement (90%) of thuringiensin production was also successfully obtained. Interestingly to point out, thuringiensin yield was closely correlative with adenine production, and the linear relationship was also observed. The results suggest that appropriate formate addition did act as a modulator and facilitate carbon flux in glycolysis and pentose phosphate pathway to synthesize adenine and thuringiensin via intracellular NADH availability.  相似文献   

5.
A new cryptic plasmid pBMB175 from Bacillus thuringiensis subsp. tenebrionis YBT-1765 was isolated and characterized. Sequence analysis showed that pBMB175 (14,841 bp and 31% GC content) contained at least eighteen putative open reading frames (ORFs), among which nine ORFs displayed the homology with the hypothetical proteins in rolling-circle replication plasmid pGI3. Deletion analysis revealed that the pBMB175 minireplicon located in a novel 1,151 bp fragment. This fragment contains ORF7 coding sequence, which encodes a protein (Rep175, 149 amino acids [aa]) indispensable for plasmid replication. Rep175 has no significant homology with known function proteins. Furthermore, a putative double-strand origin (dso), having no DNA similarity with characterized dso of other replicon so far, was identified in this minireplicon fragment. These features showed that pBMB175 could be placed into a new plasmid family.  相似文献   

6.
We have developed a strategy for isolating cry genes from Bacillus thuringiensis. The key steps are the construction of a DNA library in an acrystalliferous B. thuringiensis host strain and screening for the formation of crystal through optical microscopy observation and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analyses. By this method, three cry genes—cry55Aa1, cry6Aa2, and cry5Ba2—were cloned from rice-shaped crystals, producing B. thuringiensis YBT-1518, which consists of 54- and 45-kDa crystal proteins. cry55Aa1 encoded a 45-kDa protein, cry6Aa2 encoded a 54-kDa protein, and cry5Ba2 remained cryptic in strain YBT-1518, as shown by SDS-PAGE or microscopic observation. Proteins encoded by these three genes are all toxic to the root knot nematode Meloidogyne hapla. The two genes cry55Aa1 and cry6Aa2 were found to be located on a plasmid with a rather small size of 17.7 kb, designated pBMB0228.  相似文献   

7.
8.
Zhong C  Peng D  Ye W  Chai L  Qi J  Yu Z  Ruan L  Sun M 《PloS one》2011,6(1):e16025
Bacillus thuringiensis is the most widely used bacterial bio-insecticide, and most insecticidal crystal protein-coding genes are located on plasmids. Most strains of B. thuringiensis harbor numerous diverse plasmids, although the plasmid copy numbers (PCNs) of all native plasmids in this host and the corresponding total plasmid DNA amount remains unknown. In this study, we determined the PCNs of 11 plasmids (ranging from 2 kb to 416 kb) in a sequenced B. thuringiensis subsp. kurstaki strain YBT-1520 using real-time qPCR. PCNs were found to range from 1.38 to 172, and were negatively correlated to plasmid size. The amount of total plasmid DNA (∼8.7 Mbp) was 1.62-fold greater than the amount of chromosomal DNA (∼5.4 Mbp) at the mid-exponential growth stage (OD600 = 2.0) of the organism. Furthermore, we selected three plasmids with different sizes and replication mechanisms to determine the PCNs over the entire life cycle. We found that the PCNs dynamically shifted at different stages, reaching their maximum during the mid-exponential growth or stationary phases and remaining stable and close to their minimum after the prespore formation stage. The PCN of pBMB2062, which is the smallest plasmid (2062 bp) and has the highest PCN of those tested, varied in strain YBT-1520, HD-1, and HD-136 (172, 115, and 94, respectively). These findings provide insight into both the total plasmid DNA amount of B. thuringiensis and the strong ability of the species to harbor plasmids.  相似文献   

9.
pGIAK1 is a 38-kb plasmid originating from the obligate alkaliphilic and halotolerant Bacillaceae strain JMAK1. The strain was originally isolated from the confined environments of the Antarctic Concordia station. Analysis of the pGIAK1 38,362-bp sequence revealed that, in addition to its replication region, this plasmid contains the genetic determinants for cadmium and arsenic resistances, putative methyltransferase, tyrosine recombinase, spore coat protein and potassium transport protein, as well as several hypothetical proteins. Cloning the pGIAK1 cad operon in Bacillus cereus H3081.97 and its ars operon in Bacillus subtilis 1A280 conferred to these hosts cadmium and arsenic resistances, respectively, therefore confirming their bona fide activities. The pGIAK1 replicon region was also shown to be functional in Bacillus thuringiensis, Bacillus subtilis and Staphylococcus aureus, but was only stably maintained in B. subtilis. Finally, using an Escherichia coli - B. thuringiensis shuttle BAC vector, pGIAK1 was shown to display conjugative properties since it was able to transfer the BAC plasmid among B. thuringiensis strains.  相似文献   

10.
对苏云金素生物合成基因簇中编码非核糖体肽合成酶基因thu2进行基因缺失插入失活的研究。用温敏型质粒pHT304-TS构建基因thu2的插入缺失质粒pEMB1434,电转化苏云金芽胞杆菌菌株CT-43后,通过抗性筛选和PCR验证得到thu2基因同源双交换基因敲除突变株CT-43-22。HPLC(高效液相色谱,High Performance Liquid Chromatography)检测发现CT-43-22没有苏云金素特征吸收峰;用pHT304构建得到含有完整thu2基因的回补质粒pEMB1435,电转化CT-43-22后得到互补重组菌CT-43-22b,发现其恢复了苏云金素的产生。显微镜观察突变株和互补重组菌均能产生正常的晶体和芽胞。thu2的基因敲除和基因互补实验证明,thu2基因为CT-43苏云金素生物合成的必需基因,但对晶体和芽胞的形成没有影响。  相似文献   

11.
Bacillus thuringiensis and Bacillus cereus belong to the B. cereus species group. The two species share substantial chromosomal similarity and differ mostly in their plasmid content. The phylogenetic relationship between these species remains a matter of debate. There is genetic exchange both within and between these species, and current evidence indicates that insects are a particularly suitable environment for the growth of and genetic exchange between these species. We investigated the conjugation efficiency of B. thuringiensis var. kurstaki KT0 (pHT73-EmR) as a donor and a B. thuringiensis and several B. cereus strains as recipients; we used one-recipient and two-recipient conjugal transfer systems in vitro (broth and filter) and in Bombyx mori larvae, and assessed multiplication following conjugation between Bacillus strains. The B. thuringiensis KT0 strain did not show preference for genetic exchange with the B. thuringiensis recipient strain over that with the B. cereus recipient strains. However, B. thuringiensis strains germinated and multiplied more efficiently than B. cereus strains in insect larvae and only B. thuringiensis maintained complete spore germination for at least 24 h in B. mori larvae. These findings show that there is no positive association between bacterial multiplication efficiency and conjugation ability in infected insects for the used strains.  相似文献   

12.
The Bacillus thuringiensis subsp. sichuansis MC28 strain produces spherical parasporal crystals during sporulation and exhibits remarkable insecticidal activity against dipteran and lepidopteran pests. We characterized a novel cry gene (cry69Aa1), which was found in the pMC95 plasmid of the MC28 strain. The cry69Aa1 gene was inserted into a shuttle vector (pSTK) and expressed in an acrystalliferous mutant B. thuringiensis HD73?. In this transformant, a large number of spherical parasporal crystals, which were toxic to Culex quinquefasciatus (Diptera), were formed.  相似文献   

13.
Bacillus thuringiensis 1–3, isolated from a Korean soil sample, was determined to belong to ssp. aizawai (H7) type by an H antiserum agglutination test, and produced bipyramidal-shaped crystal proteins with a molecular weight of 130 kDa. PCR analysis with specific cry gene primers showed that B. thuringiensis 1–3 contained cry1Aa, cry1Ab, cry1C, cry1D and cry2A genes, differing from that of serovar of aizawai (reference strain) which contains cry1Aa, cry1Ab, cry1C and cry1D genes. In contrast to the reference strain, B. thuringiensis aizawai showed insecticidal activity against Plutella xylostella larvae, the B. thuringiensis 1–3 showed insecticidal activity against not only P. xylostella, but also Aedes aegypti, owing to its Cry2A crystal protein. In this study, we modified the plasmid capture system (PCS) through in vitro transposition to clone small cryptic plasmids from B. thuringiensis 1–3. Fifty-three clones were acquired, and their sizes were approximately 10 kb. Based on the sequence analysis, they were classified into four groups, showing similarities with four known B. thuringiensis plasmids, pGI3, pBMB175, pGI1 and pGI2, respectively. One of the pGI3-like clones, pBt1–3, was fully sequenced, and its putative open reading frames (ORFs), Rep-protein, double-strand origin of replication (dso), single-strand origin of replication (sso), have been identified. The structure of pBt1–3 showed high similarity with pGI3, which is of the rolling-circle replication (RCR) group VI family.  相似文献   

14.
A novel putative toxin-antitoxin segregational stability system named KyAB system was identified in a novel native plasmid pBMB8240 from Bacillus thuringiensis strain YBT-1520, based on sequences homology with other toxin-antitoxin systems, the lethal activity of the KyB putative toxin in Escherichia coli and the stabilizing effect of the kyAB system in Bacillus thuringiensis. Secondarily, the native plasmid pBMB9741 from the same strain was resequenced and the corrected plasmid was named as pBMB7635. Based on sequence homology with the tasAB system and the lethal activity of toxin protein in Escherichia coli, a tasAB-like putative toxin-antitoxin system was identified on pBMB7635.  相似文献   

15.
Bacillus thuringiensis has been widely used as a biopesticide for a long time. Here we report the finished and annotated genome sequence of B. thuringiensis mutant strain BMB171, an acrystalliferous mutant strain with a high transformation frequency obtained and stocked in our laboratory.Bacillus thuringiensis is an insect pathogen which is widely used as a biopesticide due to its various endogenous crystal proteins and spores (12). To improve the virulence and practical effectiveness of B. thuringiensis, genetic transformation of different genes with beneficial traits is a fundamental procedure. Simultaneously, genetic transformation can facilitate functional genomic research. However, wild-type strains are not suitable to be used as recipient strains because of low transformation efficiency. This obstacle is mainly caused by the thick cell wall layer of B. thuringiensis together with multiple plasmids inside the cell, which harbor genes encoding insecticidal crystal proteins. We used the method of elevating the growth temperature and adding 0.05% sodium dodecyl sulfate to treat several parental strains and finally obtained mutant strain BMB171, with no resident plasmid, from wild-type crystalliferous strain YBT-1463 (9). The electrotransformation frequency of mutant BMB171 could reach up to 107 transformants/μg DNA after optimization of the electrotransformation parameters (7), which was 4.8 × 104-fold higher than that of the parental strain (8). Moreover, mutant strain BMB171 exhibited the same characteristics as YBT-1463, such as metabolic abilities and growth properties, as well as sensitivity to 10 antibiotics (8). Of course, BMB171 could produce parasporal crystals with characteristic geometric shapes through the expression of relevant cry genes carried by plasmids (7). Thus, B. thuringiensis mutant strain BMB171 has become a major recipient strain and is widely used for insecticidal crystal protein-encoding gene expression (14, 15), cell surface display (10, 13), gene function and regulation researches (2, 5), etc.The B. thuringiensis mutant strain BMB171 genome was sequenced by using a massive parallel pyrosequencing technology (454 GS-FLX). A total of 448,963 high-quality reads with an average read length of 391 bp were produced, providing about 32-fold coverage of the genome. Assembly was performed using the Newbler software of the 454 suite package (454 Life Sciences), which resulted in 193 large (defined as >500 bp) contigs. The relationship of contigs was determined by multiplex PCR, and gaps were filled through sequencing of PCR products by primer walking or shotgun sequencing with an ABI 3730 sequencer. The Phred/Phrap/Consed software package (3) was used for final sequence assembly and quality assessment. Protein-coding genes were predicted by combining the results of Glimmer 3.02 (1) and ZCURVE (4), followed by manual inspection. Both tRNA and rRNA genes were identified by tRNAscan-SE (11) and RNAmmer (6), respectively. Functional annotation was performed by searching against a protein database of the microbial genome developed in house.The 5.64-Mb genome of B. thuringiensis mutant strain BMB171 contains two replicons: a circular chromosome (5.33 Mb) encoding 5,088 open reading frames (ORFs) and a circular plasmid (0.31 Mb), which is named pBMB171, encoding 276 predicted ORFs. The G+C content of the chromosome is 35.3%, while that of the plasmid is 33.3%. The mutant strain BMB171 genome encodes 104 tRNAs and 14 rRNA operons. A previous study indicated that BMB171 is a plasmid-free mutant (9); however, our sequencing results demonstrated that a large plasmid still remains. The reason why the plasmid was not detected previously might be its large size and low copy number. We did not find any crystal protein genes in either chromosome or plasmid sequences, which was consistent with previous observations (9).In summary, the complete B. thuringiensis mutant strain BMB171 genome provides a better-defined genetic background for gene expression and regulation studies, especially crystal protein production and metabolic network construction.  相似文献   

16.
《Process Biochemistry》2007,42(1):52-56
A improved pH-control fed-batch strategy for Bacillus thuringiensis subsp. darmstadiensis 032 producing thuringiensin was developed based on the analysis of the batch culture, constant rate fed-batch cultures and the original pH-control fed-batch. Having considered the pH variation and the glucose consumption status, the pH was adjusted from 6.5 to 7.0 by adding base in the late cultivation period of batch culture, and then the pH was kept at 7.0 by glucose feeding. The feeding was terminated when the pH could not be controlled by glucose feeding anymore. The proposed fed-batch strategy effectively avoided underfeeding or overfeeding, and it increased the thuringiensin yield and YP/X by 89.51% and 103.2% compared to that of the batch culture, respectively.  相似文献   

17.
The shuttle vector pHT3101 and its derivative pHT408, bearing a copy of a cryIA(a) δ-endotoxin gene, were transferred into several Bacillus thuringiensis subspecies through phage CP-54Ber-mediated transduction, with frequencies ranging from 5 × 10-8 to 2 × 10-6 transductant per CFU, depending on the strain and on the plasmid. In Cry- and Cry+ native recipients, the introduction of the cryIA(a) gene resulted in the formation of large bipyramidal crystals that were active against the insect Plutella xylostella (order Lepidoptera). In both cases, high levels of gene expression were observed. Transductants displaying a dual specificity were constructed by using as recipients the new isolates LM63 and LM79, which have larvicidal activity against insects of the order Coleoptera. It was not possible, however, to introduce pHT7911 into B. thuringiensis subsp. entomocidus, aizawai, or israelensis by transduction. However, electrotransformation was successful, and transformants expressing the toxin gene cryIIIA, carried by pHT7911, were obtained. Again, high levels of expression of the cloned gene were observed. The results indicate that CP-54Ber-mediated transduction is a useful procedure for introducing cloned crystal protein genes into various B. thuringiensis recipients and thereby creating strains with new combinations of genes. Finally it was also shown that pHT3101 is a very good expression vector for the cloned δ-endotoxin genes in the different recipients.  相似文献   

18.
19.
We have identified an operon and characterized the functions of two genes from the severe food-poisoning bacterium, Bacillus cereus subsp. cytotoxis NVH 391-98, that are involved in the synthesis of a unique UDP-sugar, UDP-2-acetamido-2-deoxyxylose (UDP-N-acetyl-xylosamine, UDP-XylNAc). UGlcNAcDH encodes a UDP-N-acetyl-glucosamine 6-dehydrogenase, converting UDP-N-acetylglucosamine (UDP-GlcNAc) to UDP-N-acetyl-glucosaminuronic acid (UDP-GlcNAcA). The second gene in the operon, UXNAcS, encodes a distinct decarboxylase not previously described in the literature, which catalyzes the formation of UDP-XylNAc from UDP-GlcNAcA in the presence of exogenous NAD+. UXNAcS is specific and cannot utilize UDP-glucuronic acid and UDP-galacturonic acid as substrates. UXNAcS is active as a dimer with catalytic efficiency of 7 mm−1 s−1. The activity of UXNAcS is completely abolished by NADH but unaffected by UDP-xylose. A real-time NMR-based assay showed unambiguously the dual enzymatic conversions of UDP-GlcNAc to UDP-GlcNAcA and subsequently to UDP-XylNAc. From the analyses of all publicly available sequenced genomes, it appears that UXNAcS is restricted to pathogenic Bacillus species, including Bacillus anthracis and Bacillus thuringiensis. The identification of UXNAcS provides insight into the formation of UDP-XylNAc. Understanding the metabolic pathways involved in the utilization of this amino-sugar may allow the development of drugs to combat and eradicate the disease.  相似文献   

20.
A 75-kilobase plasmid from Bacillus thuringiensis var. kurstaki (HD-244) was associated with the k-73 type insecticidal crystal protein production by mating into B. cereus and subsequent curing of excess plasmids. This plasmid was partially digested with endonuclease R · Sau3A and the fragments were cloned into Escherichia coli (HB101) on vector pBR322. Candidate clones were screened for plasmid vectors which contained the expected insert size (at least 3 kilobases) and then with an enzyme-linked immunosorbent assay, using antisera prepared against electrophoretically purified, solubilized insecticidal crystal protein of 130,000 daltons. Several positive clones were isolated and were analyzed for expression, toxicity, and genetic content by restriction enzyme analysis. Electrophoretic transfer blots of proteins from a candidate E. coli clone, analyzed by enzyme-linked immunosorbent assay, demonstrated a predominant cross-reacting protein of about 140,000 daltons. Ouchterlony analysis also showed a single precipitin band. Extensive bioassays with Manduca sexta larvae revealed that the E. coli clones make toxin with a specific activity (50% lethal dose per microgram of cross-reacting protein) equivalent to that of the parental B. thuringiensis strain or a B. cereus trancipient carrying the toxin-encoding, 75-kilobase plasmid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号