首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gene expression studies using postmortem human brain tissue are a common tool for studying the etiology of psychiatric disorders. Quantitative real-time PCR (qPCR) is an accurate and sensitive technique used for gene expression analysis in which the expression level is quantified by normalization to one or more reference genes. Therefore, accurate data normalization is critical for validating results obtained by qPCR. This study aimed to identify genes that may serve as reference in postmortem dorsolateral-prefrontal cortices (Brodmann’s area 46) of schizophrenics, bipolar disorder (BPD) patients, and control subjects. In the exploratory stage of the analysis, samples of four BPD patients, two schizophrenics, and two controls were quantified using the TaqMan Low Density Array endogenous control panel, containing assays for 16 commonly used reference genes. In the next stage, six of these genes (TFRC, RPLP0, ACTB, POLR2a, B2M, and GAPDH) were quantified by qPCR in 12 samples of each clinical group. Expressional stability of the genes was determined by GeNorm and NormFinder. TFRC and RPLP0 were the most stably expressed genes, whereas the commonly used 18S, POLR2a, and GAPDH were the least stable. This report stresses the importance of examining expressional stability of candidate reference genes in the specific sample collection to be analyzed.  相似文献   

2.
3.
The common marmoset (Callithrix jacchus) is considered a novel experimental animal model of non-human primates. However, due to antibody unavailability, immunological and pathological studies have not been adequately conducted in various disease models of common marmoset. Quantitative real-time PCR (qPCR) is a powerful tool to examine gene expression levels. Recent reports have shown that selection of internal reference housekeeping genes are required for accurate normalization of gene expression. To develop a reliable qPCR method in common marmoset, we used geNorm applets to evaluate the expression stability of eight candidate reference genes (GAPDH, ACTB, rRNA, B2M, UBC, HPRT, SDHA and TBP) in various tissues from laboratory common marmosets. geNorm analysis showed that GAPDH, ACTB, SDHA and TBP were generally ranked high in stability followed by UBC. In contrast, HPRT, rRNA and B2M exhibited lower expression stability than other genes in most tissues analyzed. Furthermore, by using the improved qPCR with selected reference genes, we analyzed the expression levels of CD antigens (CD3ε, CD4, CD8α and CD20) and cytokines (IL-1β, IL-2, IL-4, IL-5, IL-6, IL-10, IL-12β, IL-13, IFN-γ and TNF-α) in peripheral blood leukocytes and compared them between common marmosets and humans. The expression levels of CD4 and IL-4 were lower in common marmosets than in humans whereas those of IL-10, IL-12β and IFN-γ were higher in the common marmoset. The ratio of Th1-related gene expression level to that of Th2-related genes was inverted in common marmosets. We confirmed the inverted ratio of CD4 to CD8 in common marmosets by flow cytometric analysis. Therefore, the difference in Th1/Th2 balance between common marmosets and humans may affect host defense and/or disease susceptibility, which should be carefully considered when using common marmoset as an experimental model for biomedical research.  相似文献   

4.
To accurately evaluate gene expression levels and obtain more accurate quantitative real-time RT-PCR (qRT-PCR) data, normalization relative to reliable reference gene(s) is required. Drosophila suzukii, is an invasive fruit pest native to East Asia, and recently invaded Europe and North America, the stability of its reference genes have not been previously investigated. In this study, ten candidate reference genes (RPL18, RPS3, AK, EF-1β, TBP, NADH, HSP22, GAPDH, Actin, α-Tubulin), were evaluated for their suitability as normalization genes under different biotic (developmental stage, tissue and population), and abiotic (photoperiod, temperature) conditions. The three statistical approaches (geNorm, NormFinder and BestKeeper) and one web-based comprehensive tool (RefFinder) were used to normalize analysis of the ten candidate reference genes identified α-Tubulin, TBP and AK as the most stable candidates, while HSP22 and Actin showed the lowest expression stability. We used three most stable genes (α-Tubulin, TBP and AK) and one unstably expressed gene to analyze the expression of P-glycoprotein in abamectin-resistant and sensitive strains, and the results were similar to reference genes α-Tubulin, TBP and AK, which show good stability, while the result of HSP22 has a certain bias. The three validated reference genes can be widely used for quantification of target gene expression with qRT-PCR technology in D.suzukii.  相似文献   

5.
In light of a number of recent studies highlighting the increasing research interest in bruchids, it is crucial to validate suitable reference genes that could be used in quantitative gene expression studies. Callosobruchus maculatus is a serious pest of stored grains and field legumes in which reference genes have not been assessed and validated to date. The present study aimed to identify and validate reference genes in different developmental stages of C. maculatus shortlisted from commonly used reference genes such as VATPase, TRIP12, TBP, TF11D, ACTIN, GST, ANNEXIN, PTCD3, RPL32, and β -Tub in various insects. Dedicated algorithms like GeNorm, NormFinder, and BestKeeper were used to analyze the stability of these candidate genes, which revealed GST for third instar, ANNEXIN and PTCD3 for the fourth instar, TF11D and VATPase for male pupa, RPL32 and β-tub for female pupa, β-tub and TBP for adult male and VATPase and GST for adult females as suitable reference genes for expression studies in C. maculatus. The final comprehensive ranking using RefFinder identified GST and TBP as the best reference genes for all the developmental stages of C. maculatus. To the best of our knowledge, this is the first report which evaluates and validates stable reference genes in C. maculatus. The information of stage-specific gene expression, generated in this study will be useful for future molecular, physiological, and biochemical studies on C. maculatus and other closely related bruchids.  相似文献   

6.
In the last years, mesenchymal stem cells (MSCs) have been identified as an attractive cell population in regenerative medicine. In view of future therapeutic applications, the study of specific differentiation‐related gene expression is a pivotal prerequisite to define the most appropriate MSC source for clinical translation. In this context, it is crucial to use stable housekeeping genes (HGs) for normalization of qRT‐PCR to obtain validated and comparable results. By our knowledge, an exhaustive validation study of HGs comparing MSCs from different sources under various differentiation conditions is still missing. In this pivotal study, we compared the expression levels of 12 genes (ACTB, Β2M, EF1alpha, GAPDH, GUSB, PPIA, RPL13A, RPLP0, TBP, UBC, YWHAZ and 18S rRNA) to assess their suitability as HGs in MSCs during adipogenic, osteogenic and chondrogenic differentiation. We demonstrated that many of the most popular HGs including 18S rRNA, B2M and ACTB were inadequate for normalization, whereas TBP/YWHAZ/GUSB were frequently identified among the best performers. Moreover, we showed the dramatic effects of suboptimal HGs choice on the quantification of cell differentiation markers, thus interfering with a reliable comparison of the lineage potential properties among various MSCs. Thus, in the emerging field of regenerative medicine, the identification of the most appropriate MSC source and cell line is so crucial for the treatment of patients that being inaccurate in the first step of the stem cell characterization can bring important consequences for the patients and for the promising potential of stem cell therapy.  相似文献   

7.
8.
9.
10.
11.
12.
13.
Reference genes are critical for normalization of the gene expression level of target genes. The widely used housekeeping genes may change their expression levels at different tissue under different treatment or stress conditions. Therefore, systematical evaluation on the housekeeping genes is required for gene expression analysis. Up to date, no work was performed to evaluate the housekeeping genes in cotton under stress treatment. In this study, we chose 10 housekeeping genes to systematically assess their expression levels at two different tissues (leaves and roots) under two different abiotic stresses (salt and drought) with three different concentrations. Our results show that there is no best reference gene for all tissues at all stress conditions. The reliable reference gene should be selected based on a specific condition. For example, under salt stress, UBQ7, GAPDH and EF1A8 are better reference genes in leaves; TUA10, UBQ7, CYP1, GAPDH and EF1A8 were better in roots. Under drought stress, UBQ7, EF1A8, TUA10, and GAPDH showed less variety of expression level in leaves and roots. Thus, it is better to identify reliable reference genes first before performing any gene expression analysis. However, using a combination of housekeeping genes as reference gene may provide a new strategy for normalization of gene expression. In this study, we found that combination of four housekeeping genes worked well as reference genes under all the stress conditions.  相似文献   

14.
In dairy animals, gene expression analysis has become increasing key to understand the biological processes occurring in mammary gland development that shape future milk potential. Selecting high-stability reference genes is crucial to interpret real-time qPCR data. This study investigated the expression stability of five top-ranked candidate reference genes in the goat mammary gland through three assays comparing different experimental conditions (physiological states, sample types and experimental treatments). The expression stability of genes including β-actin, glyceraldehyde-3-phosphate dehydrogenase, 18S rRNA, cyclophilin A and ribosomal protein large P0 was analyzed. Normalization for each experimental condition expression data revealed a different reference gene. Nevertheless, in our various assays, genes encoding for ribosomal proteins, 18S rRNA and RPLP0 presented the best expression stability. This result has been confirmed using a combined analysis of stability on the three assays. All genes showed the same distribution within and among the three assays and a different distribution between Ct variability and GeNorm normalization. In addition, the application on Catenin B1 expression using an inappropriate reference gene confirmed erroneous variations in interpretation. To conclude, there is no single ideal reference gene for caprine mammary gland studies and we recommend using a panel of top-ranked reference genes, including RPLP0, at the beginning of each experiment to validate the most stable(s) gene(s).  相似文献   

15.
Oxidative stress-induced dysfunction in trabecular meshwork (TM) cells is considered a major alteration that can lead to glaucoma. Hydrogen peroxide (H2O2) is the most widely used agent for inducing oxidation in TM cells in vitro. Quantitative real-time PCR (qPCR) is an important method for studying alterations in gene expression, and suitable (i.e. invariant) reference genes must be defined to normalize expression levels. In this study, eight common reference genes, i.e. PRS18, ACTB, B2M, GAPDH, PPIA, HPRT1, YWHAZ, and TBP, were evaluated for use in studies of H2O2-induced dysfunction in TM cells. Three established algorithms, geNorm, NormFinder, and BestKeeper, were used to analyze the reference genes. ACTB expression was least affected by H2O2 treatment in TM cells, and the combination of PPIA and HPRT1 was the most suitable gene pair for normalization. GAPDH and TBP were the most unstable genes and accordingly should be avoided in experiments with TM cells. These results provide a foundation for analyses of the mechanisms underlying glaucoma, and emphasize the importance of selecting suitable reference genes for qPCR studies.  相似文献   

16.
17.
The validation of housekeeping genes (HKGs) for normalization of RNA expression in Real-Time PCR is crucial to obtain the most reliable results. There is limited information on reference genes used in the study of gene expression in milk somatic cells and the frozen whole blood of goats. Thus, the aim of this study was to propose the most stable housekeeping genes that can be used as a reference in Real-Time PCR analysis of milk somatic cells and whole blood of goats infected with caprine arthritis encephalitis virus (CAEV). Animals were divided into two groups: non-infected (N = 13) and infected with CAEV (N = 13). Biological material (milk somatic cells and whole blood) was collected 4 times during the lactation period (7, 30, 100 and 240 days post-partum). The expression levels of candidate reference genes were analyzed using geNorm and NormFinder software. The stability of candidates for reference gene expression was analyzed for CAEV-free (control) and CAEV-infected groups, and also for both groups together (combined group). The stability of expression of β-actin (ACTB), glyceraldehyde-3P-dehydrogenase (GAPDH), cyclophilin A (PPIA), RNA18S1, ubiquilin (UBQLN1) and ribosomal protein large subunit P0 (RPLP0) was determined in milk somatic cells, while ACTB, PPIA, RPLP0, succinate dehydrogenase complex subunit A (SDHA), zeta polypeptide (YWHAZ), battenin (CLN3), eukaryotic translation initiation factor 3K (EIF3K) and TATA box-binding protein (TBP) were measured in frozen whole blood of goats. PPIA and RPLP0 were considered as the most suitable internal controls as they were stably expressed in milk somatic cells regardless of disease status, according to NormFinder software. Furthermore, geNorm results indicated the expression of PPIA/RPLP0 genes as the best combination under these experimental conditions. The results of frozen whole blood analysis using NormFinder software revealed that the most stable reference gene in control, CAEV-infected and combined groups is YWHAZ, and – according to the geNorm results – the combined expression of PPM/YWHAZ genes is the best reference in the presented experiment. The usefulness in gene expression analysis of whole blood samples frozen immediately in liquid nitrogen and stored at -80 °C was also proved.  相似文献   

18.
《Journal of Asia》2020,23(2):336-344
Pagiophloeus tsushimanus is a newly and specialist wood-boring beetle of Cinnamomum camphora in China. RT-qPCR is an accurate quantitative method to quantify target genes expression, which relies on suitable reference genes for data normalization. Reference genes must to be stably expressed under specific experimental conditions. No suitable reference genes of P. tsushimanus have been reported so far. Therefore, it is necessary to identify and evaluate suitable reference genes for the study of functional genes of this pest. In this research, the expression stability of eight candidate reference genes (RPS3, 18S rRNA, GAPDH, TBP, RPL10, UBQ, GST, and RPS27A) were systematically evaluated in P. tsushimanus by five algorithms (geNorm, BestKeeper, NormFinder, delta Cq, and RefFinder) under different developmental stages, various tissues, and insects reared on different plants, and validated by the olfactory key gene odorant binding protein 33 (PtsuOBP33). The results showed that three stable reference genes combination were necessary for quantitative analysis of target gene. RPS3, RPL10, and UBQ were the optimal reference genes combination for gene expression analysis of developmental stages, while RPL10, RPS3, and 18S rRNA were recommended for different tissues, and 18S rRNA, TBP, and RPS3 were recommended for insects reared on different plants. The results indicated that suitable reference genes should be screened out for gene expression analysis under different conditions. This paper systematically analyzed and obtained suitable reference genes in P. tsushimanus for the first time, which would contribute to the functional analysis of genes and the in-depth mining of genetic resources in it.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号