首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
New insights into innate immunity in Arabidopsis   总被引:2,自引:0,他引:2  
The term innate immunity has been described as '. . . the surveillance system that detects the presence and nature of the infection and provides the first line of host defense . . .' (Medzhitov, 2001; Nat Rev Immunol 1: 135-145). The strategy of innate immunity is based on the recognition of constitutive and conserved molecules from pathogens by specific receptors, triggering defence responses (Medzhitov and Janeway, 2002; Science 296: 298-300). It has been only within the past few years that studies of plant innate immunity, especially in Arabidopsis, have provided important insights into molecular details that define innate immunity in plants. Here we review the innate immune response in Arabidopsis, where leucine-rich repeat (LRR) cell surface receptors play central roles in monitoring the presence of pathogen (microbe) associated molecules to initiate the rapid expression of defence genes. The PAMPS also activate the expression of genes encoding a family of endogenous peptides (AtPep1 paralogues) and their receptor (PEPR1) that amplify defence signalling through a feedback loop initiated by PAMPS. The concept of innate immunity has provided a valuable framework for researchers to re-evaluate the roles of exogenous and endogenous signals that regulate the expression of plant defensive genes.  相似文献   

2.
3.
4.
5.
In angiosperms,floral transition is a key developmental transition from the vegetative to reproductive growth,and requires precise regulation to maximize the reproductive success.A complex regulatory network governs this transition through integrating flowering pathways in response to multiple exogenous and endogenous cues.Phytohormones are essential for proper plant developmental regulation and have been extensively studied for their involvement in the floral transition.Among various phytohormones,gibberellin(GA)plays a major role in affecting flowering in the model plant Arabidopsis thaliana.The GA pathway interact with other flowering genetic pathways and phytohormone signaling pathways through either DELLA proteins or mediating GA homeostasis.In this review,we summarize the recent advances in understanding the mechanisms of DELLA-mediated GA pathway in flowering time control in Arabidopsis,and discuss its possible link with other phytohormone pathways during the floral transition.  相似文献   

6.
Anthrax is the disease caused by the Gram-positive bacterium Bacillus anthracis. Two toxins secreted by B. anthracis - lethal toxin (LT) and oedema toxin (OT) - contribute significantly to virulence. Although these toxins have been studied for half a century, recent evidence indicates that LT and OT have several roles during infection not previously ascribed to them. Research on toxin-induced effects other than cytolysis of target cells has revealed that LT and OT influence cell types previously thought to be insensitive to toxin. Multiple host factors that confer sensitivity to anthrax toxin have been identified recently, and evidence indicates that the toxins probably contribute to colonisation and invasion of the host. Additionally, the toxins are now known to cause a wide spectrum of tissue and organ pathophysiologies associated with anthrax. Taken together, these new findings indicate that anthrax-toxin-associated pathogenesis is much more complex than has been traditionally recognised.  相似文献   

7.
The sequencing of the genome of Arabidopsis thaliana revealed that this plant contained numerous isoforms of thioredoxin (Trx), a protein involved in thiol-disulfide exchanges. On the basis of sequence comparison, seven putative chloroplastic Trxs have been identified, four belonging to the m-type, two belonging to the f-type, and one belonging to a new x-type. In the present work, these isoforms were produced and purified as recombinant proteins without their putative transit peptides. Their activities were tested with two known chloroplast thioredoxin targets: NADP-malate dehydrogenase and fructose-1,6-bisphosphatase and also with a chloroplastic 2-Cys peroxiredoxin. The study confirms the strict specificity of fructose-bisphosphatase for Trx f, reveals that some Trxs are unable to activate NADP-malate dehydrogenase, and shows that the new x-type is the most efficient substrate for peroxiredoxin while being inactive toward the two other targets. This suggests that this isoform might be specifically involved in resistance against oxidative stress. Three-dimensional modeling shows that one of the m-type Trxs, Trx m3, which has no activity with any of the three targets, exhibits a negatively charged surface surrounding the active site. A green fluorescent protein approach confirms the plastidial localization of these Trxs.  相似文献   

8.
New insights into nitric oxide metabolism and regulatory functions   总被引:1,自引:0,他引:1  
Nitric oxide (NO) has been intensively studied to elucidate the role of this enigmatic signaling molecule in plant development, metabolism and disease responses. Many studies using pharmacological and biochemical tools have demonstrated that NO functions in hormone responses, programmed cell death, defense gene induction and signal transduction pathways. NO originates from two sources in plants: nitrite and arginine. Recent studies using mutants and transgenic plants have confirmed these key findings and have gone further to identify (i) a new mechanism to modulate NO bioactivity involving hemoglobin, (ii) a gene involved in arginine-dependent NO synthesis, and (iii) a novel function for NO signaling in flowering. These findings continue to elucidate the expanding role of NO in plant biology.  相似文献   

9.
10.
The Arabidopsis-turnip crinkle virus (TCV) system is one of the few tractable plant-virus systems that allow simultaneous characterization of host components required for basal- and/or resistance (R) protein-mediated defenses. Another unique feature is that hypersensitive response (HR) and resistance can be studied as two distinct phenotypes in this pathosytem. The R protein HRT confers HR to TCV but requires a recessive locus rrt to confer resistance. The pathways leading to HR and resistance are mutually exclusive. HRT interacts with EDS1, which potentiates HR to TCV and is also required for resistance signaling. HRT-mediated signaling is also dependent on the EDS1-interacting proteins PAD4 and SAG101, which form binary and ternary complexes with EDS1. HRT-mediated resistance is also dependent on light and more specifically on the blue-light photoreceptors, cryptochromes (CRY) and phototropins (PHOT). Of these, CRY2 and PHOT2 are required for the stability of HRT. HRT is degraded in a proteasome-dependent manner, which correlates with its interaction with the E3 ubiquitin ligase, COP1. Together, these results suggest that components of light signaling modulate plant defense against TCV by regulating the stability of, and signaling mediated by, the R protein HRT.  相似文献   

11.
12.
13.
14.
The tumor suppressor p53 pathway, whose alterations are highly associated with all types of human cancers, plays an essential role in preventingtumor development and progression mostly through its downstream target genes. Over the last decade, a growing list of p53 microRNA (miRNA) targets has been identified as additional downstream players of this pathway. Further studies ofthese miRNAs have revealed their more complicated regulations and functions in executing and/or regulating p53 activity. Here, we review the p53 miRNA targets identified thus far, and discuss how they fine-tune p53 stress responses, mediate the crosstalk between p53 and other signaling pathways, and expand the role of p53 in other human diseases in addition to cancers.  相似文献   

15.
16.
miR398在植物逆境胁迫应答中的作用   总被引:5,自引:0,他引:5  
丁艳菲  王光钺  傅亚萍  朱诚 《遗传》2010,32(2):129-134
MicroRNA (miRNA)是一类新型的调控基因表达的小分子RNA, 它作为基因表达的负调控因子, 在转录后水平调节靶基因的表达。miRNA参与调控植物的生长发育, 并在多种非生物与生物胁迫响应中发挥重要作用。miR398是第一个被报道的受氧化胁迫负调控的miRNA。它通过负调控其靶基因Cu/Zn过氧化物歧化酶(Cu/Zn-superoxide dismutase, CSD)的表达, 在多种逆境胁迫响应中扮演重要角色, 如调节铜代谢平衡, 应答重金属、蔗糖、臭氧等非生物胁迫, 以及参与应答生物胁迫等。文章综述了miR398在多种逆境胁迫响应中重要的调节作用及miR398自身的转录调控。  相似文献   

17.
18.
19.
20.
为了解毛竹(Phyllostachys edulis)中miR398和miR408的表达情况,从毛竹叶片中分离了二者的前体序列,并用实时定量PCR技术对其表达模式进行了研究。结果表明,毛竹中miR398和miR408前体序列ped-MIR398和ped-MIR408长度分别为83 bp和92 bp,二者均能形成稳定的茎环结构,其中成熟miRNA序列(ped-miR398和ped-miR408)均位于5′端臂上。ped-miR398和ped-miR408均为组成型表达,在毛竹叶中表达量最高。强光、蔗糖和GA3处理后,叶片中ped-miR398与pedmiR408的表达量均上调;CuSO_4和ABA处理后,叶片中二者的表达量均下调;黑暗、NaCl和4℃处理后,前者表达量上调,后者表达量下调。因此,ped-miR398与ped-miR408在毛竹适应逆境胁迫过程中可能发挥着不同的调控作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号