首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Under global change, populations have four possible responses: ‘migrate, acclimate, adapt or die’ (Gienapp et al. 2008 Climate change and evolution: disentangling environmental and genetic response. Mol. Ecol. 17, 167–178. (doi:10.1111/j.1365-294X.2007.03413.x)). The challenge is to predict how much migration, acclimatization or adaptation populations are capable of. We have previously shown that populations from more variable environments are more plastic (Schaum et al. 2013 Variation in plastic responses of a globally distributed picoplankton species to ocean acidification. Nature 3, 298–230. (doi:10.1038/nclimate1774)), and here we use experimental evolution with a marine microbe to learn that plastic responses predict the extent of adaptation in the face of elevated partial pressure of CO2 (pCO2). Specifically, plastic populations evolve more, and plastic responses in traits other than growth can predict changes in growth in a marine microbe. The relationship between plasticity and evolution is strongest when populations evolve in fluctuating environments, which favour the evolution and maintenance of plasticity. Strikingly, plasticity predicts the extent, but not direction of phenotypic evolution. The plastic response to elevated pCO2 in green algae is to increase cell division rates, but the evolutionary response here is to decrease cell division rates over 400 generations until cells are dividing at the same rate their ancestors did in ambient CO2. Slow-growing cells have higher mitochondrial potential and withstand further environmental change better than faster growing cells. Based on this, we hypothesize that slow growth is adaptive under CO2 enrichment when associated with the production of higher quality daughter cells.  相似文献   

2.
3.
Hepatitis C virus (HCV), a member of the family Flaviviridae, is a leading cause of chronic liver disease and cancer. Recent advances in HCV therapeutics have resulted in improved cure rates, but an HCV vaccine is not available and is urgently needed to control the global pandemic. Vaccine development has been hampered by the lack of high-resolution structural information for the two HCV envelope glycoproteins, E1 and E2. Recently, Kong and coworkers (Science 342:1090–1094, 2013, doi:10.1126/science.1243876) and Khan and coworkers (Nature 509[7500]:381–384, 2014, doi:10.1038/nature13117) independently determined the structure of the HCV E2 ectodomain core with some unexpected and informative results. The HCV E2 ectodomain core features a globular architecture with antiparallel β-sheets forming a central β sandwich. The residues comprising the epitopes of several neutralizing and nonneutralizing human monoclonal antibodies were also determined, which is an essential step toward obtaining a fine map of the human humoral response to HCV. Also clarified were the regions of E2 that directly bind CD81, an important HCV cellular receptor. While it has been widely assumed that HCV E2 is a class II viral fusion protein (VFP), the newly determined structure suggests that the HCV E2 ectodomain shares structural and functional similarities only with domain III of class II VFPs. The new structural determinations suggest that the HCV glycoproteins use a different mechanism than that used by class II fusion proteins for cell fusion.  相似文献   

4.
5.
The large diversity of organisms inhabiting various environmental niches on our planet are engaged in a lively exchange of biomolecules, including nutrients, hormones, and vitamins. In a quest to survive, organisms that we define as pathogens employ innovative methods to extract valuable resources from their host leading to an infection. One such instance is where plant-associated bacterial pathogens synthesize and deploy hormones or their molecular mimics to manipulate the physiology of the host plant. This commentary describes one such specific example—the mechanism of the enzyme AldA, an aldehyde dehydrogenase (ALDH) from the bacterial plant pathogen Pseudomonas syringae which produces the plant auxin hormone indole-3-acetic acid (IAA) by oxidizing the substrate indole-3-acetaldehyde (IAAld) using the cofactor nicotinamide adenine dinucleotide (NAD+) (Bioscience Reports (2020) 40(12), https://doi.org/10.1042/BSR20202959). Using mutagenesis, enzyme kinetics, and structural analysis, Zhang et al. established that the progress of the reaction hinges on the formation of two distinct conformations of NAD(H) during the reaction course. Additionally, a key mutation in the AldA active site ‘aromatic box’ changes the enzyme’s preference for an aromatic substrate to an aliphatic one. Our commentary concludes that such molecular level investigations help to establish the nature of the dynamics of NAD(H) in ALDH-catalyzed reactions, and further show that the key active site residues control substrate specificity. We also contemplate that insights from the present study can be used to engineer novel ALDH enzymes for environmental, health, and industrial applications.  相似文献   

6.
The present paper is a commentary to ‘Identification and characterization of hADSCderived exosome proteins from different isolation methods’ (Huang et al. 2021; 10.1111/jcmm.16775). Given the enthusiasm for the potential of mesenchymal stromal cell‐derived extracellular vesicles (MSC‐EVs), some considerations deserve attention as they move through successive stages of research and application into humans. We herein remark the prerequisite of generating that evidence ensuring a high consistency in safety, composition and biological activity of the intended MSC‐EV preparations, and the suitability of disparate isolation techniques to produce efficacious EV preparations and fulfil requirements for standardized clinical‐grade biomanufacturing.  相似文献   

7.
Structural variations (SVs) play a crucial role in genetic diversity. However, the alignments of reads near/across SVs are made inaccurate by the presence of polymorphisms. BatAlign is an algorithm that integrated two strategies called ‘Reverse-Alignment’ and ‘Deep-Scan’ to improve the accuracy of read-alignment. In our experiments, BatAlign was able to obtain the highest F-measures in read-alignments on mismatch-aberrant, indel-aberrant, concordantly/discordantly paired and SV-spanning data sets. On real data, the alignments of BatAlign were able to recover 4.3% more PCR-validated SVs with 73.3% less callings. These suggest BatAlign to be effective in detecting SVs and other polymorphic-variants accurately using high-throughput data. BatAlign is publicly available at https://goo.gl/a6phxB.  相似文献   

8.
‘Key biodiversity areas'' are defined as sites contributing significantly to the global persistence of biodiversity. The identification of these sites builds from existing approaches based on measures of species and ecosystem diversity and process. Here, we therefore build from the work of Sgró et al. (2011 Evol. Appl. 4, 326–337. (doi:10.1111/j.1752-4571.2010.00157.x)) to extend a framework for how components of genetic diversity might be considered in the identification of key biodiversity areas. We make three recommendations to inform the ongoing process of consolidating a key biodiversity areas standard: (i) thresholds for the threatened species criterion currently consider a site''s share of a threatened species'' population; expand these to include the proportion of the species'' genetic diversity unique to a site; (ii) expand criterion for ‘threatened species'' to consider ‘threatened taxa’ and (iii) expand the centre of endemism criterion to identify as key biodiversity areas those sites holding a threshold proportion of the compositional or phylogenetic diversity of species (within a taxonomic group) whose restricted ranges collectively define a centre of endemism. We also recommend consideration of occurrence of EDGE species (i.e. threatened phylogenetic diversity) in key biodiversity areas to prioritize species-specific conservation actions among sites.  相似文献   

9.

Background

The suction sockets that are commonly prescribed for transtibial amputees are believed to provide a better suspension than the pin/lock systems. Nevertheless, their effect on amputees’ gait performance has not yet been fully investigated. The main intention of this study was to understand the potential effects of the Seal-in (suction) and the Dermo (pin/lock) suspension systems on amputees’ gait performance.

Methodology/Principal Findings

Ten unilateral transtibial amputees participated in this prospective study, and two prostheses were fabricated for each of them. A three-dimensional motion analysis system was used to evaluate the temporal-spatial, kinematics and kinetics variables during normal walking. We also asked the participants to complete some part of Prosthesis Evaluation Questionnaire (PEQ) regarding their satisfaction and problems with both systems. The results revealed that there was more symmetry in temporal-spatial parameters between the prosthetic and sound limbs using the suction system. However, the difference between two systems was not significant (p<0.05). Evaluation of kinetic data and the subjects’ feedback showed that the participants had more confidence using the suction socket and the sockets were more fit for walking. Nevertheless, the participants had more complaints with this system due to the difficulty in donning and doffing.

Conclusion

It can be concluded that even though the suction socket could create better suspension, fit, and gait performance, overall satisfaction was higher with the pin/lock system due to easy donning and doffing of the prosthesis.

Trial Registration

irct.ir IRCT2014012816395N1  相似文献   

10.
11.
Frateuria aurantia (ex Kondô and Ameyama 1958) Swings et al. 1980 is a member of the bispecific genus Frateuria in the family Xanthomonadaceae, which is already heavily targeted for non-type strain genome sequencing. Strain Kondô 67T was initially (1958) identified as a member of ‘Acetobacter aurantius’, a name that was not considered for the approved list. Kondô 67T was therefore later designated as the type strain of the newly proposed acetogenic species Frateuria aurantia. The strain is of interest because of its triterpenoids (hopane family). F. aurantia Kondô 67T is the first member of the genus Frateura whose genome sequence has been deciphered, and here we describe the features of this organism, together with the complete genome sequence and annotation. The 3,603,458-bp long chromosome with its 3,200 protein-coding and 88 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.  相似文献   

12.
Roseibacterium elongatum Suzuki et al. 2006 is a pink-pigmented and bacteriochlorophyll a-producing representative of the Roseobacter group within the alphaproteobacterial family Rhodobacteraceae. Representatives of the marine ‘Roseobacter group’ were found to be abundant in the ocean and play an important role in global and biogeochemical processes. In the present study we describe the features of R. elongatum strain OCh 323T together with its genome sequence and annotation. The 3,555,102 bp long genome consists of one circular chromosome with no extrachromosomal elements and is one of the smallest known Roseobacter genomes. It contains 3,540 protein-coding genes and 59 RNA genes. Genome analysis revealed the presence of a photosynthetic gene cluster, which putatively enables a photoheterotrophic lifestyle. Gene sequences associated with quorum sensing, motility, surface attachment, and thiosulfate and carbon monoxide oxidation could be detected. The genome was sequenced as part of the activities of the Transregional Collaborative Research Centre 51 (TRR51) funded by the German Research Foundation (DFG).  相似文献   

13.
DNA nanotechnology exploits the programmable specificity afforded by base-pairing to produce self-assembling macromolecular objects of custom shape. For building megadalton-scale DNA nanostructures, a long ‘scaffold’ strand can be employed to template the assembly of hundreds of oligonucleotide ‘staple’ strands into a planar antiparallel array of cross-linked helices. We recently adapted this ‘scaffolded DNA origami’ method to producing 3D shapes formed as pleated layers of double helices constrained to a honeycomb lattice. However, completing the required design steps can be cumbersome and time-consuming. Here we present caDNAno, an open-source software package with a graphical user interface that aids in the design of DNA sequences for folding 3D honeycomb-pleated shapes A series of rectangular-block motifs were designed, assembled, and analyzed to identify a well-behaved motif that could serve as a building block for future studies. The use of caDNAno significantly reduces the effort required to design 3D DNA-origami structures. The software is available at http://cadnano.org/, along with example designs and video tutorials demonstrating their construction. The source code is released under the MIT license.  相似文献   

14.
Thermotoga thermarum Windberger et al. 1989 is a member to the genomically well characterized genus Thermotoga in the phylum ‘Thermotogae’. T. thermarum is of interest for its origin from a continental solfataric spring vs. predominantly marine oil reservoirs of other members of the genus. The genome of strain LA3T also provides fresh data for the phylogenomic positioning of the (hyper-)thermophilic bacteria. T. thermarum strain LA3T is the fourth sequenced genome of a type strain from the genus Thermotoga, and the sixth in the family Thermotogaceae to be formally described in a publication. Phylogenetic analyses do not reveal significant discrepancies between the current classification of the group, 16S rRNA gene data and whole-genome sequences. Nevertheless, T. thermarum significantly differs from other Thermotoga species regarding its iron-sulfur cluster synthesis, as it contains only a minimal set of the necessary proteins. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 2,039,943 bp long chromosome with its 2,015 protein-coding and 51 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.  相似文献   

15.
《PloS one》2014,9(4)
We present a draft assembly of the genome of European pear (Pyrus communis) ‘Bartlett’. Our assembly was developed employing second generation sequencing technology (Roche 454), from single-end, 2 kb, and 7 kb insert paired-end reads using Newbler (version 2.7). It contains 142,083 scaffolds greater than 499 bases (maximum scaffold length of 1.2 Mb) and covers a total of 577.3 Mb, representing most of the expected 600 Mb Pyrus genome. A total of 829,823 putative single nucleotide polymorphisms (SNPs) were detected using re-sequencing of ‘Louise Bonne de Jersey’ and ‘Old Home’. A total of 2,279 genetically mapped SNP markers anchor 171 Mb of the assembled genome. Ab initio gene prediction combined with prediction based on homology searching detected 43,419 putative gene models. Of these, 1219 proteins (556 clusters) are unique to European pear compared to 12 other sequenced plant genomes. Analysis of the expansin gene family provided an example of the quality of the gene prediction and an insight into the relationships among one class of cell wall related genes that control fruit softening in both European pear and apple (Malus×domestica). The ‘Bartlett’ genome assembly v1.0 (http://www.rosaceae.org/species/pyrus/pyrus_communis/genome_v1.0) is an invaluable tool for identifying the genetic control of key horticultural traits in pear and will enable the wide application of marker-assisted and genomic selection that will enhance the speed and efficiency of pear cultivar development.  相似文献   

16.

Background

Freezing of gait is a common and debilitating symptom affecting many patients with advanced Parkinson’s disease. Although the pathophysiology of freezing of gait is not fully understood, a number of observations regarding the pattern of gait in patients with this symptom have been made. Increased ‘Stride Time Variability’ has been one of the most robust of these features. In this study we sought to identify whether patients with freezing of gait demonstrated similar fluctuations in their stepping rhythm whilst performing a seated virtual reality gait task that has recently been used to demonstrate the neural correlate of the freezing phenomenon.

Methods

Seventeen patients with freezing and eleven non-freezers performed the virtual reality task twice, once whilst ‘On’ their regular Parkinsonian medication and once in their practically defined ‘Off’ state.

Results

All patients displayed greater step time variability during their ‘Off’ state assessment compared to when medicated. Additionally, in the ‘Off’ state, patients with freezing of gait had greater step time variability compared to non-freezers. The five steps leading up to a freezing episode in the virtual reality environment showed a significant increase in step time variability although the final three steps preceding the freeze were not characterized by a progressive shortening of latency.

Conclusions

The results of this study suggest that characteristic features of gait disturbance observed in patients with freezing of gait can also be demonstrated with a virtual reality paradigm. These findings suggest that virtual reality may offer the potential to further explore the freezing phenomenon in Parkinson’s disease.  相似文献   

17.
18.
Recent discoveries of tetrapod trackways in 395 Myr old tidal zone deposits of Poland (Niedźwiedzki et al. 2010 Nature 463, 43–48 (doi:10.1038/nature.08623)) indicate that vertebrates had already ventured out of the water and might already have developed some air-breathing capacity by the Middle Devonian. Air-breathing in lungfishes is not considered to be a shared specialization with tetrapods, but evolved independently. Air-breathing in lungfishes has been postulated as starting in Middle Devonian times (ca 385 Ma) in freshwater habitats, based on a set of skeletal characters involved in air-breathing in extant lungfishes. New discoveries described herein of the lungfish Rhinodipterus from marine limestones of Australia identifies the node in dipnoan phylogeny where air-breathing begins, and confirms that lungfishes living in marine habitats had also developed specializations to breathe air by the start of the Late Devonian (ca 375 Ma). While invasion of freshwater habitats from the marine realm was previously suggested to be the prime cause of aerial respiration developing in lungfishes, we believe that global decline in oxygen levels during the Middle Devonian combined with higher metabolic costs is a more likely driver of air-breathing ability, which developed in both marine and freshwater lungfishes and tetrapodomorph fishes such as Gogonasus.  相似文献   

19.
20.
One of the primary aims of synthetic biology is to (re)design metabolic pathways towards the production of desired chemicals. The fast pace of developments in molecular biology increasingly makes it possible to experimentally redesign existing pathways and implement de novo ones in microbes or using in vitro platforms. For such experimental studies, the bottleneck is shifting from implementation of pathways towards their initial design. Here, we present an online tool called ‘Metabolic Tinker’, which aims to guide the design of synthetic metabolic pathways between any two desired compounds. Given two user-defined ‘target’ and ‘source’ compounds, Metabolic Tinker searches for thermodynamically feasible paths in the entire known metabolic universe using a tailored heuristic search strategy. Compared with similar graph-based search tools, Metabolic Tinker returns a larger number of possible paths owing to its broad search base and fast heuristic, and provides for the first time thermodynamic feasibility information for the discovered paths. Metabolic Tinker is available as a web service at http://osslab.ex.ac.uk/tinker.aspx. The same website also provides the source code for Metabolic Tinker, allowing it to be developed further or run on personal machines for specific applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号