共查询到20条相似文献,搜索用时 15 毫秒
1.
Melita Chavdarova Victoria Marini Alexandra Sisakova Hana Sedlackova Dana Vigasova Steven J. Brill Michael Lisby Lumir Krejci 《Nucleic acids research》2015,43(7):3626-3642
A variety of DNA lesions, secondary DNA structures or topological stress within the DNA template may lead to stalling of the replication fork. Recovery of such forks is essential for the maintenance of genomic stability. The structure-specific endonuclease Mus81–Mms4 has been implicated in processing DNA intermediates that arise from collapsed forks and homologous recombination. According to previous genetic studies, the Srs2 helicase may play a role in the repair of double-strand breaks and ssDNA gaps together with Mus81–Mms4. In this study, we show that the Srs2 and Mus81–Mms4 proteins physically interact in vitro and in vivo and we map the interaction domains within the Srs2 and Mus81 proteins. Further, we show that Srs2 plays a dual role in the stimulation of the Mus81–Mms4 nuclease activity on a variety of DNA substrates. First, Srs2 directly stimulates Mus81–Mms4 nuclease activity independent of its helicase activity. Second, Srs2 removes Rad51 from DNA to allow access of Mus81–Mms4 to cleave DNA. Concomitantly, Mus81–Mms4 inhibits the helicase activity of Srs2. Taken together, our data point to a coordinated role of Mus81–Mms4 and Srs2 in processing of recombination as well as replication intermediates. 相似文献
2.
3.
4.
Crossovers (COs) play a critical role in ensuring proper alignment and segregation of homologous chromosomes during meiosis. How the cell balances recombination between CO vs. noncrossover (NCO) outcomes is not completely understood. Further lacking is what constrains the extent of DNA repair such that multiple events do not arise from a single double-strand break (DSB). Here, by interpreting signatures that result from recombination genome-wide, we find that synaptonemal complex proteins promote crossing over in distinct ways. Our results suggest that Zip3 (RNF212) promotes biased cutting of the double Holliday-junction (dHJ) intermediate whereas surprisingly Msh4 does not. Moreover, detailed examination of conversion tracts in sgs1 and mms4-md mutants reveal distinct aberrant recombination events involving multiple chromatid invasions. In sgs1 mutants, these multiple invasions are generally multichromatid involving 3–4 chromatids; in mms4-md mutants the multiple invasions preferentially resolve into one or two chromatids. Our analysis suggests that Mus81/Mms4 (Eme1), rather than just being a minor resolvase for COs is crucial for both COs and NCOs in preventing chromosome entanglements by removing 3′- flaps to promote second-end capture. Together our results force a reevaluation of how key recombination enzymes collaborate to specify the outcome of meiotic DNA repair. 相似文献
5.
6.
《FEBS letters》2014,588(23):4398-4403
General anesthetics have previously been shown to bind mitochondrial VDAC. Here, using a photoactive analog of the anesthetic propofol, we determined that alkylphenol anesthetics bind to Gly56 and Val184 on rat VDAC1. By reconstituting rat VDAC into planar bilayers, we determined that propofol potentiates VDAC gating with asymmetry at the voltage polarities; in contrast, propofol does not affect the conductance of open VDAC. Additional experiments showed that propofol also does not affect gramicidin A properties that are sensitive to lipid bilayer mechanics. Together, this suggests propofol affects VDAC function through direct protein binding, likely at the lipid-exposed channel surface, and that gating can be modulated by ligand binding to the distal ends of VDAC β-strands where Gly56 and Val184 are located. 相似文献
7.
8.
《DNA Repair》2014
The checkpoint clamp Rad9–Hus1–Rad1 (9–1–1) interacts with TopBP1 via two casein kinase 2 (CK2)-phosphorylation sites, Ser-341 and Ser-387 in Rad9. While this interaction is known to be important for the activation of ATR-Chk1 pathway, how the interaction contributes to their accumulation at sites of DNA damage remains controversial. Here, we have studied the contribution of the 9–1–1/TopBP1 interaction to the assembly and activation of checkpoint proteins at damaged DNA. UV-irradiation enhanced association of Rad9 with chromatin and its localization to sites of DNA damage without a direct interaction with TopBP1. TopBP1, as well as RPA and Rad17 facilitated Rad9 recruitment to DNA damage sites. Similar to Rad9, TopBP1 also localized to sites of UV-induced DNA damage. The DNA damage-induced TopBP1 redistribution was delayed in cells expressing a TopBP1 binding-deficient Rad9 mutant. Pharmacological inhibition of ATR recapitulated the delayed accumulation of TopBP1 in the cells, suggesting that ATR activation will induce more efficient accumulation of TopBP1. Taken together, TopBP1 and Rad9 can be independently recruited to damaged DNA. Once recruited, a direct interaction of 9–1–1/TopBP1 occurs and induces ATR activation leading to further TopBP1 accumulation and amplification of the checkpoint signal. Thus, we propose a new positive feedback mechanism that is necessary for successful formation of the damage-sensing complex and DNA damage checkpoint signaling in human cells. 相似文献
9.
《Trends in plant science》2022,27(11):1144-1158
10.
Protein–protein interactions between the microbiome and host organism play an important role in shaping host health. These host-modulating proteins have therapeutic potential in treating microbiome-linked disorders such as inflammatory bowel disease and obesity. Structural analysis of interacting proteins provides highly mechanistic insight into the domains driving these interactions and the resulting influence on host cell processes. Here, we briefly review recent publication of microbiome protein structures involved in host binding interactions, the effects of these interactions on host physiology, and the need for further study to increase the ability to detect proteins with therapeutic potential. 相似文献
11.
Junjie Zhu Fatma Elzahraa Eid Lu Tong Wan Zhao Wei Wang Lenwood S. Heath Le Kang Feng Cui 《Insect Science》2021,28(4):976-986
Planthoppers are the most notorious rice pests, because they transmit various rice viruses in a persistent-propagative manner. Protein–protein interactions (PPIs) between virus and vector are crucial for virus transmission by vector insects. However, the number of known PPIs for pairs of rice viruses and planthoppers is restricted by low throughput research methods. In this study, we applied DeNovo, a virus-host sequence-based PPI predictor, to predict potential PPIs at a genome-wide scale between three planthoppers and five rice viruses. PPIs were identified at two different confidence thresholds, referred to as low and high modes. The number of PPIs for the five planthopper-virus pairs ranged from 506 to 1985 in the low mode and from 1254 to 4286 in the high mode. After eliminating the “one-too-many” redundant interacting information, the PPIs with unique planthopper proteins were reduced to 343–724 in the low mode and 758–1671 in the high mode. Homologous analysis showed that 11 sets and 31 sets of homologous planthopper proteins were shared by all planthopper-virus interactions in the two modes, indicating that they are potential conserved vector factors essential for transmission of rice viruses. Ten PPIs between small brown planthopper and rice stripe virus (RSV) were verified using glutathione-S-transferase (GST)/His-pull down or co-immunoprecipitation assay. Five of the ten PPIs were proven positive, and three of the five SBPH proteins were confirmed to interact with RSV. The predicted PPIs provide new clues for further studies of the complicated relationship between rice viruses and their vector insects. 相似文献
12.
13.
Genetic relationship between Mongolian and Norwegian horses? 总被引:3,自引:0,他引:3
Human populations of Central Asian origin have contributed genetic material to northern European populations. It is likely that migrating humans carried livestock to ensure food and ease transportation. Thus, eastern genes could also have dispersed to northern European livestock populations. Using microsatellite data, we here report that the essentially different genetic distances DA and (deltamu)2 and their corresponding phylogenetic trees show close associations between the Mongolian native horse and northern European horse breeds. The genetic distances between the northern European breeds and Standardbred/Thoroughbred, representing a southern-derived source of horses, were notably larger. We suggest that contribution of genetic material from eastern horses to northern European populations is likely to have occurred. 相似文献
14.
Floral displays of invasive plants have positive and negative impacts on native plant pollination. Invasive plants may also
decrease irradiance, which can lead to reduced pollination of native plants. The effects of shade and flowers of invasive
plant species on native plant pollination will depend on overlap in flowering phenologies. We examined the effect of the invasive
shrub Lonicera maackii on female reproductive success of the native herb Hydrophyllum macrophyllum at two sites: one with asynchronous flowering phenologies (slight overlap) and one with synchronous (complete overlap). At
each site, we measured light availability, pollinator visitation, pollen deposition, and seed set of potted H. macrophyllum in the presence and absence of L. maackii. At both sites, understory light levels were lower in plots containing L. maackii. At the asynchronous site, H. macrophyllum received fewer pollinator visits in the presence of L. maackii, suggesting shade from L. maackii reduced visitation to H. macrophyllum. Despite reduced visitation, H. macrophyllum seed set did not differ between treatments. At the synchronous site, H. macrophyllum received more pollinator visits and produced more seeds per flower in the presence of co-flowering L. maackii compared to plots in which L. maackii was absent, and conspecific pollen deposition was positively associated with seed set. Our results support the hypothesis
that co-flowering L. maackii shrubs facilitated pollination of H. macrophyllum, thereby mitigating the negative impacts of shade, leading to increased seed production. Phenological overlap appears to
influence pollinator-mediated interactions between invasive and native plants and may alter the direction of impact of L. maackii on native plant pollination. 相似文献
15.
Mutations in Aprataxin cause the neurodegenerative syndrome ataxia oculomotor apraxia type 1. Aprataxin catalyzes removal of adenosine monophosphate (AMP) from the 5′ end of a DNA strand, which results from an aborted attempt to ligate a strand break containing a damaged end. To gain insight into which DNA lesions are substrates for Aprataxin action in vivo, we deleted the Saccharomyces cerevisiae HNT3 gene, which encodes the Aprataxin homolog, in combination with known DNA repair genes. While hnt3Δ single mutants were not sensitive to DNA damaging agents, loss of HNT3 caused synergistic sensitivity to H2O2 in backgrounds that accumulate strand breaks with blocked termini, including apn1Δ apn2Δ tpp1Δ and ntg1Δ ntg2Δ ogg1Δ. Loss of HNT3 in rad27Δ cells, which are deficient in long-patch base excision repair (LP-BER), resulted in synergistic sensitivity to H2O2 and MMS, indicating that Hnt3 and LP-BER provide parallel pathways for processing 5′ AMPs. Loss of HNT3 also increased the sister chromatid exchange frequency. Surprisingly, HNT3 deletion partially rescued H2O2 sensitivity in recombination-deficient rad51Δ and rad52Δ cells, suggesting that Hnt3 promotes formation of a repair intermediate that is resolved by recombination. 相似文献
16.
The pseudohypohalous acid hypothiocyanite/hypothiocyanous acid (OSCN−/HOSCN) has been known to play an antimicrobial role in mammalian immunity for decades. It is a potent oxidant that kills bacteria but is non-toxic to human cells. Produced from thiocyanate (SCN−) and hydrogen peroxide (H2O2) in a variety of body sites by peroxidase enzymes, HOSCN has been explored as an agent of food preservation, pathogen killing, and even improved toothpaste. However, despite the well-recognized antibacterial role HOSCN plays in host–pathogen interactions, little is known about how bacteria sense and respond to this oxidant. In this work, we will summarize what is known and unknown about HOSCN in innate immunity and recent advances in understanding the responses that both pathogenic and non-pathogenic bacteria mount against this antimicrobial agent, highlighting studies done with three model organisms, Escherichia coli, Streptococcus spp., and Pseudomonas aeruginosa. 相似文献
17.
18.
19.
20.
Ontogenetic changes in the predator–prey interactions between threadsail filefish and moon jellyfish
Yuko Miyajima-Taga Reiji Masuda Ryo Morimitsu Haruto Ishii Kentaro Nakajima Yoh Yamashita 《Hydrobiologia》2016,767(1):175-184
The global climate change may lead to more extreme climate events such as severe flooding creating excessive pulse-loading of nutrients, including nitrogen (N), to freshwaters. We conducted a 3-month mesocosm study to investigate the responses of phytoplankton, zooplankton and Vallisneria spinulosa to different N loading patterns using weekly and monthly additions of in total 14 g N m?2 month?1 during the first 2 months. The monthly additions led to higher phytoplankton chlorophyll a and total phytoplankton biomass than at ambient conditions as well as lower leaf biomass and a smaller ramet number of V. spinulosa. Moreover, the biomass of cyanobacteria was higher during summer (August) in the monthly treatments than those with weekly or no additions. However, the biomass of plankton and macrophytes did not differ among the N treatments at the end of the experiment, 1 month after the termination of N addition. We conclude that by stimulating the growth of phytoplankton (cyanobacteria) and reducing the growth of submerged macrophytes, short-term extreme N loading may have significant effects on shallow nutrient-rich lakes and that the lakes may show fast recovery if they are not close to the threshold of a regime shift from a clear to a turbid state. 相似文献