首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although ribosomal RNAs (rRNAs) comprise the bulk of the ribosome and carry out its main functions, ribosomal proteins also appear to play important structural and functional roles. Many ribosomal proteins contain long, nonglobular domains that extend deep into the rRNA cores. In eukaryotes and Archaea, ribosomal protein L3 contains two such extended domains tethered to a common globular hub, thus providing an excellent model to address basic questions relating to ribosomal protein structure/function relationships. Previous work in our laboratory identified the central ‘W-finger’ extension of yeast L3 in helping to coordinate ribosomal functions. New studies on the ‘N-terminal’ extension in yeast suggest that it works with the W-finger to coordinate opening and closing of the corridor through which the 3′ end of aa-tRNA moves during the process of accommodation. Additionally, the effect of one of the L3 N-terminal extension mutants on the interaction between C75 of the aa-tRNA and G2921 (Escherichia coli G2553) of 25S rRNA provides the first evidence of the effect of a ribosomal protein on aa-tRNA positioning and peptidyltransfer, possibly through the induced fit model. A model is presented describing how all three domains of L3 may function together as a ‘rocker switch’ to coordinate the stepwise processes of translation elongation.  相似文献   

2.
At equilibrium, empty ribosomes freely transit between the rotated and un-rotated states. In the cell, the binding of two translation elongation factors to the same general region of the ribosome stabilizes one state over the other. These stabilized states are resolved by expenditure of energy in the form of GTP hydrolysis. A prior study employing mutants of a late assembling peripheral ribosomal protein suggested that ribosome rotational status determines its affinity for elongation factors, and hence translational fidelity and gene expression. Here, mutants of the early assembling integral ribosomal protein uL2 are used to test the generality of this hypothesis. rRNA structure probing analyses reveal that mutations in the uL2 B7b bridge region shift the equilibrium toward the rotated state, propagating rRNA structural changes to all of the functional centers of ribosome. Structural disequilibrium unbalances ribosome biochemically: rotated ribosomes favor binding of the eEF2 translocase and disfavor that of the elongation ternary complex. This manifests as specific translational fidelity defects, impacting the expression of genes involved in telomere maintenance. A model is presented describing how cyclic intersubunit rotation ensures the unidirectionality of translational elongation, and how perturbation of rotational equilibrium affects specific aspects of translational fidelity and cellular gene expression.  相似文献   

3.
Yeast ribosomal protein L10 (E. coli L16) is located at the center of a topological nexus that connects many functional regions of the large subunit. This essential protein has previously been implicated in processes as diverse as ribosome biogenesis, translational fidelity and mRNA stability. Here, the inability to maintain the yeast Killer virus was used as a proxy for large subunit defects to identify a series of L10 mutants. These mapped to roughly four discrete regions of the protein. A detailed analysis of mutants located in the N-terminal ‘hook’ of L10, which inserts into the bulge of 25S rRNA helix 89, revealed strong effects on rRNA structure corresponding to the entire path taken by the tRNA 3′ end as it moves through the large subunit during the elongation cycle. The mutant-induced structural changes are wide-ranging, affecting ribosome biogenesis, elongation factor binding, drug resistance/hypersensitivity, translational fidelity and virus maintenance. The importance of L10 as a potential transducer of information through the ribosome, and of a possible role of its N-terminal domain in switching between the pre- and post-translocational states are discussed.  相似文献   

4.
Elongation factor-dependent affinity labeling of Escherichia coli ribosomes was obtained using a functional analogue of aminoacyl-tRNA. Since elongation factor Tu (EF-Tu) screens both the modified aminoacyl-tRNAs and the ribosomal complexes for active particles, only functional macromolecular complexes are examined. This approach also provides an unequivocal identification of the transfer RNA binding site from which affinity labeling occurs. Nε-bromoacetyl-Lys-tRNA was prepared by covalently attaching an electrophilic group to the side-chain of the amino acid. This chemical modification did not interfere with function, since the ?BrAcLys-tRNA participated successfully in EF-Tu and poly(rA)-dependent binding to ribosomes, peptide bond formation, and elongation factor G (EF-G)-mediated translocation. Affinity labeling of ribosomal RNA was observed only in those incubations which contained both EF-Tu and EF-G. The crosslinking of ?BrAcLys-tRNA to 23 S rRNA was found even if fusidic acid was added to the incubation before EF-G. The dependence of the covalent reaction on EF-G demonstrates, unambiguously, that a reactive residue of 23 S rRNA is located adjacent to the 3′ end of the functionally defined P site. Similarly, the affinity labeling of proteins L13/14/15, L2, L32/33, and L24 required EF-G-dependent translocation of ?BrAcLys-tRNA into the P site. Protein L27 was alkylated following the EF-Tu-dependent binding of ?BrAcLys-tRNA to the ribosome, and the extent of affinity labeling was stimulated by the addition of EF-G to the incubation. Double-label dipeptide experiments confirmed that affinity labeling occurred from functional tRNA binding sites by demonstrating that the same ?BrAcLys-tRNA which reacted covalently with 23 S rRNA or a ribosomal protein could also participate in peptide bond formation. Finally, the ribosome affinity labeling obtained with ?BrAcLys-tRNA · EF-Tu · guanylylimidodiphosphate differed little from that obtained with ?BrAcLys-tRNA · EF-Tu · GTP. This work constitutes the first direct examination of the aminoacyl ends of the EF-Tu-dependent conformational states of the ribosomal complex, and demonstrates the potential value of functional Lys-tRNA analogues with different probes attached to the lysine side-chain.  相似文献   

5.
Ample data on structural changes that arise in the ribosome during translation have been accumulated. The most interesting information on such changes has been obtained by cryoelectron microscopy of ribosome complexes with various ligands and by rRNA site-directed mutagenesis combined with a structural analysis of the ribosome by a chemical modification technique (chemical probing). The review considers the best-known structural changes that arise in the translating ribosome upon its interactions with tRNA and the elongation factors. The changes are discussed in the context of interactions between the functional centers of the ribosome. A universal system of rRNA helices and proteins is described in detail. The system integrates the functional centers of the ribosome and allows transduction of allosteric conformational signals. Biochemical data are considered in terms of the structures and interactions of ribosomal elements, and a hypothesis is advanced that the position of the GTPase-associated center in the ribosome regulates the binding of the elongation factors.  相似文献   

6.
Initiation factors, elongation factors, and release factors all interact with the L7/L12 stalk of the large ribosomal subunit during their respective GTP-dependent cycles on the ribosome. Electron density corresponding to the stalk is not present in previous crystal structures of either 50 S subunits or 70 S ribosomes. We have now discovered conditions that result in a more ordered factor-binding center in the Haloarcula marismortui (H.ma) large ribosomal subunit crystals and consequently allows the visualization of the full-length L11, the N-terminal domain (NTD) of L10 and helices 43 and 44 of 23 S rRNA. The resulting model is currently the most complete reported structure of a L7/L12 stalk in the context of a ribosome. This region contains a series of intermolecular interfaces that are smaller than those typically seen in other ribonucleoprotein interactions within the 50 S subunit. Comparisons of the L11 NTD position between the current structure, which is has an NTD splayed out with respect to previous structures, and other structures of ribosomes in different functional states demonstrates a dynamic range of L11 NTD movements. We propose that the L11 NTD moves through three different relative positions during the translational cycle: apo-ribosome, factor-bound pre-GTP hydrolysis and post-GTP hydrolysis. These positions outline a pathway for L11 NTD movements that are dependent on the specific nucleotide state of the bound ligand. These three states are represented by the orientations of the L11 NTD relative to the ribosome and suggest that L11 may play a more specialized role in the factor binding cycle than previously appreciated.  相似文献   

7.

Background

The ribosome, which acts as a platform for mRNA encoded polypeptide synthesis, is also capable of assisting in folding of polypeptide chains. The peptidyl transferase center (PTC) that catalyzes peptide bond formation resides in the domain V of the 23S rRNA of the bacterial ribosome. Proper positioning of the 3′ –CCA ends of the A- and P-site tRNAs via specific interactions with the nucleotides of the PTC are crucial for peptidyl transferase activity. This RNA domain is also the center for ribosomal chaperoning activity. The unfolded polypeptide chains interact with the specific nucleotides of the PTC and are released in a folding competent form. In vitro transcribed RNA corresponding to this domain (bDV RNA) also displays chaperoning activity.

Results

The present study explores the effects of tRNAs, antibiotics that are A- and P-site PTC substrate analogs (puromycin and blasticidin) and macrolide antibiotics (erythromycin and josamycin) on the chaperoning ability of the E. coli ribosome and bDV RNA. Our studies using mRNA programmed ribosomes show that a tRNA positioned at the P-site effectively inhibits the ribosome''s chaperoning function. We also show that the antibiotic blasticidin (that mimics the interaction between 3′–CCA end of P/P-site tRNA with the PTC) is more effective in inhibiting ribosome and bDV RNA chaperoning ability than either puromycin or the macrolide antibiotics. Mutational studies of the bDV RNA could identify the nucleotides U2585 and G2252 (both of which interact with P-site tRNA) to be important for its chaperoning ability.

Conclusion

Both protein synthesis and their proper folding are crucial for maintenance of a functional cellular proteome. The PTC of the ribosome is attributed with both these abilities. The silencing of the chaperoning ability of the ribosome in the presence of P-site bound tRNA might be a way to segregate these two important functions.  相似文献   

8.
The possible location of RNA in the ribosomal attachment site for the eukaryotic elongation factor EF-2 was analysed. Stable EF-2 · ribosome complexes formed in the presence of the non-hydrolysable GTP analogue GuoPP[CH2]P were cross-linked with the short (4 Å between the reactive groups) bifunctional reagent, diepoxybutane. Non-cross-linked EF-2 was removed and the covalent factor-ribosome complex isolated. No interaction between EF-2 and 18 S or 28 S rRNA could be demonstrated. However, density gradient centrifugation of the cross-linked ribosomal complexes showed an increased density (1.25 g/cm3) of the factor, as expected from a covalent complex between EF-2 and a low-molecular-weight RNA species. Treatment of the covalent ribosome-factor complexes with EDTA released approx 50% of the cross-linked EF-2 from the ribosome together with the 5 S rRNA · protein L5 complex. Furthermore, the complex co-migrated with the 5S rRNA · L5 particle in sucrose gradients. Polyacrylamide gel electrophoresis showed that EF-2 was directly linked to 5 S rRNA in the 5 S rRNA · L5 complex, as well as in the complexes isolated by density gradient centrifugation. No traces of 5.8 S rRNA or tRNA could be demonstrated. The data indicate that the ribosomal binding domain for EF-2 contains the 5 S rRNA · protein L5 particle and that EF-2 is located in close proximity to 5 S rRNA within the EF-2 · GuoPP[CH2]P · ribosome complex.  相似文献   

9.
The plenty of data about structural changes in the ribosome during its functioning has been accumulated. The most interesting information on such changes was obtained by cryo-EM of various ribosomal complexes with the ligands and by combination of rRNA site-directed mutagenesis with the analysis of structural changes in ribosome by chemical modification technique (chemical probing). The most studied structural transformations of the ribosome interacting with tRNAs and elongation factors are considered in this review. The structural rearrangements are discussed in the context of interactions between the functional centers of the ribosome. We also describe the system of tertiary contacts between the rRNA helices and proteins which forms the universal structure in the ribosome. We pay attention that by means of such system the allosteric conformational signal can be transmitted between the functional centers. Besides the discussion of different biochemical data in the scope of structural data we also consider the hypothesis that the position of GTPase associated center (GAC) in the ribosome regulates the binding of elongation factors.  相似文献   

10.
BACKGROUND: In recent years, the three-dimensional structure of the ribosome has been visualised in different functional states by single-particle cryo-electron microscopy (cryo-EM) at 13-25 A resolution. Even more recently, X-ray crystallography has achieved resolution levels better than 10 A for the ribosomal structures of thermophilic and halophilic organisms. We present here the 7.5 A solution structure of the 50S large subunit of the Escherichia coli ribosome, as determined by cryo-EM and angular reconstitution. RESULTS: The reconstruction reveals a host of new details including the long alpha helix connecting the N- and C-terminal domains of the L9 protein, which is found wrapped like a collar around the base of the L1 stalk. A second L7/L12 dimer is now visible below the classical L7/L12 'stalk', thus revealing the position of the entire L8 complex. Extensive conformational changes occur in the 50S subunit upon 30S binding; for example, the L9 protein moves by some 50 A. Various rRNA stem-loops are found to be involved in subunit binding: helix h38, located in the A-site finger; h69, on the rim of the peptidyl transferase centre cleft; and h34, in the principal interface protrusion. CONCLUSIONS: Single-particle cryo-EM is rapidly evolving towards the resolution levels required for the direct atomic interpretation of the structure of the ribosome. Structural details such as the minor and major grooves in rRNA double helices and alpha helices of the ribosomal proteins can already be visualised directly in cryo-EM reconstructions of ribosomes frozen in different functional states.  相似文献   

11.
During the translocation of tRNAs and mRNA relative to the ribosome, the B1a, B1b and B1c bridges undergo the most extensive conformational changes among the bridges between the large and the small ribosomal subunits. The B1a bridge, also called the "A-site finger" (ASF), is formed by the 23S rRNA helix 38, which is located right above the ribosomal A-site. Here, we deleted part of the ASF so that the B1a intersubunit bridge could not be formed (DeltaB1a). The mutation led to a less efficient subunit association. A number of functional activities of the DeltaB1a ribosomes, such as tRNA binding to the P and A-sites, translocation and EF-G-related GTPase reaction were preserved. A moderate decrease in EF-G-related GTPase stimulation by the P-site occupation by deacylated tRNA was observed. This suggests that the B1a bridge is not involved in the most basic steps of the elongation cycle, but rather in the fine-tuning of the ribosomal activity. Chemical probing of ribosomes carrying the ASF truncation revealed structural differences in the 5S rRNA and in the 23S rRNA helices located between the peptidyltransferase center and the binding site of the elongation factors. Interestingly, reactivity changes were found in the P-loop, an important functional region of the 23S rRNA. It is likely that the A-site finger, in addition to its role in subunit association, forms part of the system of allosteric signal exchanges between the small subunit decoding center and the functional centers on the large subunit.  相似文献   

12.
The mRNA codon in the ribosomal A-site is recognized by aminoacyl-tRNA (aa-tRNA) in a ternary complex with elongation factor Tu (EF-Tu) and GTP. Here we report the 13 A resolution three-dimensional reconstruction determined by cryo-electron microscopy of the kirromycin-stalled codon-recognition complex. The structure of the ternary complex is distorted by binding of the tRNA anticodon arm in the decoding center. The aa-tRNA interacts with 16S rRNA, helix 69 of 23S rRNA and proteins S12 and L11, while the sarcin-ricin loop of 23S rRNA contacts domain 1 of EF-Tu near the nucleotide-binding pocket. These results provide a detailed snapshot view of an important functional state of the ribosome and suggest mechanisms of decoding and GTPase activation.  相似文献   

13.
The in vivo assembly of ribosomal subunits requires assistance by maturation proteins that are not part of mature ribosomes. One such protein, RbfA, associates with the 30S ribosomal subunits. Loss of RbfA causes cold sensitivity and defects of the 30S subunit biogenesis and its overexpression partially suppresses the dominant cold sensitivity caused by a C23U mutation in the central pseudoknot of 16S rRNA, a structure essential for ribosome function. We have isolated suppressor mutations that restore partially the growth of an RbfA-lacking strain. Most of the strongest suppressor mutations alter one out of three distinct positions in the carboxy-terminal domain of ribosomal protein S5 (S5) in direct contact with helix 1 and helix 2 of the central pseudoknot. Their effect is to increase the translational capacity of the RbfA-lacking strain as evidenced by an increase in polysomes in the suppressed strains. Overexpression of RimP, a protein factor that along with RbfA regulates formation of the ribosome''s central pseudoknot, was lethal to the RbfA-lacking strain but not to a wild-type strain and this lethality was suppressed by the alterations in S5. The S5 mutants alter translational fidelity but these changes do not explain consistently their effect on the RbfA-lacking strain. Our genetic results support a role for the region of S5 modified in the suppressors in the formation of the central pseudoknot in 16S rRNA.  相似文献   

14.
Fungi appear to be unique in their requirement for a third soluble translation elongation factor. This factor, designated elongation factor 3 (EF-3), exhibits ribosome-dependent ATPase and GTPase activities that are not intrinsic to the fungal ribosome but are nevertheless essential for translation elongation in vivo. The EF-3 polypeptide has been identified in a wide range of fungal species and the gene encoding EF-3 (YEF3) has been isolated from four fungal species (Saccharomyces cerevisiae, Candida albicans, Candida guillermondii, andPneumocystis carinii). Computer-assisted analysis of the predictedS. cerevisiae EF-3 amino acid sequence was used to identify several potential functional domains; two ATP binding/catalytic domains conserved with equivalent domains in members of the ATP-Binding Cassette (ABC) family of proteins, an aminoterminal region showing significant similarity to theE. coli S5 ribosomal protein, and regions of predicted interaction with rRNA, tRNA, and mRNA. Furthermore, EF-3 was also found to display amino acid similarity to myosin proteins whose cellular function is to provide the motive force of muscle. The identification of these regions provides clues to both the evolution and function of EF-3. The predicted functional regions are conserved among all known fungal EF-3 proteins and a recently described homologue encoded by the Chlorella virus CVK2. We propose that EF-3 may play a role in the ribosomal optimization of the accuracy of fungal protein synthesis by altering the conformation and activity of a ribosomal accuracy center, which is equivalent to the S4-S5-S12 ribosomal protein accuracy center domain of theE. coli ribosome. Furthermore, we suggest that EF-3 represents an evolving ribosomal protein with properties analogous to the intrinsic ATPase activities of higher eukaryotic ribosomes, which has wider implications for the evolutionary divergence of fungi from other eukaryotes. Correspondence to: M.F. Tuite  相似文献   

15.
Assembly of eukaryotic ribosome is a complicated and dynamic process that involves a series of intermediates.It is unknown how the highly intertwined structure of 60S large ribosomal subunits is established.Here,we report the structure of an early nucleolar pre-60S ribosome determined by cryo-electron microscopy at 3.7 A resolution,revealing a half-assembled subunit.DomainsⅠ,ⅡandⅣof 25S/5.8S rRNA pack tightly into a native-like substructure,but domains Ⅲ,ⅣandⅤare not assembled.The structure contains 12 assembly factors and 19 ribosomal proteins,many of which are required for early processing of large subunit rRNA.The Brx1-Ebp2 complex would interfere with the assembly of domains Ⅳ and Ⅴ.Rpf1,Mak16,Nsa1 and Rrp1 form a cluster that consolidates the joining of domainsⅠandⅡ.Our structure reveals a key intermediate on the path to establishing the global architecture of 60S subunits.  相似文献   

16.
GTPase activation of elongation factors Tu and G on the ribosome   总被引:6,自引:0,他引:6  
Mohr D  Wintermeyer W  Rodnina MV 《Biochemistry》2002,41(41):12520-12528
The GTPase activity of elongation factors Tu and G is stimulated by the ribosome. The factor binding site is located on the 50S ribosomal subunit and comprises proteins L7/12, L10, L11, the L11-binding region of 23S rRNA, and the sarcin-ricin loop of 23S rRNA. The role of these ribosomal elements in factor binding, GTPase activation, or functions in tRNA binding and translocation, and their relative contributions, is not known. By comparing ribosomes depleted of L7/12 and reconstituted ribosomes, we show that, for both factors, interactions with L7/12 and with other ribosomal residues contribute about equally and additively to GTPase activation, resulting in an overall 10(7)-fold stimulation. Removal of L7/12 has little effect on factor binding to the ribosome. Effects on other factor-dependent functions, i.e., A-site binding of aminoacyl-tRNA and translocation, are fully explained by the inhibition of GTP hydrolysis. Based on these results, we propose that L7/12 stimulates the GTPase activity of both factors by inducing the catalytically active conformation of the G domain. This effect appears to be augmented by interactions of other structural elements of the large ribosomal subunit with the switch regions of the factors.  相似文献   

17.
18.
The ribosomal protein L22 is a core protein of the large ribosomal subunit interacting with all domains of the 23S rRNA. The triplet Met82-Lys83-Arg84 deletion in L22 from Escherichia coli renders cells resistant to erythromycin which is known as an inhibitor of the nascent peptide chain elongation. The crystal structure of the Thermus thermophilus L22 mutant with equivalent triplet Leu82-Lys83-Arg84 deletion has been determined at 1.8A resolution. The superpositions of the mutant and the wild-type L22 structures within the 50S subunits from Haloarcula marismortui and Deinococcus radiodurans show that the mutant beta-hairpin is bent inward the ribosome tunnel modifying the shape of its narrowest part and affecting the interaction between L22 and 23S rRNA. 23S rRNA nucleotides of domain V participating in erythromycin binding are located on the opposite sides of the tunnel and are brought to those positions by the interaction of the 23S rRNA with the L22 beta-hairpin. The mutation in the L22 beta-hairpin affects the orientation and distances between those nucleotides. This destabilizes the erythromycin-binding "pocket" formed by 23S rRNA nucleotides exposed at the tunnel surface. It seems that erythromycin, while still being able to interact with one side of the tunnel but not reaching the other, is therefore unable to block the polypeptide growth in the drug-resistant ribosome.  相似文献   

19.
Data from polyphenylalanine [poly(Phe)] synthesis determination in the presence and in the absence of erythromycin have been used in conjunction with Molecular Dynamics Simulation analysis, in order to localize the functional sites affected by mutations of Thermus thermophilus ribosomal protein L4 incorporated in Escherichia coli ribosomes. We observed that alterations in ribosome capability to synthesize poly(Phe) in the absence of erythromycin were mainly correlated to shifts of A2062 and C2612 of 23S rRNA, while in the presence of erythromycin they were correlated to shifts of A2060 and U2584 of 23S rRNA. Our results suggest a means of understanding the role of the extended loop of L4 ribosomal protein in ribosomal peptidyltransferase center.  相似文献   

20.
We have determined the three-dimensional organization of ribosomal RNAs and proteins essential for minimal ribosome function. Comparative sequence analysis identifies regions of the ribosome that have been evolutionarily conserved, and the spatial organization of conserved domains is determined by mapping these onto structures of the 30S and 50S subunits determined by X-ray crystallography. Several functional domains of the ribosome are conserved in their three-dimensional organization in the Archaea, Bacteria, Eucaryotic nuclear, mitochondria and chloroplast ribosomes. In contrast, other regions from both subunits have shifted their position in three-dimensional space during evolution, including the L11 binding domain and the alpha-sarcin-ricin loop (SRL). We examined conserved bridge interactions between the two ribosomal subunits, giving an indication of which contacts are more significant. The tRNA contacts that are conserved were also determined, highlighting functional interactions as the tRNA moves through the ribosome during protein synthesis. To augment these studies of a large collection of comparative structural models sampled from all major branches on the phylogenetic tree, Caenorhabditis elegans mitochondrial rRNA is considered individually because it is among the smallest rRNA sequences known. The C.elegans model supports the large collection of comparative structure models while providing insight into the evolution of mitochondrial ribosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号