首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Locking and unlocking of ribosomal motions   总被引:20,自引:0,他引:20  
Valle M  Zavialov A  Sengupta J  Rawat U  Ehrenberg M  Frank J 《Cell》2003,114(1):123-134
During the ribosomal translocation, the binding of elongation factor G (EF-G) to the pretranslocational ribosome leads to a ratchet-like rotation of the 30S subunit relative to the 50S subunit in the direction of the mRNA movement. By means of cryo-electron microscopy we observe that this rotation is accompanied by a 20 A movement of the L1 stalk of the 50S subunit, implying that this region is involved in the translocation of deacylated tRNAs from the P to the E site. These ribosomal motions can occur only when the P-site tRNA is deacylated. Prior to peptidyl-transfer to the A-site tRNA or peptide removal, the presence of the charged P-site tRNA locks the ribosome and prohibits both of these motions.  相似文献   

2.
Affinity labelling of E. coli ribosomes near the donor tRNA-binding (P) site was studied with the use of photoreactive derivatives of tRNAPhe bearing arylazidogroups on N7 atoms of guanine residues (azido-tRNA). UV-irradiation of complexes 70S ribosome.poly(U).azido- tRNA(P-site) and 70S ribosome.poly(U).azido-tRNA(P-site).Phe- tRNAPhe(A-site) resulted in covalent attachment of azido-tRNA to ribosomes, both subunits being labelled. In both cases modification extent of 30S subunit was two-fold than that of the 50S one. It was shown that when the A-site was free the azido-tRNA located in P-site labelled proteins S9, S11, S12, S13, S21 and L14, L27, L31. Azido-tRNA located in P-site when the A-site was occupied with Phe-tRNAPhe labelled proteins S11, S12, S13, S14, S19, L32/L33 and possibly L23, L25. From the comparison of the sets of proteins labelled when A-site was free or occupied a conclusion was drawn that aminoacyl-tRNA located in ribosomal A-site affects the arrangement of deacylated tRNA in P-site. Data obtained allow to propose that proteins S5, S19, S20 and L24, L33 interact with guanine residues important for the tRNA tertiary structure formation.  相似文献   

3.
The internal ribosome entry site within the intergenic region (IGR IRES) of the Dicistroviridae family mimics a tRNA to directly assemble 80 S ribosomes and initiate translation at a non-AUG codon from the ribosomal A-site. A comparison of IGR IRESs within this viral family reveals structural similarity but little sequence similarity. However, a few specific conserved elements exist, which likely have important roles in IRES function. In this study, we have generated a battery of mutations to characterize the role of a conserved loop (L1.1) region of the IGR IRES. Mutating specific nucleotides within the L1.1 region inhibited IGR IRES-mediated translation in rabbit reticulocyte lysates. By assaying different steps in IRES function, we found that the mutant L1.1 IRESs had reduced affinity for 80 S ribosomes but not 40 S subunits, indicating that the L1.1 region mediated either binding to preformed 80 S or 60 S joining. Furthermore, mutations in L1.1 altered the position of the ribosome on the mutant IRES, indicating that the tRNA-like anticodon/codon mimic within the ribosomal P-site is disrupted. Structural studies have revealed that the L1.1 region interacts with the L1 stalk of the 60 S subunit, which is similar to the interactions between the T-loop of the E-site tRNA and ribosomal protein rpL1. Our results demonstrate that the conserved L1.1 region directs multiple steps in IGR IRES-mediated translation including ribosome binding and positioning, which are functions that the E-site tRNA may normally mediate during translation.  相似文献   

4.
Naturally occurring nucleoside modifications are an intrinsic feature of transfer RNA (tRNA), and have been implicated in the efficiency, as well as accuracy-of codon recognition. The structural and functional contributions of the modified nucleosides in the yeast tRNA(Phe) anticodon domain were examined. Modified nucleosides were site-selectively incorporated, individually and in combinations, into the heptadecamer anticodon stem and loop domain, (ASL(Phe)). The stem modification, 5-methylcytidine, improved RNA thermal stability, but had a deleterious effect on ribosomal binding. In contrast, the loop modification, 1-methylguanosine, enhanced ribosome binding, but dramatically decreased thermal stability. With multiple modifications present, the global ASL stability was mostly the result of the individual contributions to the stem plus that to the loop. The effect of modification on ribosomal binding was not predictable from thermodynamic contributions or location in the stem or loop. With 4/5 modifications in the ASL, ribosomal binding was comparable to that of the unmodified ASL. Therefore, modifications of the yeast tRNA(Phe) anticodon domain may have more to do with accuracy of codon reading than with affinity of this tRNA for the ribosomal P-site. In addition, we have used the approach of site-selective incorporation of specific nucleoside modifications to identify 2'O-methylation of guanosine at wobble position 34 (Gm34) as being responsible for the characteristically enhanced chemical reactivity of C1400 in Escherichia coli 16S rRNA upon ribosomal footprinting of yeast tRNA(Phe). Thus, effective ribosome binding of tRNA(Phe) is a combination of anticodon stem stability and the correct architecture and dynamics of the anticodon loop. Correct tRNA binding to the ribosomal P-site probably includes interaction of Gm34 with 16S rRNA C1400.  相似文献   

5.
The main features of translation are similar in all organisms on this planet and one important feature of it is the way the ribosome maintain the reading frame. We have earlier characterized several bacterial mutants defective in tRNA maturation and found that some of them correct a +1 frameshift mutation; i.e. such mutants possess an error in reading frame maintenance. Based on the analysis of the frameshifting phenotype of such mutants we proposed a pivotal role of the ribosomal grip of the peptidyl-tRNA to maintain the correct reading frame. To test the model in an unbiased way we first isolated many (467) independent mutants able to correct a +1 frameshift mutation and thereafter tested whether or not their frameshifting phenotypes were consistent with the model. These 467+1 frameshift suppressor mutants had alterations in 16 different loci of which 15 induced a defective tRNA by hypo- or hypermodifications or altering its primary sequence. All these alterations of tRNAs induce a frameshift error in the P-site to correct a +1 frameshift mutation consistent with the proposed model. Modifications next to and 3′ of the anticodon (position 37), like 1-methylguanosine, are important for proper reading frame maintenance due to their interactions with components of the ribosomal P-site. Interestingly, two mutants had a defect in a locus (rpsI), which encodes ribosomal protein S9. The C-terminal of this protein contacts position 32–34 of the peptidyl-tRNA and is thus part of the P-site environment. The two rpsI mutants had a C-terminal truncated ribosomal protein S9 that destroys its interaction with the peptidyl-tRNA resulting in +1 shift in the reading frame. The isolation and characterization of the S9 mutants gave strong support of our model that the ribosomal grip of the peptidyl-tRNA is pivotal for the reading frame maintenance.  相似文献   

6.
Yeast ribosomal protein L11 is positioned at the intersubunit cleft of the large subunit central protuberance, forming an intersubunit bridge with the small subunit protein S18. Mutants were engineered in the central core region of L11 which interacts with Helix 84 of the 25S rRNA. Numerous mutants in this region conferred 60S subunit biogenesis defects. Specifically, many mutations of F96 and the A66D mutant promoted formation of halfmers as assayed by sucrose density ultracentrifugation. Halfmer formation was not due to deficiency in 60S subunit production, suggesting that the mutants affected subunit-joining. Chemical modification analyses indicated that the A66D mutant, but not the F96 mutants, promoted changes in 25S rRNA structure, suggesting at least two modalities for subunit joining defects. 25S rRNA structural changes were located both adjacent to A66D (in H84), and more distant (in H96-7). While none of the mutants significantly affected ribosome/tRNA binding constants, they did have strong effects on cellular growth at both high and low temperatures, in the presence of translational inhibitors, and promoted changes in translational fidelity. Two distinct mechanisms are proposed by which L11 mutants may affect subunit joining, and identification of the amino acids associated with each of these processes are presented. These findings may have implications for our understanding of multifaceted diseases such as Diamond–Blackfan anemia which have been linked in part with mutations in L11.  相似文献   

7.

Background

The ribosome, which acts as a platform for mRNA encoded polypeptide synthesis, is also capable of assisting in folding of polypeptide chains. The peptidyl transferase center (PTC) that catalyzes peptide bond formation resides in the domain V of the 23S rRNA of the bacterial ribosome. Proper positioning of the 3′ –CCA ends of the A- and P-site tRNAs via specific interactions with the nucleotides of the PTC are crucial for peptidyl transferase activity. This RNA domain is also the center for ribosomal chaperoning activity. The unfolded polypeptide chains interact with the specific nucleotides of the PTC and are released in a folding competent form. In vitro transcribed RNA corresponding to this domain (bDV RNA) also displays chaperoning activity.

Results

The present study explores the effects of tRNAs, antibiotics that are A- and P-site PTC substrate analogs (puromycin and blasticidin) and macrolide antibiotics (erythromycin and josamycin) on the chaperoning ability of the E. coli ribosome and bDV RNA. Our studies using mRNA programmed ribosomes show that a tRNA positioned at the P-site effectively inhibits the ribosome''s chaperoning function. We also show that the antibiotic blasticidin (that mimics the interaction between 3′–CCA end of P/P-site tRNA with the PTC) is more effective in inhibiting ribosome and bDV RNA chaperoning ability than either puromycin or the macrolide antibiotics. Mutational studies of the bDV RNA could identify the nucleotides U2585 and G2252 (both of which interact with P-site tRNA) to be important for its chaperoning ability.

Conclusion

Both protein synthesis and their proper folding are crucial for maintenance of a functional cellular proteome. The PTC of the ribosome is attributed with both these abilities. The silencing of the chaperoning ability of the ribosome in the presence of P-site bound tRNA might be a way to segregate these two important functions.  相似文献   

8.
Faithful decoding of the genetic information by the ribosome relies on kinetically driven mechanisms that promote selection of cognate substrates during elongation. Recently, we have shown that in addition to these kinetically driven mechanisms, the ribosome possesses a post peptidyl transfer quality control system that retrospectively monitors the codon–anticodon interaction in the P site, triggering substantial losses in the specificity of the A site during subsequent tRNA and RF selection when a mistake has occurred. Here, we report a detailed kinetic analysis of tRNA selection in the context of a mismatched P-site codon:anticodon interaction. We observe pleiotropic effects of a P-site mismatch on tRNA selection, such that near-cognate tRNA is processed by the ribosome almost as efficiently as cognate. In particular, after a miscoding event, near-cognate codon–anticodon complexes are stabilized on the ribosome to an extent similar to that observed for cognate ones. Moreover, the two observed forward rates of GTPase activation and accommodation are greatly accelerated (∼10-fold) for near-cognate tRNAs. Because the ensemble of effects of a mismatched P site on substrate selection were found to be different from those reported for other ribosomal perturbations and miscoding agents, we propose that the structural integrity of the mRNA–tRNA helix in the P site provides a distinct molecular switch that dictates the specificity of the A site.  相似文献   

9.
Maintenance of the correct open reading frame by the ribosome   总被引:5,自引:0,他引:5       下载免费PDF全文
During translation, a string of non-overlapping triplet codons in messenger RNA is decoded into protein. The ability of a ribosome to decode mRNA without shifting between reading frames is a strict requirement for accurate protein biosynthesis. Despite enormous progress in understanding the mechanism of transfer RNA selection, the mechanism by which the correct reading frame is maintained remains unclear. In this report, evidence is presented that supports the idea that the translational frame is controlled mainly by the stability of codon–anticodon interactions at the P site. The relative instability of such interactions may lead to dissociation of the P-site tRNA from its codon, and formation of a complex with an overlapping codon, the process known as P-site tRNA slippage. We propose that this process is central to all known cases of +1 ribosomal frameshifting, including that required for the decoding of the yeast transposable element Ty3. An earlier model for the decoding of this element proposed 'out-of-frame' binding of A-site tRNA without preceding P-site tRNA slippage.  相似文献   

10.
A 50-nucleotide coding gap divides bacteriophage T4 gene 60 into two open reading frames. In response to cis-acting stimulatory signals encrypted in the mRNA, the anticodon of the ribosome-bound peptidyl tRNA dissociates from a GGA codon at the end of the first open reading frame and pairs with a GGA codon 47 nucleotides downstream just before the second open reading frame. Mutations affecting ribosomal protein L9 or tRNA(Gly)(2), the tRNA that decodes GGA, alter the efficiency of bypassing. To understand the mechanism of ribosome slippage, this work analyzes the influence of these bypassing signals and mutant translational components on -1 frameshifting at G GGA and hopping over a stop codon immediately flanked by two GGA glycine codons (stop-hopping). Mutant variants of tRNA(Gly)(2) that impair bypassing mediate stop-hopping with unexpected landing specificities, suggesting that these variants are defective in ribosomal P-site codon-anticodon pairing. In a direct competition between -1 frameshifting and stop-hopping, the absence of L9 promotes stop-hopping at the expense of -1 frameshifting without substantially impairing the ability of mutant tRNA(Gly)(2) variants to re-pair with the mRNA by sub-optimal pairing. These observations suggest that L9 defects may stimulate ribosome slippage by enhancing mRNA movement through the ribosome rather than by inducing an extended pause in translation or by destabilizing P-site pairing.Two of the bypassing signals, a cis-acting nascent peptide encoded by the first open reading frame and a stemloop signal located in the 5' portion of the coding gap, stimulate peptidyl-tRNA slippage independently of the rest of the gene 60 context. Evidence is presented suggesting that the nascent peptide signal may stimulate bypassing by destabilizing P-site pairing.  相似文献   

11.
Escherichia coli ribosomal protein L2 interacts with fMet-tRNAMet and NacPhe-tRNAPhe in solution, protecting their 3'-ends from enzymatic degradation. At the same time L2 enhances the rate of spontaneous hydrolysis of the ester bonds between terminal riboses and amino acyl moieties of these two peptidyl-tRNA analogues. L2 has, however, only a slight effect on the rate of spontaneous deacylation of aminoacyltRNAs. We suggest that the role of L2 is in the fixation of the aminoacyl stem of tRNA to the ribosome at its P-site, and speculate that this protein is directly involved in the peptidyl transferase (PT) reaction. Peptidyl transferase Protein L2 tRNA-protein complex  相似文献   

12.
Translocation catalyzed by elongation factor G occurs after the peptidyltransferase reaction on the large ribosomal subunit. Deacylated tRNA in the P-site stimulates multiple turnover GTPase activity of EF-G. We suggest that the allosteric signal from the peptidyltransferase center that activates EF-G may involve the alteration in the conformation of elongation factor binding center of the ribosome. The latter consists of the moveable GTPase-associated center and the sarcin-ricin loop that keeps its position on the ribosome during translation elongation. The position of the GTPase-associated center was altered by mutagenesis. An insertion of additional base pair at positions C1030/G1124 was lethal and affected function of EF-G, but not that of EF-Tu. Structure probing revealed a putative allosteric signal pathway connecting the P-site with the binding site of the elongation factors. The results are consistent with the different structural requirements for EF-G and EF-Tu function, where the integrity of the path between the peptidyltransferase center and both GTPase-associated center and sarcin-ricin loop is important for EF-G binding.  相似文献   

13.
If a ribosome shifts to an alternative reading frame during translation, the information in the message is usually lost. We have selected mutants of Salmonella typhimurium with alterations in tRNAcmo5UGGPro that cause increased frameshifting when present in the ribosomal P-site. In 108 such mutants, two parts of the tRNA molecule are altered: the anticodon stem and the D-arm, including its tertiary interactions with the variable arm. Some of these alterations in tRNAcmo5UGGPro are in close proximity to ribosomal components in the P-site. The crystal structure of the 30S subunit suggests that the C-terminal end of ribosomal protein S9 contacts nucleotides 32-34 of peptidyl-tRNA. We have isolated mutants with defects in the C-terminus of S9 that induce + 1 frameshifting. Combinations of changes in tRNAcmo5UGGPro and S9 suggest that an interaction occurs between position 32 of the peptidyl-tRNA and the C-terminal end of S9. Together, our results suggest that the cause of frameshifting is an aberrant interaction between the peptidyl-tRNA and the P-site environment. We suggest that the “ribosomal grip” of the peptidyl-tRNA is pivotal for maintaining the reading frame.  相似文献   

14.
Nucleotide residues in E. coli tRNA(Phe) interacting directly with proteins in pre- and posttranslocated ribosomal complexes have been identified by UV-induced cross-linking. In the tRNA(Phe) molecule located in the Ab-site (pretranslocated complex) residues A9, G18, A26 and U59 are cross-linked with proteins S10, L27, S7 and L2, respectively. In tRNA(Phe) located in the Pt-site (posttranslocated complex) residues C17, G44, C56 and U60 are cross-linked with proteins L2, L5, L27 and S9, respectively. The same cross-links (except for G44-L5) have been found for tRNA in the Pb-site of the pretranslocated ribosomal complex. None of the tRNA(Phe) residues cross-linked with proteins in the complexes examined by us are involved in the stabilization of the secondary structure, but residues A9, G18, A26, G44 and C56 participate in stabilization of tRNA tertiary structure. Since translocation of tRNA(Phe) from Ab- to P-site is accompanied by changes of tRNA contacts with proteins L2 and L27, we postulate that this translocation is coupled with tRNA turn around the axis joining the anticodon loop with the CCA-end of the molecule. This is in agreement with the idea about the presence of a kink in mRNA between codons located in the ribosomal A- and P-sites. In all E. coli tRNAs with known primary structure positions 18 and 56, interacting with L27 protein, when tRNA is located either in A- or P-site, are invariant, whereas positions 17 and 60, interacting with proteins only when tRNA is in the P-site, are strongly conserved. In positions 9, 26 and 59 purines are the preferred residues. In most E. coli tRNAs deviations from the consensus in these three positions is strongly correlated.  相似文献   

15.
Binding of transfer RNA (tRNA) to the ribosome involves crucial tRNA-ribosomal RNA (rRNA) interactions. To better understand these interactions, U33-substituted yeast tRNA(Phe) anticodon stem and loop domains (ASLs) were used as probes of anticodon orientation on the ribosome. Orientation of the anticodon in the ribosomal P-site was assessed with a quantitative chemical footprinting method in which protection constants (Kp) quantify protection afforded to individual 16S rRNA P-site nucleosides by tRNA or synthetic ASLs. Chemical footprints of native yeast tRNA(Phe), ASL-U33, as well as ASLs containing 3-methyluridine, cytidine, or deoxyuridine at position 33 (ASL-m3U33, ASL-C33, and ASL-dU33, respectively) were compared. Yeast tRNAPhe and the ASL-U33 protected individual 16S rRNA P-site nucleosides differentially. Ribosomal binding of yeast tRNA(Phe) enhanced protection of C1400, but the ASL-U33 and U33-substituted ASLs did not. Two residues, G926 and G1338 with KpS approximately 50-60 nM, were afforded significantly greater protection by both yeast tRNA(Phe) and the ASL-U33 than other residues, such as A532, A794, C795, and A1339 (KpS approximately 100-200 nM). In contrast, protections of G926 and G1338 were greatly and differentially reduced in quantitative footprints of U33-substituted ASLs as compared with that of the ASL-U33. ASL-m3U33 and ASL-C33 protected G530, A532, A794, C795, and A1339 as well as the ASL-U33. However, protection of G926 and G1338 (KpS between 70 and 340 nM) was significantly reduced in comparison to that of the ASL-U33 (43 and 61 nM, respectively). Though protections of all P-site nucleosides by ASL-dU33 were reduced as compared to that of the ASL-U33, a proportionally greater reduction of G926 and G1338 protections was observed (KpS = 242 and 347 nM, respectively). Thus, G926 and G1338 are important to efficient P-site binding of tRNA. More importantly, when tRNA is bound in the ribosomal P-site, G926 and G1338 of 16S rRNA and the invariant U33 of tRNA are positioned close to each other.  相似文献   

16.
The neighbourhood of the dihydrouridine loop of tRNA molecule bound to E. coli ribosome has been studied by affinity labeling, using modified tRNAs carrying photoreactive azidonitrophenyl probes attached to the 3-(3-amino-3-carboxypropyl)-uridine located at position 20:1 of Lupin methionine elongator tRNA. The maximum distance between the pyrimidine ring and the azido group estimated for the two probes employed in this study is 10-11 A and 18-19 A, respectively. Cross-linking of the uncharged, modified tRNAs has been studied with poly(A, U, G) as a message, under conditions directing uncharged tRNAs preferentially to the ribosomal P-site. Modified tRNAs bind covalently to both ribosomal subunits with high yields upon irradiation of the respective non-covalent complexes. Proteins S7, L33 and L1 have been consistently found cross-linked to tRNAs modified with both probes, and S5 and L5 to tRNA modified with the longer probe. Surprisingly, an S5-tRNA cross-linking product is reproducibly found in a protein fraction prepared from the purified 50S subunit. Cross-linking to rRNAs is significant only for the longer probe and is stimulated 2-4 fold in the presence of poly(A,U,G). The cross-linking sites are located between nucleotides 1302 and 1398 in 16S rRNA and between nucleotides 2281 and 2358 in 23S rRNA.  相似文献   

17.
Two tRNA molecules at the ribosomal A- and P-sites, with a relatively small angle between the planes of the L-shaped molecules, can be arranged in two mutually exclusive orientations. In one (the 'R'-configuration), the T-loop of the A-site tRNA faces the D-loop of the P-site tRNA, whereas in the other (the 'S'-configuration) the D-loop of the A-site tRNA faces the T-loop of the P-site tRNA. A number of stereochemical arguments, based on the crystal structure of 'free' tRNA, favour the R-configuration. In the ribosome, the CCA-ends of the tRNA molecules are 'fixed' at the base of the central protuberance (the peptidyl transferase centre) of the 50S subunit, and the anticodon loops lie in the neck region (the decoding site) of the 30S subunit. The translocation step is essentially a rotational movement of the tRNA from the A- to the P-site, and there is convincing evidence that the A-site must be located nearest to the L7/L12 protuberance of the 50S subunit. The mRNA in the two codon-anticodon duplexes lies on the 'inside' of the 'elbows' of the tRNA molecules (in both the S-type and R-type configurations), and runs up between the two molecules from the A- to the P-site in the 3' to 5'-direction. These considerations have the consequence that in the S-configuration the mRNA in the codon-anticodon duplexes is directed towards the 50S subunit, whereas in the R-configuration it is directed towards the 30S subunit. The results of site-directed cross-linking experiments, in particular cross-links to mRNA at positions within or very close to the codons interacting with A- or P-site tRNA, favour the latter situation. This conclusion is in direct contradiction to other current models for the arrangement of mRNA and tRNA on the ribosome.  相似文献   

18.
We have determined the three-dimensional organization of ribosomal RNAs and proteins essential for minimal ribosome function. Comparative sequence analysis identifies regions of the ribosome that have been evolutionarily conserved, and the spatial organization of conserved domains is determined by mapping these onto structures of the 30S and 50S subunits determined by X-ray crystallography. Several functional domains of the ribosome are conserved in their three-dimensional organization in the Archaea, Bacteria, Eucaryotic nuclear, mitochondria and chloroplast ribosomes. In contrast, other regions from both subunits have shifted their position in three-dimensional space during evolution, including the L11 binding domain and the alpha-sarcin-ricin loop (SRL). We examined conserved bridge interactions between the two ribosomal subunits, giving an indication of which contacts are more significant. The tRNA contacts that are conserved were also determined, highlighting functional interactions as the tRNA moves through the ribosome during protein synthesis. To augment these studies of a large collection of comparative structural models sampled from all major branches on the phylogenetic tree, Caenorhabditis elegans mitochondrial rRNA is considered individually because it is among the smallest rRNA sequences known. The C.elegans model supports the large collection of comparative structure models while providing insight into the evolution of mitochondrial ribosomes.  相似文献   

19.
Ly CT  Altuntop ME  Wang Y 《Biochemistry》2010,49(45):9732-9738
Viomycin belongs to the tuberactinomycin family of antibiotics against tuberculosis. However, its inhibition mechanism remains elusive. Although it is clear that viomycin inhibits the ribosome intersubunit ratcheting, there are contradictory reports about whether the antibiotic viomycin stabilizes the tRNA hybrid or classical state. By using a single-molecule FRET method to directly observe the tRNA dynamics relative to ribosomal protein L27, we have found that viomycin trapped the hybrid state within certain ribosome subgroups but did not significantly suppress the tRNA dynamics. The persistent fluctuation of tRNA implied that tRNA motions were decoupled from the ribosome intersubunit ratcheting. Viomycin also promoted peptidyl-tRNA fluctuation in the posttranslocation complex, implying that, in addition to acylated P-site tRNA, the decoding center also played an important role of ribosome locking after translocation. Therefore, viomycin inhibits translocation by trapping the hybrid state in the pretranslocation complex and disturbing the stability of posttranslocation complex. Our results imply that ribosome translocation is possibly a synergistic process of multiple decoupled local dynamics.  相似文献   

20.
The sizable symmetrical region, comprising 180 ribosomal RNA nucleotides, which has been identified in and around the peptidyl transferase center (PTC) in crystal structures of eubacterial and archaeal large ribosomal subunits, indicates its universality, confirms that the ribosome is a ribozyme and evokes the suggestion that the PTC evolved by gene fusion. The symmetrical region can act as a center that coordinates amino acid polymerization by transferring intra-ribosomal signals between remote functional locations, as it connects, directly or through its extensions, the PTC, the three tRNA sites, the tunnel entrance, and the regions hosting elongation factors. Significant deviations from the overall symmetry stabilize the entire region and can be correlated with the shaping and guiding of the motion of the tRNA 3'-end from the A- into the P-site. The linkage between the elaborate PTC architecture and the spatial arrangements of the tRNA 3'-ends revealed the rotatory mechanism that integrates peptide bond formation, translocation within the PTC and nascent protein entrance into the exit tunnel. The positional catalysis exerted by the ribosome places the reactants in stereochemistry close to the intermediate state and facilitates the catalytic contribution of the P-site tRNA 2'-hydroxyl.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号