首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Despite much interest in amniote systematics, the origin of turtles remains elusive. Traditional morphological phylogenetic analyses place turtles outside Diapsida-amniotes whose ancestor had two fenestrae in the temporal region of the skull (among the living forms the tuatara, lizards, birds and crocodilians)-and allied with some unfenestrate-skulled (anapsid) taxa. Nonetheless, some morphological analyses place turtles within Diapsida, allied with Lepidosauria (tuatara and lizards). Most molecular studies agree that turtles are diapsids, but rather than allying them with lepidosaurs, instead place turtles near or within Archosauria (crocodilians and birds). Thus, three basic phylogenetic positions for turtles with respect to extant Diapsida are currently debated: (i) sister to Diapsida, (ii) sister to Lepidosauria, or (iii) sister to, or within, Archosauria. Interestingly, although these three alternatives are consistent with a single unrooted four-taxon tree for extant reptiles, they differ with respect to the position of the root. Here, we apply a novel molecular dataset, the presence versus absence of specific microRNAs, to the problem of the phylogenetic position of turtles and the root of the reptilian tree, and find that this dataset unambiguously supports a turtle + lepidosaur group. We find that turtles and lizards share four unique miRNA gene families that are not found in any other organisms' genome or small RNA library, and no miRNAs are found in all diapsids but not turtles, or in turtles and archosaurs but not in lizards. The concordance between our result and some morphological analyses suggests that there have been numerous morphological convergences and reversals in reptile phylogeny, including the loss of temporal fenestrae.  相似文献   

2.
Since the late eighteenth century, fossils of bizarre extinct creatures have been described from the Americas, revealing a previously unimagined chapter in the history of mammals. The most bizarre of these are the ‘native’ South American ungulates thought to represent a group of mammals that evolved in relative isolation on South America, but with an uncertain affinity to any particular placental lineage. Many authors have considered them descended from Laurasian ‘condylarths’, which also includes the probable ancestors of perissodactyls and artiodactyls, whereas others have placed them either closer to the uniquely South American xenarthrans (anteaters, armadillos and sloths) or the basal afrotherians (e.g. elephants and hyraxes). These hypotheses have been debated owing to conflicting morphological characteristics and the hitherto inability to retrieve molecular information. Of the ‘native’ South American mammals, only the toxodonts and litopterns persisted until the Late Pleistocene–Early Holocene. Owing to known difficulties in retrieving ancient DNA (aDNA) from specimens from warm climates, this research presents a molecular phylogeny for both Macrauchenia patachonica (Litopterna) and Toxodon platensis (Notoungulata) recovered using proteomics-based (liquid chromatography–tandem mass spectrometry) sequencing analyses of bone collagen. The results place both taxa in a clade that is monophyletic with the perissodactyls, which today are represented by horses, rhinoceroses and tapirs.  相似文献   

3.
Few at-sea behavioural data exist for oceanic-stage neonate sea turtles, a life-stage commonly referred to as the sea turtle ‘lost years’. Historically, the long-term tracking of small, fast-growing organisms in the open ocean was logistically or technologically impossible. Here, we provide the first long-term satellite tracks of neonate sea turtles. Loggerheads (Caretta caretta) were remotely tracked in the Atlantic Ocean using small solar-powered satellite transmitters. We show that oceanic-stage turtles (i) rarely travel in Continental Shelf waters, (ii) frequently depart the currents associated with the North Atlantic Subtropical Gyre, (iii) travel quickly when in Gyre currents, and (iv) select sea surface habitats that are likely to provide a thermal benefit or refuge to young sea turtles, supporting growth, foraging and survival. Our satellite tracks help define Atlantic loggerhead nursery grounds and early loggerhead habitat use, allowing us to re-examine sea turtle ‘lost years’ paradigms.  相似文献   

4.
5.
Molecular phylogenetic evidence indicates that the octocoral family Alcyoniidae is highly polyphyletic, with genera distributed across Octocorallia in more than 10 separate clades. Most alcyoniid taxa belong to the large and poorly resolved Holaxonia–Alcyoniina clade of octocorals, but members of at least four genera of Alcyoniidae fall outside of that group. As a first step towards revision of the family, we describe a new genus, Parasphaerasclera gen. n., and family, Parasphaerascleridae fam. n., of Alcyonacea to accommodate species of Eleutherobia Pütter, 1900 and Alcyonium Linnaeus, 1758 that have digitiform to digitate or lobate growth forms, completely lack sclerites in the polyps, and have radiates or spheroidal sclerites in the colony surface and interior. Parasphaerascleridae fam. n. constitutes a well-supported clade that is phylogenetically distinct from all other octocoral taxa. We also describe a new genus of Alcyoniidae, Sphaerasclera gen. n., for a species of Eleutherobia with a unique capitate growth form. Sphaerasclera gen. n. is a member of the Anthomastus–Corallium clade of octocorals, but is morphologically and genetically distinct from Anthomastus Verrill, 1878 and Paraminabea Williams & Alderslade, 1999, two similar but dimorphic genera of Alcyoniidae that are its sister taxa. In addition, we have re-assigned two species of Eleutherobia that have clavate to capitate growth forms, polyp sclerites arranged to form a collaret and points, and spindles in the colony interior to Alcyonium, a move that is supported by both morphological and molecular phylogenetic evidence.  相似文献   

6.
Australopithecus anamensis is the earliest known species of the Australopithecus–human clade and is the likely ancestor of Australopithecus afarensis. Investigating possible selective pressures underlying these changes is key to understanding the patterns of selection shaping the origins and early evolution of the Australopithecus–human clade. During the course of the Au. anamensis–afarensis lineage, significant changes appear to occur particularly in the anterior dentition, but also in jaw structure and molar form, suggesting selection for altered diet and/or food processing. Specifically, canine tooth crown height does not change, but maxillary canines and P3s become shorter mesiodistally, canine tooth crowns become more symmetrical in profile and P3s less unicuspid. Canine roots diminish in size and dimorphism, especially relative to the size of the postcanine teeth. Molar crowns become higher. Tooth rows become more divergent and symphyseal form changes. Dietary change involving anterior dental use is also suggested by less intense anterior tooth wear in Au. afarensis. These dental changes signal selection for altered dietary behaviour and explain some differences in craniofacial form between these taxa. These data identify Au. anamensis not just as a more primitive version of Au. afarensis, but as a dynamic member of an evolving lineage leading to Au. afarensis, and raise intriguing questions about what other evolutionary changes occurred during the early evolution of the Australopithecus–human clade, and what characterized the origins of the group.  相似文献   

7.
A novel high-light (HL)-adapted Prochlorococcus clade was discovered in high nutrient and low chlorophyll (HNLC) waters in the South Pacific Ocean by phylogenetic analyses of 16S ribosomal RNA (rRNA) and 16S–23S internal transcribed spacer (ITS) sequences. This clade, named HNLC fell within the HL-adapted Prochlorococcus clade with sequences above 99% similarity to one another, and was divided into two subclades, HNLC1 and HNLC2. The distribution of the whole HNLC clade in a northwest to southeast transect in the South Pacific (HNLC-to-gyre) and two 8°N to 8°S transects in the Equatorial Pacific was determined by quantitative PCR using specific primers targeting ITS regions. HNLC was the dominant HL Prochlorococcus clade (2–9% of bacterial 16S rRNA genes) at the three westernmost stations in the South Pacific but decreased to less than 0.1% at the other stations being replaced by the eMIT9312 ecotype in the hyperoligotrophic gyre. The highest contributions of HNLC Prochlorococcus in both Equatorial Pacific transects along the latitudinal lines of 170°W and 155°W were observed at the southernmost stations, reaching 16 and 6% of bacterial 16S rRNA genes, respectively, whereas eMIT9312 dominated near the Equator. Spearman Rank Order correlation analysis indicated that although both the HNLC clade and eMIT9312 were correlated with temperature, they showed different correlations with regard to nutrients. HNLC only showed significant correlations to ammonium uptake and regeneration rates, whereas eMIT9312 was negatively correlated with inorganic nutrients.  相似文献   

8.

Background and aims

Despite a recent new classification, a stable phylogeny for the cycads has been elusive, particularly regarding resolution of Bowenia, Stangeria and Dioon. In this study, five single-copy nuclear genes (SCNGs) are applied to the phylogeny of the order Cycadales. The specific aim is to evaluate several gene tree–species tree reconciliation approaches for developing an accurate phylogeny of the order, to contrast them with concatenated parsimony analysis and to resolve the erstwhile problematic phylogenetic position of these three genera.

Methods

DNA sequences of five SCNGs were obtained for 20 cycad species representing all ten genera of Cycadales. These were analysed with parsimony, maximum likelihood (ML) and three Bayesian methods of gene tree–species tree reconciliation, using Cycas as the outgroup. A calibrated date estimation was developed with Bayesian methods, and biogeographic analysis was also conducted.

Key Results

Concatenated parsimony, ML and three species tree inference methods resolve exactly the same tree topology with high support at most nodes. Dioon and Bowenia are the first and second branches of Cycadales after Cycas, respectively, followed by an encephalartoid clade (MacrozamiaLepidozamiaEncephalartos), which is sister to a zamioid clade, of which Ceratozamia is the first branch, and in which Stangeria is sister to Microcycas and Zamia.

Conclusions

A single, well-supported phylogenetic hypothesis of the generic relationships of the Cycadales is presented. However, massive extinction events inferred from the fossil record that eliminated broader ancestral distributions within Zamiaceae compromise accurate optimization of ancestral biogeographical areas for that hypothesis. While major lineages of Cycadales are ancient, crown ages of all modern genera are no older than 12 million years, supporting a recent hypothesis of mostly Miocene radiations. This phylogeny can contribute to an accurate infrafamilial classification of Zamiaceae.  相似文献   

9.
Highly acidic (pH 0–1) biofilms, known as ‘snottites'', form on the walls and ceilings of hydrogen sulfide-rich caves. We investigated the population structure, physiology and biogeochemistry of these biofilms using metagenomics, rRNA methods and lipid geochemistry. Snottites from the Frasassi cave system (Italy) are dominated (>70% of cells) by Acidithiobacillus thiooxidans, with smaller populations including an archaeon in the uncultivated ‘G-plasma'' clade of Thermoplasmatales (>15%) and a bacterium in the Acidimicrobiaceae family (>5%). Based on metagenomic evidence, the Acidithiobacillus population is autotrophic (ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO), carboxysomes) and oxidizes sulfur by the sulfide–quinone reductase and sox pathways. No reads matching nitrogen fixation genes were detected in the metagenome, whereas multiple matches to nitrogen assimilation functions are present, consistent with geochemical evidence, that fixed nitrogen is available in the snottite environment to support autotrophic growth. Evidence for adaptations to extreme acidity include Acidithiobacillus sequences for cation transporters and hopanoid synthesis, and direct measurements of hopanoid membrane lipids. Based on combined metagenomic, molecular and geochemical evidence, we suggest that Acidithiobacillus is the snottite architect and main primary producer, and that snottite morphology and distributions in the cave environment are directly related to the supply of C, N and energy substrates from the cave atmosphere.  相似文献   

10.
11.

Background and Aims

The subgenus Ceratotropis in the genus Vigna is widely distributed from the Himalayan highlands to South, Southeast and East Asia. However, the interspecific and geographical relationships of its members are poorly understood. This study investigates the phylogeny and biogeography of the subgenus Ceratotropis using chloroplast DNA sequence data.

Methods

Sequence data from four intergenic spacer regions (petA-psbJ, psbD-trnT, trnT-trnE and trnT-trnL) of chloroplast DNA, alone and in combination, were analysed using Bayesian and parsimony methods. Divergence times for major clades were estimated with penalized likelihood. Character evolution was examined by means of parsimony optimization and MacClade.

Key Results

Parsimony and Bayesian phylogenetic analyses on the combined data demonstrated well-resolved species relationships in which 18 Vigna species were divided into two major geographical clades: the East Asia–Southeast Asian clade and the Indian subcontinent clade. Within these two clades, three well-supported eco-geographical groups, temperate and subtropical (the East Asia–Southeast Asian clade) and tropical (the Indian subcontinent clade), are recognized. The temperate group consists of V. minima, V. nepalensis and V. angularis. The subtropical group comprises the V. nakashimaeV. riukiuensisV. minima subgroup and the V. hirtellaV. exilisV. umbellata subgroup. The tropical group contains two subgroups: the V. trinerviaV. reflexo-pilosaV. trilobata subgroup and the V. mungoV. grandiflora subgroup. An evolutionary rate analysis estimated the divergence time between the East Asia–Southeast Asia clade and the Indian subcontinent clade as 3·62 ± 0·3 million years, and that between the temperate and subtropical groups as 2·0 ± 0·2 million years.

Conclusions

The findings provide an improved understanding of the interspecific relationships, and ecological and geographical phylogenetic structure of the subgenus Ceratotropis. The quaternary diversification of the subgenus Ceratotropis implicates its geographical dispersal in the south-eastern part of Asia involving adaptation to climatic condition after the collision of the Indian subcontinent with the Asian plate. The phylogenetic results indicate that the epigeal germination is plesiomorphic, and the germination type evolved independently multiple times in this subgenus, implying its limited taxonomic utility.  相似文献   

12.
Extreme environmental events (EEEs) are likely to exert deleterious effects on populations. From 1996 to 2012 we studied the nesting dynamics of a riverine population of painted turtles (Chrysemys picta) that experienced seven years with significantly definable spring floods. We used capture–mark–recapture methods to estimate the relationships between more than 5 m and more than 6 m flood events and population parameters. Contrary to expectations, flooding was not associated with annual differences in survival, recruitment or annual population growth rates of the adult female segment of the population. These findings suggest that female C. picta exhibit resiliency to key EEE, which are expected to increase in frequency under climate change.  相似文献   

13.
Many reef-building corals form symbioses with dinoflagellates from the diverse genus Symbiodinium. There is increasing evidence of functional significance to Symbiodinium diversity, which affects the coral holobiont''s response to changing environmental conditions. For example, corals hosting Symbiodinium from the clade D taxon exhibit greater resistance to heat-induced coral bleaching than conspecifics hosting the more common clade C. Yet, the relatively low prevalence of clade D suggests that this trait is not advantageous in non-stressful environments. Thus, clade D may only be able to out-compete other Symbiodinium types within the host habitat when conditions are chronically stressful. Previous studies have observed enhanced photosynthesis and fitness by clade C holobionts at non-stressful temperatures, relative to clade D. Yet, carbon-centered metrics cannot account for enhanced growth rates and patterns of symbiont succession to other genetic types when nitrogen often limits reef productivity. To investigate the metabolic costs of hosting thermally tolerant symbionts, we examined the assimilation and translocation of inorganic 15N and 13C in the coral Acropora tenuis experimentally infected with either clade C (sub-type C1) or D Symbiodinium at 28 and 30 °C. We show that at 28 °C, C1 holobionts acquired 22% more 15N than clade D. However, at 30 °C, C1 symbionts acquired equivalent nitrogen and 16% less carbon than D. We hypothesize that C1 competitively excludes clade D in hospite via enhanced nitrogen acquisition and thus dominates coral populations despite warming oceans.  相似文献   

14.
Temperature-dependent sex determination (TSD) is widespread in reptiles, yet its adaptive significance and mechanisms for its maintenance remain obscure and controversial. Comparative analyses identify an ancient origin of TSD in turtles, crocodiles and tuatara, suggesting that this trait should be advantageous in order to persist. Based on this assumption, researchers primarily, and with minimal success, have employed a model to examine sex-specific variation in hatchling phenotypes and fitness generated by different incubation conditions. The unwavering focus on different incubation conditions may be misplaced at least in the many turtle species in which hatchlings overwinter in the natal nest. If overwintering temperatures differentially affect fitness of male and female hatchlings, TSD might be maintained adaptively by enabling embryos to develop as the sex best suited to those overwintering conditions. We test this novel hypothesis using the painted turtle (Chrysemys picta), a species with TSD in which eggs hatch in late summer and hatchlings remain within nests until the following spring. We used a split-clutch design to expose field-incubated hatchlings to warm and cool overwintering (autumn–winter–spring) regimes in the laboratory and measured metabolic rates, energy use, body size and mortality of male and female hatchlings. While overall mortality rates were low, males exposed to warmer overwintering regimes had significantly higher metabolic rates and used more residual yolk than females, whereas the reverse occurred in the cool temperature regime. Hatchlings from mixed-sex nests exhibited similar sex-specific trends and, crucially, they were less energy efficient and grew less than same-sex hatchlings that originated from single-sex clutches. Such sex- and incubation-specific physiological adaptation to winter temperatures may enhance fitness and even extend the northern range of many species that overwinter terrestrially.  相似文献   

15.
The earliest evidence of Australopithecus goes back to ca 4.2 Ma with the first recorded appearance of Australopithecus ‘anamensis’ at Kanapoi, Kenya. Australopithecus afarensis is well documented between 3.6 and 3.0 Ma mainly from deposits at Laetoli (Tanzania) and Hadar (Ethiopia). The phylogenetic relationship of these two ‘species’ is hypothesized as ancestor–descendant. However, the lack of fossil evidence from the time between 3.6 and 3.9 Ma has been one of its weakest points. Recent fieldwork in the Woranso-Mille study area in the Afar region of Ethiopia has yielded fossil hominids dated between 3.6 and 3.8 Ma. These new fossils play a significant role in testing the proposed relationship between Au. anamensis and Au. afarensis. The Woranso-Mille hominids (3.6–3.8 Ma) show a mosaic of primitive, predominantly Au. anamensis-like, and some derived (Au. afarensis-like) dentognathic features. Furthermore, they show that, as currently known, there are no discrete and functionally significant anatomical differences between Au. anamensis and Au. afarensis. Based on the currently available evidence, it appears that there is no compelling evidence to falsify the hypothesis of ‘chronospecies pair’ or ancestor–descendant relationship between Au. anamensis and Au. afarensis. Most importantly, however, the temporally and morphologically intermediate Woranso-Mille hominids indicate that the species names Au. afarensis and Au. anamensis do not refer to two real species, but rather to earlier and later representatives of a single phyletically evolving lineage. However, if retaining these two names is necessary for communication purposes, the Woranso-Mille hominids are best referred to as Au. anamensis based on new dentognathic evidence.  相似文献   

16.
During a survey of entomopathogenic nematodes (EPNs) in the eastern Black Sea region of Turkey in 2009–2012, a steinernematid species was recorded and isolated using the Galleria-baiting method. The isolate was identified as Steinernema kraussei based on its morphological and molecular properties. The analysis of the ITS rDNA sequence placed the Turkish population of S. kraussei in the “feltiae-kraussei” group in the clade that contains different isolates of the species. This is the first record of S. kraussei from Turkey. The efficacy of S. kraussei was tested on Agrotis segetum (Lepidoptera: Noctuidea) larvae at different densities (100, 300, and 500 infective juveniles (IJs) g−1 dry sand ) in laboratory conditions at 25 °C. The highest mortality (98%) was obtained with 500 IJs g−1 dry sand within 7 d after inoculation. Our results indicate that the new isolate is a highly promising biological control agent against A. segetum, one of the most serious soil pests of agricultural area and fruits worldwide.  相似文献   

17.
Most genetic studies of Holocene fauna have been performed with ancient samples from dry and cold regions, in which preservation of fossils is facilitated and molecular damage is reduced. Ancient DNA work from tropical regions has been precluded owing to factors that limit DNA preservation (e.g. temperature, hydrolytic damage). We analysed ancient DNA from rodent jawbones identified as Ototylomys phyllotis, found in Holocene and Late Pleistocene stratigraphic layers from Loltún, a humid tropical cave located in the Yucatan peninsula. We extracted DNA and amplified six short overlapping fragments of the cytochrome b gene, totalling 666 bp, which represents an unprecedented success considering tropical ancient DNA samples. We performed genetic, phylogenetic and divergence time analyses, combining sequences from ancient and modern O. phyllotis, in order to assess the ancestry of the Loltún samples. Results show that all ancient samples fall into a unique clade that diverged prior to the divergence of the modern O. phyllotis, supporting it as a distinct Pleistocene form of the Ototylomys genus. Hence, this rodent''s tale suggests that the sister group to modern O. phyllotis arose during the Miocene–Pliocene, diversified during the Pleistocene and went extinct in the Holocene.  相似文献   

18.
Blood samples from camels, sheep, goats and cattle from six Regions in Saudi Arabia were examined for blood parasites. Asir Region camels were disinfected while those of the Eastern, Jazan, Northern Frontiers, Riyadh and Tabouk Regions were infected with Trypanosoma evansi (5–40%), those of Riyadh and the Eastern Regions were infected with Dipetalonema evansi (1–6%) and those of the Eastern, Jazan and Riyadh Regions were infected with Eperythrozoon species (8–20%). Sheep and goats of all tested regions were infected with Theilaria hirci (4–20% and 6–14%, respectively), Theilaria ovis (5–19% and 6–24%, respectively) and Eperthrozoon ovis (2–9% and 2–8%, respectively). Sheep of the Eastern and Northern Frontiers Regions were also infected with Anaplasma ovis (2%) and also those of the Eastern Region were infected with Babesia motasi (4%) as well. Cattle of Asir and Eastern Regions were infected with Anaplasma marginale (1–3.4%) and those of the Eastern, Jazan and Riyadh Regions were infected with Theileria annulata (11.3–25%) and Eperthrozoon wenyoni (1–4%). Moreover, Jazan cattle were infected with Babesia bigemina (6%) and a benign Theileria species (27%). Some of these parasites are recorded in new localities indicating that they are spreading in the country. Also, this is the first report in Saudi Arabia of D. evansi in camels, A. ovis and B. motasi in sheep and A. marginale and B. bigemina in cattle. These parasites may be introduced into the country with infected livestock infested with the vectors of these parasites. The suspected vectors of the detected parasites in Saudi Arabia is discussed. Follow up surveys of blood parasites are recommended to assess their distribution and infection rates in the livestock of all Regions of Saudi Arabia, to make plans for control measures against their vectors.  相似文献   

19.
20.
Along the North American Pacific coast, the common intertidal sea anemone Anthopleura elegantissima engages in facultative, flexible symbioses with Symbiodinium muscatinei (a dinoflagellate) and Elliptochloris marina (a chlorophyte). Determining how symbiotic state affects host fitness is essential to understanding the ecological significance of engaging in such flexible relationships with diverse symbionts. Fitness consequences of hosting S. muscatinei, E. marina or negligible numbers of either symbiont (aposymbiosis) were investigated by measuring growth, cloning by fission and gonad development after 8.5–11 months of sustained exposure to high, moderate or low irradiance under seasonal environmental conditions. Both symbiotic state and irradiance affected host fitness, leading to divergent life-history strategies. Moderate and high irradiances led to a greater level of gonad development in individuals hosting E. marina, while high irradiance and high summer temperature promoted cloning in individuals hosting S. muscatinei and reduced fitness of aposymbiotic anemones. Associating with S. muscatinei may contribute to the success of A. elegantissima as a spatial competitor on the high shore: (i) by offsetting the costs of living under high temperature and irradiance conditions, and (ii) by promoting a high fission rate and clonal expansion. Our results suggest that basic life-history characteristics of a clonal cnidarian can be affected by the identity of the endosymbionts it hosts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号