首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Abscisic acid (ABA), auxin and nitrate are important signaling molecules that affect plant growth responses to the environment. The synthesis or metabolism of these compounds depends on the molybdenum cofactor (MoCo). We show that maize (Zea mays) viviparous10 (vp10) mutants have strong precocious germination and seedling lethal phenotypes that cannot be rescued with tissue culture. We devised a novel PCR-based method to clone a transposon-tagged allele of vp10, and show that Vp10 encodes the ortholog of Cnx1, which catalyzes the final common step of MoCo synthesis. The seedling phenotype of vp10 mutants is consistent with disruptions in ABA and auxin biosynthesis, as well as a disruption in nitrate metabolism. Levels of ABA and auxin are reduced in vp10 mutants, and vp10 seedlings lack MoCo-dependent enzyme activities that are repairable with exogenous molybdenum. vp10 and an Arabidopsis cnx1 mutant, chlorate6 (chl6), have similar defects in aldehyde oxidase (AO) enzyme activity, which is required for ABA synthesis. Surprisingly, chl6 mutants do not show defects in abiotic stress responses. These observations confirm an orthologous function for Cnx1 and Vp10, as well as defining a characteristic viviparous phenotype to identify other maize cnx mutants. Finally, the vp10 mutant phenotype suggests that cnx mutants can have auxin- as well as ABA-biosynthesis defects, while the chl6 mutant phenotype suggests that low levels of AO activity are sufficient for normal abiotic stress responses.  相似文献   

2.
3.
4.
Steady-state transposon mutagenesis in inbred maize   总被引:8,自引:0,他引:8  
We implement a novel strategy for harnessing the power of high-copy transposons for functional analysis of the maize genome, and report behavioral features of the Mutator system in a uniform inbred background. The unique UniformMu population and database facilitate high-throughput molecular analysis of Mu-tagged mutants and gene knockouts. Key features of the population include: (i) high mutation frequencies (7% independent seed mutations) and moderation of copy number (approximately 57 total Mu elements; 1-2 MuDR copies per plant) were maintained by continuous back-crossing into a phenotypically uniform inbred background; (ii) a bz1-mum9 marker enabled selection of stable lines (loss of MuDR), inhibiting further transpositions in lines selected for molecular analysis; (iii) build-up of mutation load was prevented by screening Mu-active parents to exclude plants carrying pre-existing seed mutations. To create a database of genomic sequences flanking Mu insertions, selected mutant lines were analyzed by sequencing of MuTAIL PCR clone libraries. These sequences were annotated and clustered to facilitate bioinformatic subtraction of ancestral elements and identification of insertions unique to mutant lines. New insertions targeted low-copy, gene-rich sequences, and in silico mapping revealed a random distribution of insertions over the genome. Our results indicate that Mu populations differ markedly in the occurrence of Mu insertion hotspots and the frequency of suppressible mutations. We suggest that controlled MuDR copy number in UniformMu lines is a key determinant of these differences. The public database (http://uniformmu.org; http://endosperm.info) includes pedigree and phenotypic data for over 2000 independent seed mutants selected from a population of 31 548 F2 lines and integrated with analyses of 34 255 MuTAIL sequences.  相似文献   

5.
6.
In maize vivipary, the precocious germination of the seed while still attached to the ear, is the diagnostic phenotype of mutants, which are impaired in the biosynthesis or response to abscisic acid (ABA). Of the 15 genes so far described, 12 control specific steps in ABA biosynthesis, two mediate hormone response and one still has an undefined role. We have analyzed a collection of 25 independent vp isolates with the aim of determining the degree of mutational saturation that has so far been reached. Of the 25 viviparous mutants complementation tested, 22 correspond to known loci: six are allelic to vp1, another six to vp5, one to vp7, two to vp9, six to vp10 and one to w3. The remaining three represent genes not previously identified. All mutants so far tested except rea show a decrease in ABA content. As to the only two mutants (vp1 and rea) whose endogenous ABA content is not impaired, the reduction in sensitivity of the double mutant compared to the single ones suggests that the two genes control separate pathways in the ABA signal transduction. Some of the mutants in this collection have a characteristic incomplete germination that allows the embryo of the mature dry seed to resume germination. By exploiting this feature it is possible to infer, through a germination test, whether the mutant has been impaired in the acquisition of desiccation tolerance. This information provides the starting point for the dissection of the genetic basis of desiccation tolerance.  相似文献   

7.
The notabilis (not) mutant of tomato has a wilty phenotype due to a deficiency in the levels of the plant hormone abscisic acid (ABA). The mutant appears to have a defect in a key control step in ABA biosynthesis--the oxidative cleavage of a 9-cis xanthophyll precursor to form the C15 intermediate, xanthoxin. A maize mutant, viviparous 14 (vp14) was recently obtained by transposon mutagenesis. This maize genetic lesion also affects the oxidative cleavage step in ABA synthesis. Degenerate primers for PCR, based on the VP14 predicted amino acid sequence, have been used to provide probes for screening a wilt-related tomato cDNA library. A full-length cDNA clone was identified which is specific to the not gene locus. The ORFs of the tomato cDNA and maize Vp14 are very similar, apart from parts of their N-terminal sequences. The not mutation has been characterized at the DNA level. A specific A/T base pair deletion of the coding sequence has resulted in a frameshift mutation, indicating that not is a null mutant. This observation is discussed in connection with the relatively mild phenotype exhibited by not mutant homozygotes.  相似文献   

8.
In maize vivipary, the precocious germination of the seed while it is still attached to the ear is a reliable phenotype for the identification of mutants impaired in the biosynthesis or response to abscisic acid (ABA). Here we present the characterization of a new allele of vp10, a gene encoding for a cofactor (MoCo) required for the last step of ABA biosynthesis. The lesion in this gene leads to a reduction in the endogenous ABA level. Embryonic messenger RNAs of the ABA inducible genes glb1, lea3, and rab17 are barely detectable, although their level increases when stimulated by exogenous ABA administration. These findings confirm that the mutant can be ascribed to a defect in ABA biosynthesis. In the absence of water stress, mutant plants grow like wild-type siblings; however when mutant tissues are exposed to air they differ from non-mutant ones by showing a higher rate of water loss, of transpiration and of stomatal conductance. These events are restored to almost normal values by adding exogenous ABA. All these defects are ascribable to an impairment in the regulation of stomatal opening since, in contrast to wild-type, some of the mutant stomata exhibit partially or totally open rims. The defect in ABA biosynthesis is also associated with loss of regulation of the expression of rab17 and rab28, two genes expressed in vegetative tissues under abiotic stress. These genes are constitutively expressed in the mutant plant tissues independently of the water regime applied. Thus this mutant may provide a tool for the study of molecular mechanisms underlying drought-stress responses in crop plants.  相似文献   

9.
Most mycobacterial species possess a full complement of genes for the biosynthesis of molybdenum cofactor (MoCo). However, a distinguishing feature of members of the Mycobacterium tuberculosis complex is their possession of multiple homologs associated with the first two steps of the MoCo biosynthetic pathway. A mutant of M. tuberculosis lacking the moaA1-moaD1 gene cluster and a derivative in which moaD2 was also deleted were significantly impaired for growth in media containing nitrate as a sole nitrogen source, indicating a reduced availability of MoCo to support the assimilatory function of the MoCo-dependent nitrate reductase, NarGHI. However, the double mutant displayed residual respiratory nitrate reductase activity, suggesting that it retains the capacity to produce MoCo. The M. tuberculosis moaD and moaE homologs were further analyzed by expressing these genes in mutant strains of M. smegmatis that lacked one or both of the sole molybdopterin (MPT) synthase-encoding genes, moaD2 and moaE2, and were unable to grow on nitrate, presumably as a result of the loss of MoCo-dependent nitrate assimilatory activity. Expression of M. tuberculosis moaD2 in the M. smegmatis moaD2 mutant and of M. tuberculosis moaE1 or moaE2 in the M. smegmatis moaE2 mutant restored nitrate assimilation, confirming the functionality of these genes in MPT synthesis. Expression of M. tuberculosis moaX also restored MoCo biosynthesis in M. smegmatis mutants lacking moaD2, moaE2, or both, thus identifying MoaX as a fused MPT synthase. By implicating multiple synthase-encoding homologs in MoCo biosynthesis, these results suggest that important cellular functions may be served by their expansion in M. tuberculosis.  相似文献   

10.
Xiong L  Ishitani M  Lee H  Zhu JK 《The Plant cell》2001,13(9):2063-2083
To understand low temperature and osmotic stress signaling in plants, we isolated and characterized two allelic Arabidopsis mutants, los5-1 and los5-2, which are impaired in gene induction by cold and osmotic stresses. Expression of RD29A-LUC (the firefly luciferase reporter gene under the control of the stress-responsive RD29A promoter) in response to cold and salt/drought is reduced in the los5 mutants, but the response to abscisic acid (ABA) remains unaltered. RNA gel blot analysis indicates that the los5 mutation reduces the induction of several stress-responsive genes by cold and severely diminishes or even completely blocks the induction of RD29A, COR15, COR47, RD22, and P5CS by osmotic stresses. los5 mutant plants are compromised in their tolerance to freezing, salt, or drought stress. los5 plants are ABA deficient, as indicated by increased transpirational water loss and reduced accumulation of ABA under drought stress in the mutant. A comparison with another ABA-deficient mutant, aba1, reveals that the impaired low-temperature gene regulation is specific to the los5 mutation. Genetic tests suggest that los5 is allelic to aba3. Map-based cloning reveals that LOS5/ABA3 encodes a molybdenum cofactor (MoCo) sulfurase. MoCo sulfurase catalyzes the generation of the sulfurylated form of MoCo, a cofactor required by aldehyde oxidase that functions in the last step of ABA biosynthesis in plants. The LOS5/ABA3 gene is expressed ubiquitously in different plant parts, and the expression level increases in response to drought, salt, or ABA treatment. Our results show that LOS5/ABA3 is a key regulator of ABA biosynthesis, stress-responsive gene expression, and stress tolerance.  相似文献   

11.
12.
The function of the MoeA protein in the biosynthesis of the molybdenum cofactor (MoCo) was analyzed in vitro, using purified His(6)-MoeA from Escherichia coli, molybdopterin (MPT) isolated from buttermilk xanthine oxidase and molybdate. The formation of MoCo was monitored by the reconstitution of nitrate reductase activity in extracts of the Neurospora crassa nit-1 mutant. Formation of MoCo from MPT and molybdate required MoeA and L-cysteine or glutathione. The reaction proceeded at micromolar molybdate levels and was time- and MoeA concentration-dependent. A physical interaction between MoeA and MPT was demonstrated by HPLC analysis of MoeA-bound MPT.  相似文献   

13.
14.
15.
Mutant plants deficient in the phytohormone abscisic acid (ABA) are typically unable to control their stomatal behavior appropriately in response to water stress, leading to a “wilty” phenotype. In plant species showing strong seed dormancy, ABA deficiency of the seed results in a second clearly recognizable phenotype, that is, early germination. Mutants selected by means of this latter character are often collectively termed “viviparous.” These two broad classes include mutants that are defective in their ability to synthesize ABA. A number of these genetic lesions have been assigned to specific steps in ABA biosynthesis and have been invaluable in elucidating many important features of the pathway. Most of the genes encoding ABA biosynthetic enzymes have now been cloned and their expression has been studied and manipulated. Genetically modified plants constitutively overexpressing ABA biosynthesis genes have been produced and analyzed over the last 6 years. In some cases these plants have been found to have elevated ABA concentrations, leading to altered stomatal behavior and increased seed dormancy. Genetic manipulation of ABA synthesis in photosynthetic tissues has been most effectively achieved through overexpression of the key rate-limiting biosynthetic enzyme 9-cis-epoxycarotenoid dioxygenase, and downregulation of the major catabolic enzyme ABA 8′-hydroxylase. However in non-photosynthetic tissue manipulation of ABA synthesis is a more complex task because of the limiting supply of xanthophyll precursors. The recent cloning of genes encoding enzymes controlling important pathways of ABA catabolism has been reviewed elsewhere, and so only information relevant to the regulation and manipulation of ABA synthesis, including supply of xanthophyll precursors, is discussed in this review.  相似文献   

16.
种子胎萌机制研究进展   总被引:1,自引:0,他引:1  
种子胎萌是内在的遗传基础和外部环境共同作用的结果,受许多基因的调控和植物激素的影响。近些年来,随着分子生物学的快速发展,种子胎萌研究已经深入到分子水平。分子生物学技术的运用,特别是基因的克隆与表达、植物激素的生物合成与信号转导和分子遗传学等手段已成为研究种子胎萌的新工具和新方向。现从种皮色泽基因R、矮杆基因Rht3以及Viviparous(Vp)基因家族等方面就种子胎萌相关基因与胎萌关系进行了综述;并对植物激素脱落酸(ABA)和赤霉素(GA)的生物合成或信号转导在种子胎萌的调控中的作用等方面进行综述。  相似文献   

17.
The plant hormone abscisic acid (ABA) is believed to play a role in the onset of developmental arrest in seeds. Embryos of the viviparous mutants of Zea mays do not undergo arrest but germinate directly on the ear. This study investigates the possibility that the mutants vp1, vp5, vp7, vp8, and vp9 are defective in some aspect of ABA action. Mutant and wild type embryos were removed from developing seeds at 18, 21, and 24 days after pollination and cultured aseptically on media containing a range of ABA concentrations. Seedlings were harvested after seven days when lengths and fresh and dry weights were recorded. The results indicate that these five viviparous mutants differ in their response to ABA. Two mutants, vp5 and vp8, exhibit the same sensitivity to growth inhibition by ABA as wild type. The remaining three mutants, however, manifest a range of decreased sensitivities with vp1 being the least sensitive, followed by vp7 and vp9.  相似文献   

18.
Regulation of programmed cell death in maize endosperm by abscisic acid   总被引:26,自引:0,他引:26  
Cereal endosperm undergoes programmed cell death (PCD) during its development, a process that is controlled, in part, by ethylene. Whether other hormones influence endosperm PCD has not been investigated. Abscisic acid (ABA) plays an essential role during late seed development that enables an embryo to survive desiccation. To examine whether ABA is also involved in regulating the onset of PCD during endosperm development, we have used genetic and biochemical means to disrupt ABA biosynthesis or perception during maize kernel development. The onset and progression of cell death, as determined by viability staining and the appearance of internucleosomal DNA fragmentation, was accelerated in developing endosperm of ABA-insensitive vp1 and ABA-deficient vp9 mutants. Ethylene was synthesized in vp1 and vp9 mutant kernels at levels that were 2–4-fold higher than in wild-type kernels. Moreover, the increase and timing of ethylene production correlated with the premature onset and accelerated progression of internucleosomal fragmentation in these mutants. Treatment of developing wild-type endosperm with fluridone, an inhibitor of ABA biosynthesis, recapitulated the increase in ethylene production and accelerated execution of the PCD program that was observed in the ABA mutant kernels. These data suggest that a balance between ABA and ethylene establishes the appropriate onset and progression of programmed cell death during maize endosperm development.  相似文献   

19.
To understand low temperature and osmotic stress signaling in plants, we isolated and characterized two allelic Arabidopsis mutants, los5-1 and los5-2, which are impaired in gene induction by cold and osmotic stresses. Expression of RD29A-LUC (the firefly luciferase reporter gene under the control of the stress-responsive RD29A promoter) in response to cold and salt/drought is reduced in the los5 mutants, but the response to abscisic acid (ABA) remains unaltered. RNA gel blot analysis indicates that the los5 mutation reduces the induction of several stress-responsive genes by cold and severely diminishes or even completely blocks the induction of RD29A, COR15, COR47, RD22, and P5CS by osmotic stresses. los5 mutant plants are compromised in their tolerance to freezing, salt, or drought stress. los5 plants are ABA deficient, as indicated by increased transpirational water loss and reduced accumulation of ABA under drought stress in the mutant. A comparison with another ABA-deficient mutant, aba1, reveals that the impaired low-temperature gene regulation is specific to the los5 mutation. Genetic tests suggest that los5 is allelic to aba3. Map-based cloning reveals that LOS5/ABA3 encodes a molybdenum cofactor (MoCo) sulfurase. MoCo sulfurase catalyzes the generation of the sulfurylated form of MoCo, a cofactor required by aldehyde oxidase that functions in the last step of ABA biosynthesis in plants. The LOS5/ABA3 gene is expressed ubiquitously in different plant parts, and the expression level increases in response to drought, salt, or ABA treatment. Our results show that LOS5/ABA3 is a key regulator of ABA biosynthesis, stress-responsive gene expression, and stress tolerance.  相似文献   

20.
Leafy Cotyledon Mutants of Arabidopsis   总被引:11,自引:1,他引:10       下载免费PDF全文
We have previously described a homeotic leafy cotyledon (lec) mutant of Arabidopsis that exhibits striking defects in embryonic maturation and produces viviparous embryos with cotyledons that are partially transformed into leaves. In this study, we present further details on the developmental anatomy of mutant embryos, characterize their response to abscisic acid (ABA) in culture, describe other mutants with related phenotypes, and summarize studies with double mutants. Our results indicate that immature embryos precociously enter a germination pathway after the torpedo stage of development and then acquire characteristics normally restricted to vegetative parts of the plant. In contrast to other viviparous mutants of maize (vp1) and Arabidopsis (abi3) that produce ABA-insensitive embryos, immature lec embryos are sensitive to ABA in culture. ABA is therefore necessary but not sufficient for embryonic maturation in Arabidopsis. Three other mutants that produce trichomes on cotyledons following precocious germination in culture are described. One mutant is allelic to lec1, another is a fusca mutant (fus3), and the third defines a new locus (lec2). Mutant embryos differ in morphology, desiccation tolerance, pattern of anthocyanin accumulation, presence of storage materials, size and frequency of trichomes on cotyledons, and timing of precocious germination in culture. The leafy cotyledon phenotype has therefore allowed the identification of an important network of regulatory genes with overlapping functions during embryonic maturation in Arabidopsis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号