首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Many alternative splicing events are regulated by pentameric and hexameric intronic sequences that serve as binding sites for splicing regulatory factors. We hypothesized that intronic elements that regulate alternative splicing are under selective pressure for evolutionary conservation. Using a Wobble Aware Bulk Aligner genomic alignment of Caenorhabditis elegans and Caenorhabditis briggsae, we identified 147 alternatively spliced cassette exons that exhibit short regions of high nucleotide conservation in the introns flanking the alternative exon. In vivo experiments on the alternatively spliced let-2 gene confirm that these conserved regions can be important for alternative splicing regulation. Conserved intronic element sequences were collected into a dataset and the occurrence of each pentamer and hexamer motif was counted. We compared the frequency of pentamers and hexamers in the conserved intronic elements to a dataset of all C. elegans intron sequences in order to identify short intronic motifs that are more likely to be associated with alternative splicing. High-scoring motifs were examined for upstream or downstream preferences in introns surrounding alternative exons. Many of the high- scoring nematode pentamer and hexamer motifs correspond to known mammalian splicing regulatory sequences, such as (T)GCATG, indicating that the mechanism of alternative splicing regulation is well conserved in metazoans. A comparison of the analysis of the conserved intronic elements, and analysis of the entire introns flanking these same exons, reveals that focusing on intronic conservation can increase the sensitivity of detecting putative splicing regulatory motifs. This approach also identified novel sequences whose role in splicing is under investigation and has allowed us to take a step forward in defining a catalog of splicing regulatory elements for an organism. In vivo experiments confirm that one novel high-scoring sequence from our analysis, (T)CTATC, is important for alternative splicing regulation of the unc-52 gene.  相似文献   

3.
Conserved sequence elements associated with exon skipping   总被引:11,自引:3,他引:8       下载免费PDF全文
One of the major forms of alternative splicing, which generates multiple mRNA isoforms differing in the precise combinations of their exon sequences, is exon skipping. While in constitutive splicing all exons are included, in the skipped pattern(s) one or more exons are skipped. The regulation of this process is still not well understood; so far, cis- regulatory elements (such as exonic splicing enhancers) were identified in individual cases. We therefore set to investigate the possibility that exon skipping is controlled by sequences in the adjacent introns. We employed a computer analysis on 54 sequences documented as undergoing exon skipping, and identified two motifs both in the upstream and downstream introns of the skipped exons. One motif is highly enriched in pyrimidines (mostly C residues), and the other motif is highly enriched in purines (mostly G residues). The two motifs differ from the known cis-elements present at the 5′ and 3′ splice site. Interestingly, the two motifs are complementary, and their relative positional order is conserved in the flanking introns. These suggest that base pairing interactions can underlie a mechanism that involves secondary structure to regulate exon skipping. Remarkably, the two motifs are conserved in mouse orthologous genes that undergo exon skipping.  相似文献   

4.
Alternative splicing contributes to both gene regulation and protein diversity. To discover broad relationships between regulation of alternative splicing and sequence conservation, we applied a systems approach, using oligonucleotide microarrays designed to capture splicing information across the mouse genome. In a set of 22 adult tissues, we observe differential expression of RNA containing at least two alternative splice junctions for about 40% of the 6,216 alternative events we could detect. Statistical comparisons identify 171 cassette exons whose inclusion or skipping is different in brain relative to other tissues and another 28 exons whose splicing is different in muscle. A subset of these exons is associated with unusual blocks of intron sequence whose conservation in vertebrates rivals that of protein-coding exons. By focusing on sets of exons with similar regulatory patterns, we have identified new sequence motifs implicated in brain and muscle splicing regulation. Of note is a motif that is strikingly similar to the branchpoint consensus but is located downstream of the 5′ splice site of exons included in muscle. Analysis of three paralogous membrane-associated guanylate kinase genes reveals that each contains a paralogous tissue-regulated exon with a similar tissue inclusion pattern. While the intron sequences flanking these exons remain highly conserved among mammalian orthologs, the paralogous flanking intron sequences have diverged considerably, suggesting unusually complex evolution of the regulation of alternative splicing in multigene families.  相似文献   

5.
6.
The Hu RNA-binding protein family consists of four members: HuR/A, HuB, HuC and HuD. HuR expression is widespread. The other three neuron-specific Hu proteins play an important role in neuronal differentiation through modulating multiple processes of RNA metabolism. In the splicing events examined previously, Hu proteins promote skipping of the alternative exons. Here, we report the first example where Hu proteins promote inclusion of an alternative exon, exon 6 of the HuD pre-mRNA. Sequence alignment analysis indicates the presence of several conserved AU-rich sequences both upstream and downstream to this alternatively spliced exon. We generated a human HuD exon 6 mini-gene reporter construct that includes these conserved sequences. Hu protein over-expression led to significantly increased exon 6 inclusion from this reporter and endogenous HuD. Studies using truncated and mutant HuD exon 6 reporters demonstrate that two AU-rich sequences located downstream of exon 6 are important. RNAi knockdown of Hu proteins decreased exon 6 inclusion. An in vitro splicing assay indicates that Hu proteins promote HuD exon 6 inclusion directly at the level of splicing. Our studies demonstrate that Hu proteins can function as splicing enhancers and expand the functional role of Hu proteins as splicing regulators.  相似文献   

7.
Human internal exons have an average size of 147 nt, and most are <300 nt. This small size is thought to facilitate exon definition. A small number of large internal exons have been identified and shown to be alternatively spliced. We identified 1115 internal exons >1000 nt in the human genome; these were found in 5% of all protein-coding genes, and most were expressed and translated. Surprisingly, 40% of these were expressed at levels similar to the flanking exons, suggesting they were constitutively spliced. While all of the large exons had strong splice sites, the constitutively spliced large exons had a higher ratio of splicing enhancers/silencers and were more conserved across mammals than the alternatively spliced large exons. We asked if large exons contain specific sequences that promote splicing and identified 38 sequences enriched in the large exons relative to small exons. The consensus sequence is C-rich with a central invariant CA dinucleotide. Mutation of these sequences in a candidate large exon indicated that these are important for recognition of large exons by the splicing machinery. We propose that these sequences are large exon splicing enhancers (LESEs).  相似文献   

8.
Alternative splicing is a well-recognized mechanism of accelerated genome evolution. We have studied single-nucleotide polymorphisms and human-chimpanzee divergence in the exons of 6672 alternatively spliced human genes, with the aim of understanding the forces driving the evolution of alternatively spliced sequences. Here, we show that alternatively spliced exons and exon fragments (alternative exons) from minor isoforms experience lower selective pressure at the amino acid level, accompanied by selection against synonymous sequence variation. The results of the McDonald-Kreitman test suggest that alternatively spliced exons, unlike exons constitutively included in the mRNA, are also subject to positive selection, with up to 27% of amino acids fixed by positive selection.  相似文献   

9.
Goren A  Ram O  Amit M  Keren H  Lev-Maor G  Vig I  Pupko T  Ast G 《Molecular cell》2006,22(6):769-781
Exonic splicing regulatory sequences (ESRs) are cis-acting factor binding sites that regulate constitutive and alternative splicing. A computational method based on the conservation level of wobble positions and the overabundance of sequence motifs between 46,103 human and mouse orthologous exons was developed, identifying 285 putative ESRs. Alternatively spliced exons that are either short in length or contain weak splice sites show the highest conservation level of those ESRs, especially toward the edges of exons. ESRs that are abundant in those subgroups show a different distribution between constitutively and alternatively spliced exons. Representatives of these ESRs and two SR protein binding sites were shown, experimentally, to display variable regulatory effects on alternative splicing, depending on their relative locations in the exon. This finding signifies the delicate positional effect of ESRs on alternative splicing regulation.  相似文献   

10.
11.
12.
Splicing of fibroblast growth factor receptor 2 (FGFR2) alternative exons IIIb and IIIc is regulated by the auxiliary RNA cis-element ISE/ISS-3 that promotes splicing of exon IIIb and silencing of exon IIIc. Using RNA affinity chromatography, we have identified heterogeneous nuclear ribonucleoprotein M (hnRNP M) as a splicing regulatory factor that binds to ISE/ISS-3 in a sequence-specific manner. Overexpression of hnRNP M promoted exon IIIc skipping in a cell line that normally includes it, and association of hnRNP M with ISE/ISS-3 was shown to contribute to this splicing regulatory function. Thus hnRNP M, along with other members of the hnRNP family of RNA-binding proteins, plays a combinatorial role in regulation of FGFR2 alternative splicing. We also determined that hnRNP M can affect the splicing of several other alternatively spliced exons. This activity of hnRNP M included the ability not only to induce exon skipping but also to promote exon inclusion. This is the first report demonstrating a role for this abundant hnRNP family member in alternative splicing in mammals and suggests that this protein may broadly contribute to the fidelity of splice site recognition and alternative splicing regulation.  相似文献   

13.
14.
The vertebrate fast skeletal muscle troponin T gene, TnTf, produces a complexity of isoforms through differential mRNA splicing. The mechanisms that regulate splicing and the physiological significance of TnTf isoforms are poorly understood. To investigate these questions, we have determined the complete sequence structure of the quail TnTf gene, and we have characterized the developmental expression of alternatively spliced TnTf mRNAs in quail embryonic muscles. We report the following: 1) the quail TnTf gene is significantly larger than the rat TnTf gene and has 8 non-homologous exons, including a pectoral muscle-specific set of alternatively spliced exons; 2) specific sequences are implicated in regulated exon splicing; 3) a 900-base pair sequence element, composed primarily of intron sequence flanking the pectoral muscle-specific exons, is tandemly repeated 4 times and once partially, providing direct evidence that the pectoral-specific TnT exon domain arose by intragenic duplications; 4) a chicken repeat 1 retrotransposon element resides upstream of this repeated intronic/pectoral exon sequence domain and is implicated in transposition of this element into an ancestral genome; and 5) a large set of novel isoforms, produced by regulated exon splicing, is expressed in quail muscles, providing insights into the developmental regulation, physiological function, and evolution of the vertebrate TnTf isoforms.  相似文献   

15.
16.
17.
18.
Thousands of human genes contain introns ending in NAGNAG (N any nucleotide), where both NAGs can function as 3' splice sites, yielding isoforms that differ by inclusion/exclusion of three bases. However, few models exist for how such splicing might be regulated, and some studies have concluded that NAGNAG splicing is purely stochastic and nonfunctional. Here, we used deep RNA-Seq data from 16 human and eight mouse tissues to analyze the regulation and evolution of NAGNAG splicing. Using both biological and technical replicates to estimate false discovery rates, we estimate that at least 25% of alternatively spliced NAGNAGs undergo tissue-specific regulation in mammals, and alternative splicing of strongly tissue-specific NAGNAGs was 10 times as likely to be conserved between species as was splicing of non-tissue-specific events, implying selective maintenance. Preferential use of the distal NAG was associated with distinct sequence features, including a more distal location of the branch point and presence of a pyrimidine immediately before the first NAG, and alteration of these features in a splicing reporter shifted splicing away from the distal site. Strikingly, alignments of orthologous exons revealed a ~15-fold increase in the frequency of three base pair gaps at 3' splice sites relative to nearby exon positions in both mammals and in Drosophila. Alternative splicing of NAGNAGs in human was associated with dramatically increased frequency of exon length changes at orthologous exon boundaries in rodents, and a model involving point mutations that create, destroy, or alter NAGNAGs can explain both the increased frequency and biased codon composition of gained/lost sequence observed at the beginnings of exons. This study shows that NAGNAG alternative splicing generates widespread differences between the proteomes of mammalian tissues, and suggests that the evolutionary trajectories of mammalian proteins are strongly biased by the locations and phases of the introns that interrupt coding sequences.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号