首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A Vioque 《Nucleic acids research》1997,25(17):3471-3477
The RNase P RNA gene (rnpB) from 10 cyanobacteria has been characterized. These new RNAs, together with the previously available ones, provide a comprehensive data set of RNase P RNA from diverse cyanobacterial lineages. All heterocystous cyanobacteria, but none of the non-heterocystous strains analyzed, contain short tandemly repeated repetitive (STRR) sequences that increase the length of helix P12. Site-directed mutagenesis experiments indicate that the STRR sequences are not required for catalytic activity in vitro. STRR sequences seem to have recently and independently invaded the RNase P RNA genes in heterocyst-forming cyanobacteria because closely related strains contain unrelated STRR sequences. Most cyanobacteria RNase P RNAs lack the sequence GGU in the loop connecting helices P15 and P16 that has been established to interact with the 3'-end CCA in precursor tRNA substrates in other bacteria. This character is shared with plastid RNase P RNA. Helix P6 is longer than usual in most cyanobacteria as well as in plastid RNase P RNA.  相似文献   

2.
3.
4.
The human apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3F (APOBEC3F [A3F]) and A3G proteins are effective inhibitors of infection by various retroelements and share approximately 50% amino acid sequence identity. We therefore undertook comparative analyses of the protein and RNA compositions of A3F- and A3G-associated ribonucleoprotein complexes (RNPs). Like A3G, A3F is found associated with a complex array of cytoplasmic RNPs and can accumulate in RNA-rich cytoplasmic microdomains known as mRNA processing bodies or stress granules. While A3F RNPs display greater resistance to disruption by RNase digestion, the major protein difference is the absence of the Ro60 and La autoantigens. Consistent with this, A3F RNPs also lack a number of small polymerase III RNAs, including the RoRNP-associated Y RNAs, as well as 7SL RNA. Alu RNA is, however, present in A3F and A3G RNPs, and both proteins suppress Alu element retrotransposition. Thus, we define a number of subtle differences between the RNPs associated with A3F and A3G and speculate that these contribute to functional differences that have been described for these proteins.  相似文献   

5.
Characterization of the RNase P RNA of Sulfolobus acidocaldarius.   总被引:8,自引:1,他引:7       下载免费PDF全文
RNase P is the ribonucleoprotein enzyme that cleaves precursor sequences from the 5' ends of pre-tRNAs. In Bacteria, the RNA subunit is the catalytic moiety. Eucaryal and archaeal RNase P activities copurify with RNAs, which have not been shown to be catalytic. We report here the analysis of the RNase P RNA from the thermoacidophilic archaeon Sulfolobus acidocaldarius. The holoenzyme was highly purified, and extracted RNA was used to identify the RNase P RNA gene. The nucleotide sequence of the gene was determined, and a secondary structure is proposed. The RNA was not observed to be catalytic by itself, but it nevertheless is similar in sequence and structure to bacterial RNase P RNA. The marked similarity of the RNase P RNA from S. acidocaldarius and that from Haloferax volcanii, the other known archael RNase P RNA, supports the coherence of Archaea as a phylogenetic domain.  相似文献   

6.
RNase P RNA mediated cleavage: substrate recognition and catalysis   总被引:1,自引:0,他引:1  
Kirsebom LA 《Biochimie》2007,89(10):1183-1194
The universally conserved endoribonuclease P consists of one RNA subunit and, depending on its origin, a variable number of protein subunits. RNase P is involved in the processing of a large variety of substrates in the cell, the preferred substrate being tRNA precursors. Cleavage activity does not require the presence of the protein subunit(s) in vitro. This is true for both prokaryotic and eukaryotic RNase P RNA suggesting that the RNA based catalytic activity has been preserved during evolution. Progress has been made in our understanding of the contribution of residues and chemical groups both in the substrate as well as in RNase P RNA to substrate binding and catalysis. Moreover, we have access to two crystal structures of bacterial RNase P RNA but we still lack the structure of RNase P RNA in complex with its substrate and/or the protein subunit. Nevertheless, these recent advancements put us in a new position to study the way and nature of interactions between in particular RNase P RNA and its substrate. In this review I will discuss various aspects of the RNA component of RNase P with an emphasis on our current understanding of the interaction between RNase P RNA and its substrate.  相似文献   

7.
8.
9.
We have constructed a strain (CT1) that expresses RNase P conditionally with the aim to analyze the in vivo tRNA processing pathway and the biological role that RNase P plays in Synechocystis 6803. In this strain, the rnpB gene, coding for the RNA subunit of RNase P, has been placed under the control of the petJ gene promoter (P(petJ)), which is repressed by copper, cell growth, and accumulation of RNase P RNA is inhibited in CT1 after the addition of copper, indicating that the regulation by copper is maintained in the chimerical P(petJ)-rnpB gene and that RNase P is essential for growth in Synechocystis. We have analyzed several RNAs by Northern blot and primer extension in CT1. Upon addition of copper to the culture medium, precursors of the mature tRNAs are detected. Furthermore, our results indicate that there is a preferred order in the action of RNase P when it processes a dimeric tRNA precursor. The precursors detected are 3'-processed, indicating that 3' processing can occur before 5' processing by RNase P. The size of the precursors suggests that the terminal CCA sequence is already present before RNase P processing. We have also analyzed other potential RNase P substrates, such as the precursors of tmRNA and 4.5 S RNA. In both cases, accumulation of larger than mature size RNAs is observed after transferring the cells to a copper-containing medium.  相似文献   

10.
Ribonuclease mitochondrial RNA processing (RNase MRP) is a multifunctional ribonucleoprotein (RNP) complex that is involved in the maturation of various types of RNA including ribosomal RNA. RNase MRP consists of a potential catalytic RNA and several protein components, all of which are required for cell viability. We show here that the temperature-sensitive mutant of rmp1, the gene for a unique protein component of RNase MRP, accumulates the dimeric tRNA precursor, pre-tRNASer-Met. To examine whether RNase MRP mediates tRNA maturation, we purified the RNase MRP holoenzyme from the fission yeast Schizosaccharomyces pombe and found that the enzyme directly and selectively cleaves pre-tRNASer-Met, suggesting that RNase MRP participates in the maturation of specific tRNA in vivo. In addition, mass spectrometry–based ribonucleoproteomic analysis demonstrated that this RNase MRP consists of one RNA molecule and 11 protein components, including a previously unknown component Rpl701. Notably, limited nucleolysis of RNase MRP generated an active catalytic core consisting of partial mrp1 RNA fragments, which constitute “Domain 1” in the secondary structure of RNase MRP, and 8 proteins. Thus, the present study provides new insight into the structure and function of RNase MRP.  相似文献   

11.
12.
The catalytic RNA moiety of (eu)bacterial RNase P is responsible for cleavage of the 5' leader sequence from precursor tRNAs. We report the sequence, the catalytic properties, and a phylogenetic-comparative structural analysis of the RNase P RNA from Mycoplasma fermentans, at 276 nt the smallest known RNase P RNA. This RNA is noteworthy in that it lacks a stem-loop structure (helix P12) that was thought previously to be universally present in bacterial RNase P RNAs. This finding suggests that helix P12 is not required for catalytic activity in vivo. In order to test this possibility in vitro, the kinetic properties of M. fermentans RNase P RNA and a mutant Escherichia coli RNase P RNA that was engineered to lack helix P12 were determined. These RNase P RNAs are catalytically active with efficiencies (Kcat/Km) comparable to that of native E. coli RNase P RNA. These results show that helix P12 is dispensable in vivo in some organisms, and therefore is unlikely to be essential for the mechanism of RNase P action. The notion that all phylogenetically volatile structures in RNase P RNA are dispensable for the catalytic mechanism was tested. A synthetic RNA representing the phylogenetic minimum RNase P RNA was constructed by deleting all evolutionarily variable structures from the M. fermentans RNA. This simplified RNA (Micro P RNA) was catalytically active in vitro with approximately 600-fold decrease in catalytic efficiency relative to the native RNA.  相似文献   

13.
Distinct metabolic pathways can intersect in ways that allow hierarchical or reciprocal regulation. In a screen of respiration-deficient Saccharomyces cerevisiae gene deletion strains for defects in mitochondrial RNA processing, we found that lack of any enzyme in the mitochondrial fatty acid type II biosynthetic pathway (FAS II) led to inefficient 5′ processing of mitochondrial precursor tRNAs by RNase P. In particular, the precursor containing both RNase P RNA (RPM1) and tRNAPro accumulated dramatically. Subsequent Pet127-driven 5′ processing of RPM1 was blocked. The FAS II pathway defects resulted in the loss of lipoic acid attachment to subunits of three key mitochondrial enzymes, which suggests that the octanoic acid produced by the pathway is the sole precursor for lipoic acid synthesis and attachment. The protein component of yeast mitochondrial RNase P, Rpm2, is not modified by lipoic acid in the wild-type strain, and it is imported in FAS II mutant strains. Thus, a product of the FAS II pathway is required for RNase P RNA maturation, which positively affects RNase P activity. In addition, a product is required for lipoic acid production, which is needed for the activity of pyruvate dehydrogenase, which feeds acetyl-coenzyme A into the FAS II pathway. These two positive feedback cycles may provide switch-like control of mitochondrial gene expression in response to the metabolic state of the cell.  相似文献   

14.
Ribonuclease P (RNase P) is an essential endoribonuclease for which the best-characterized function is processing the 5' leader of pre-tRNAs. Compared to bacterial RNase P, which contains a single small protein subunit and a large catalytic RNA subunit, eukaryotic nuclear RNase P is more complex, containing nine proteins and an RNA subunit in Saccharomyces cerevisiae. Consistent with this, nuclear RNase P has been shown to possess unique RNA binding capabilities. To understand the unique molecular recognition of nuclear RNase P, the interaction of S. cerevisiae RNase P with single-stranded RNA was characterized. Unstructured, single-stranded RNA inhibits RNase P in a size-dependent manner, suggesting that multiple interactions are required for high affinity binding. Mixed-sequence RNAs from protein-coding regions also bind strongly to the RNase P holoenzyme. However, in contrast to poly(U) homopolymer RNA that is not cleaved, a variety of mixed-sequence RNAs have multiple preferential cleavage sites that do not correspond to identifiable consensus structures or sequences. In addition, pre-tRNA(Tyr), poly(U)(50) RNA, and mixed-sequence RNA cross-link with purified RNase P in the RNA subunit Rpr1 near the active site in "Conserved Region I," although the exact positions vary. Additional contacts between poly(U)(50) and the RNase P proteins Rpr2p and Pop4p were identified. We conclude that unstructured RNAs interact with multiple protein and RNA contacts near the RNase P RNA active site, but that cleavage depends on the nature of interaction with the active site.  相似文献   

15.
16.
RNA affinity tags would be very useful for the study of RNAs and ribonucleoproteins (RNPs) as a means for rapid detection, immobilization, and purification. To develop a new affinity tag, streptavidin-binding RNA ligands, termed "aptamers," were identified from a random RNA library using in vitro selection. Individual aptamers were classified into two groups based on common sequences, and representative members of the groups had sufficiently low dissociation constants to suggest they would be useful affinity tools. Binding of the aptamers to streptavidin was blocked by presaturation of the streptavidin with biotin, and biotin could be used to dissociate RNA/streptavidin complexes. To investigate the practicality of using the aptamer as an affinity tag, one of the higher affinity aptamers was inserted into RPR1 RNA, the large RNA subunit of RNase P. The aptamer-tagged RNase P could be specifically isolated using commercially available streptavidin-agarose and recovered in a catalytically active form when biotin was used as an eluting agent under mild conditions. The aptamer tag was also used to demonstrate that RNase P exists in a monomeric form, and is not tightly associated with RNase MRP, a closely related ribonucleoprotein enzyme. These results show that the streptavidin aptamers are potentially powerful tools for the study of RNAs or RNPs.  相似文献   

17.
18.
RNase MRP is a ribonucleoprotein endoribonuclease involved in eukaryotic pre-rRNA processing. The enzyme possesses a putatively catalytic RNA subunit, structurally related to that of RNase P. A thorough structure analysis of Saccharomyces cerevisiae MRP RNA, entailing enzymatic and chemical probing, mutagenesis and thermal melting, identifies a previously unrecognised stem that occupies a position equivalent to the P7 stem of RNase P. Inclusion of this P7-like stem confers on yeast MRP RNA a greater degree of similarity to the core RNase P RNA structure than that described previously and better delimits domain 2, the proposed specificity domain. The additional stem is created by participation of a conserved sequence element (ymCR-II) in a long-range base-pairing interaction. There is potential for this base-pairing throughout the known yeast MRP RNA sequences. Formation of a P7-like stem is not required, however, for the pre-rRNA processing or essential function of RNase MRP. Mutants that can base-pair are nonetheless detrimental to RNase MRP function, indicating that the stem will form in vivo but that only the wild-type pairing is accommodated. Although the alternative MRP RNA structure described is clearly not part of the active RNase MRP enzyme, it would be the more stable structure in the absence of protein subunits and the probability that it represents a valid intermediate species in the process of yeast RNase MRP assembly is discussed.  相似文献   

19.
In chloroplasts, the 3' untranslated regions of most mRNAs contain a stem-loop-forming inverted repeat (IR) sequence that is required for mRNA stability and correct 3'-end formation. The IR regions of several mRNAs are also known to bind chloroplast proteins, as judged from in vitro gel mobility shift and UV cross-linking assays, and these RNA-protein interactions may be involved in the regulation of chloroplast mRNA processing and/or stability. Here we describe in detail the RNA and protein components that are involved in 3' IR-containing RNA (3' IR-RNA)-protein complex formation for the spinach chloroplast petD gene, which encodes subunit IV of the cytochrome b6/f complex. We show that the complex contains 55-, 41-, and 29-kDa RNA-binding proteins (ribonucleoproteins [RNPs]). These proteins together protect a 90-nucleotide segment of RNA from RNase T1 digestion; this RNA contains the IR and downstream flanking sequences. Competition experiments using 3' IR-RNAs from the psbA or rbcL gene demonstrate that the RNPs have a strong specificity for the petD sequence. Site-directed mutagenesis was carried out to define the RNA sequence elements required for complex formation. These studies identified an 8-nucleotide AU-rich sequence downstream of the IR; mutations within this sequence had moderate to severe effects on RNA-protein complex formation. Although other similar sequences are present in the petD 3' untranslated region, only a single copy, which we have termed box II, appears to be essential for in vitro protein binding. In addition, the IR itself is necessary for optimal complex formation. These two sequence elements together with an RNP complex may direct correct 3'-end processing and/or influence the stability of petD mRNA in chloroplasts.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号