首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of ABA treatment on the contents of proline, polyamines (PA), and cytokinins (CK) in the facultative halophyte the common ice plant (Mesembryanthemum crystallinum L.) subjected to salt stress were studied. Plants grown in the phytotron chamber on Jonson nutrient medium for 6 weeks were subjected to 6-day-long salinity by a single NaCl adding to medium. During first three days of salinity, half plants of each treatment were placed for 30 min on nutrient medium containing 0, 100, or 300 mM NaCl plus ABA in the final concentration of 1 μM. Salinity reduced biomass accumulation and water and chlorophyll contents in plants. This was accompanied by the increase in the levels of MDA, proline, and sodium ions. ABA treatment of salt-stressed plants favored biomass accumulation and photosynthetic pigment protection, reduced the intensity of oxidative stress and the level of NaCl-induced proline accumulation. ABA treatment increased the contents of putrescine (Put) and spermidine (Spd) in the leaves and roots of control plants (not subjected to salt stress), reduced the losses of Put in the leaves and roots and Spd in the roots in the presence of 100 mM NaCl, and suppressed cadaverine (Cad) accumulation in the roots in the presence of 300 mM NaCl. In the presence of NaCl, ABA reduced the contents of zeatin and zeatin riboside and increased the level of zeatin-O-glucoside in the roots and isopentenyladenosine and isopentenyladenine in the leaves. Thus, ABA protective action under salinity can be realized through the weakening of oxidative stress (a decrease in MDA content) and the regulation of PA, proline, and CK metabolism, which has a great significance in plant adaptation to injurious factors.  相似文献   

2.
The content of free and conjugated polyamines (PA) was studied in the leaves of secondary shoots and in roots of the facultative halophyte Mesembryanthemum crystallinum L. under salinity. Plants were grown in water culture and at the age of 10 weeks were subjected to salinity stress by a single introduction of NaCl into nutrient medium to a final concentration of 400 mM. In 0, 6, 24, and 48 h, the content of free, HClO4-soluble, and HClO4-insoluble conjugates of PA were measured in leaves and roots. The levels of free and conjugated PA in the roots of control plants and plants subjected to salinity stress were higher than in the leaves. In response to salinity shock, the content of all forms of spermine (Spm), particularly its HClO4-soluble conjugates, increased in roots and leaves. In contrast, the content of Spm precursors, putrescine (Put) and spermidine (Spd), as well as their HClO4-soluble conjugates, decreased. Salinity treatment elevated the content of free cadaverine both in roots and leaves, whereas the content of its conjugated forms decreased, which might suggest transition of conjugated forms of cadaverine into the free form. The product of oxidative degradation of Spm and Spd, 1,3-diaminopropane (Dap), was absent in leaves, whereas the content of free and conjugated forms of this diamine in roots increased under salinity conditions. The obtained data indicate organ specificity for the content of free and conjugated forms of PA, as well as their active role in adaptation of Mesembryanthemum crystallinum to salinity shock.  相似文献   

3.
The effects of salinity (300 mM NaCl), putrescine (Put), and the combination of two agents on the structure of chloroplasts and storage deposits were studied in the third leaf pair of a facultative halophyte Mesembryanthemum crystallinum. Within 6 days, the common ice plants responded to NaCl and Put treatments by diminished chloroplast volumes and swollen grana. Different effects of the experimental treatments were primarily manifested in the chloroplast storage inclusions. Under the salinity conditions, the starch content dropped down almost threefold as compared to untreated plants (control), whereas the number of plastoglobules did not change. Put and Put + NaCl treatments further decreased the starch content per unit section area; in contrast, the plastoglobule area per chloroplast section increased eightfold and tenfold in Put and Put + NaCl treatments, respectively. The morphology and electronic density of plastoglobules changed in all treatments. In both Put treatments there ware no destructive changes in the chloroplasts, and therefore the authors presume that the increase in the numbers plastoglobules was related to the redirection of cell metabolism towards the products of the higher reduction potential. The ferritin deposits in the chloroplasts were observed in all treatments they were more abundant in the vascular parenchyma cells, especially under salinity. The ability of the common ice plants to accumulate large Fe quantities in their chloroplasts and the characteristic pectin-filled pockets, which were observed earlier, and intercellular spaces are probably related to the genetically determined traits of plant adaptation to salinity and water deficit.  相似文献   

4.
研究了0.1 mmol/L 腐胺 (Put) 和0.5 mmol/L 亚精胺 (Spd) 浸种对200 mmol/L NaCl胁迫下大麦(Hordeum vulgare L.)幼苗生长速率、干物质积累、离子分布、液泡膜蛋白结合多胺含量以及液泡膜膜脂组分与功能的影响.结果表明,Put和Spd浸种均可缓解盐胁迫对大麦幼苗的盐害,促进生长和干物质积累,降低大麦幼苗体内[Na+]/[K+].与盐处理的对照植株相比,Put和Spd浸种均可提高大麦幼苗根系液泡膜磷脂含量,降低糖脂结合半乳糖含量,而膜上非共价结合多胺含量Spd+PAx (一种未知多胺) 与 Put+Dap (二氨基丙烷)之比((Spd+PAx)/(Put+Dap))、共价和非共价结合多胺总量均上升.统计分析结果表明,液泡膜非共价结合多胺(Spd+PAx)/(Put+Dap)与H+-ATPase和H+-PPase活性呈显著正相关关系.  相似文献   

5.
We studied the effects of chloride salinity (300 and 500 mM NaCl) on the content of free polyamines (PAs) from putrescine (Put) family in Mesembryanthemum crystallinum L. leaves and roots. The contents of Put and spermidine (Spd) in leaves increased temporarily, achieving the highest values on the third day of salinity treatment; thereafter (by days 7–14), they dropped sharply. The content of spermine (Spm) increased gradually, and its high level was maintained until the end of experiment. The dynamics of Spm accumulation in leaves under salinity conditions resembled that of phosphoenolpyruvate carboxylase (PEPC), a key enzyme of the water-saving CAM pathway of photosynthesis. This indicates indirectly the involvement of Spm in the common ice plant adaptation to salinity. A decrease in the molar ratios of Spd to Spm in the leaves under salinity conditions could point to the acceleration of Spm biosynthesis (accumulation) during plant adaptation, whereas the levels of Spm precursors, Put and Spd, did not increase. This phenomenon could be explained by an accelerated conversion of Spd into Spm, an active liberation of free Spm from its conjugates, or changes in the rates of studied PA biosynthesis and degradation under salinity. At the same time, the intracellular concentration of ethylene rose under these conditions. It was supposed and then demonstrated, that the pathway of ethylene biosynthesis and that of the synthesis of Put family PAs compete under severe salinity conditions. This competition might be based on the disturbances in sulfur metabolism and a decrease in the methionine content, an immediate precursor of S-adenosyl-L-methionine.  相似文献   

6.
多胺浸种改善盐胁迫大麦根系液泡膜功能的机理   总被引:15,自引:0,他引:15  
研究了 0 .1mmol/L腐胺 (Put)和 0 .5mmol/L亚精胺 (Spd)浸种对 2 0 0mmol/LNaCl胁迫下大麦 (HordeumvulgareL .)幼苗生长速率、干物质积累、离子分布、液泡膜蛋白结合多胺含量以及液泡膜膜脂组分与功能的影响。结果表明 ,Put和Spd浸种均可缓解盐胁迫对大麦幼苗的盐害 ,促进生长和干物质积累 ,降低大麦幼苗体内 [Na ]/[K ]。与盐处理的对照植株相比 ,Put和Spd浸种均可提高大麦幼苗根系液泡膜磷脂含量 ,降低糖脂结合半乳糖含量 ,而膜上非共价结合多胺含量Spd PAx (一种未知多胺 )与Put Dap (二氨基丙烷 )之比 ( (Spd PAx) / (Put Dap) )、共价和非共价结合多胺总量均上升。统计分析结果表明 ,液泡膜非共价结合多胺 (Spd PAx) / (Put Dap)与H _ATPase和H _PPase活性呈显著正相关关系。  相似文献   

7.
Recently we showed that ABA is at least partly responsible for the induction of the polyamine exodus pathway in Vitis vinifera plants. Both sensitive and tolerant plants employ this pathway to orchestrate stress responses, differing between stress adaptation and programmed cell death. Herein we show that ABA is an upstream signal for the induction of the polyamine catabolic pathway in Vitis vinifera. Thus, amine oxidases are producing H2O2 which signals stomata closure. Moreover, the previously proposed model for the polyamine catabolic pathway is updated and discussed.Key words: plant growth, abscissic acid, polyamines, amine oxidases, signaling, oxidative stress, programmed cell deathWe have shown that tobacco salinity induces an exodus of the polyamine (PA) spermidine (Spd) into the apoplast where it is oxidized by polyamine oxidase (PAO) generating hydrogen peroxide (H2O2). Depending on the size of H2O2, it signals either tolerance-effector genes or the programmed cell death syndrome1 (PCD). PAs are ubiquitous and biologically active molecules. In the recent years remarkable progress has been accomplished regarding the regulation of PAs biosynthesis and catalysis, not only under normal physiological but also under stress conditions.1 The most studied PAs are the diamine Putrescine (Put) and its derivatives the triamine Spd and the tetramine spermine (Spm). They are present in the cells in soluble form (S), or conjugated either to low molecular weight compounds (soluble hydrolyzed form, SH) or to “macro” molecules or cell walls (pellet hydrolyzed form, PH). In higher plants, Put is synthesized either directly from ornithine via ornithine decarboxylase (ODC; EC 4.1.1.17) or indirectly from arginine via arginine decarboxylase (ADC; EC 4.1.1.19). Spd and Spm are synthesized via Spd synthase (EC 2.5.1.16, SPDS) and Spm synthase (EC 2.5.1.22, SPMS), respectively, by sequential addition of aminopropyl groups to Put, catalyzed by S-adenosyl-L-methionine decarboxylase (SAMDC; EC 4.1.1.50).2,3 In plants, PAs are present in the cytoplasm, as well as in cellular organelles.4 Recently it was shown that during stress, they are secreted into the apoplast where they are oxidized by amine oxidases (AOs), such as diamine oxidase for Put (DAO, E.C. 1.4.3.6) and polyamine oxidase (PAO, E.C. 1.4.3.4) for Spd and Spm.1,5,6 Oxidation of PAs generates, amongst other products, H2O21,7,8 which is involved in cell signaling processes coordinated by abscissic acid (ABA),9 but also acts as efficient oxidant and, at high concentration, orchestrates the PCD syndrome.6,10 Two types of PA catabolism by PAO are known in plants: the terminal and the back-conversion pathways. The terminal one takes place in the apoplast, produces except H2O2, 1,3-diaminopropane and an aldehyde depending on the species. On the other hand, the back-conversion pathway is intracellular (cytoplasm and peroxisomes) resulting to the production of H2O2 and the sequential production of Put by Spm via Spd.1,7 Now we have shown that PA exodus also occurs in Vitis vinifera and this phenomenon is at least partially induced by abscissic acid (ABA).11 Thus, exogenous application of ABA results to PA exodus into the apoplast of grapevine. PA is oxidized by an AO resulting to production of H2O2. When the titer of H2O2 is below a threshold, expression of tolerance-effector genes is induced, while when it exceeds this threshold the programmed cell death (PCD) syndrome is induced.  相似文献   

8.
研究了不同浓度NaCl胁迫下,香根草(Vetiteria zizanioides)根、叶中的游离态、结合态、束缚态多胺(PAs)[包括腐胺(Put),尸胺(Cad),亚精胺(Sod)和精胺(Spm)]含量的变化。在中度盐胁迫(100,200mmol L^-1NaCl)9天时,香根草基本能够正常生长,但在重度盐胁迫(300mmol L^-1NaCl)下,其生长受到严重抑制。在上述3个不同浓度的NaCl胁迫下,香根草根、叶中游离态Put,Cad,spd,Stma和总的游离态PAs含量明显下降,在高盐浓度下下降幅更大;结合态Put,Cad,Sod,Spm和总的结合态PAs含量显著上升,但在重度盐胁迫下升幅较小或与对照相当;束缚态Put,Cad和总的束缚态PAs含量均减少,而束缚态Spd和Spm含量在叶中是下降的,在根中则增加,且在中度盐胁迫下更明显。对根和叶片而言,除游离态(Spd+Spm),Put比值在重度盐胁迫下较对照显著下降外,其它游离态、结合态、束缚态和总的(Spd+Spm)/Put比值在不同盐胁迫下均上升,在中度盐胁迫下更明显。这表明,维持多胺总量的稳态和较高的(Spd+Spm)/Put比值是香根草适应中度盐胁迫的一个重要机制。  相似文献   

9.
A new assay for the evaluation of spermidine (Spd) synthase activity was developed. It involves a coupled reaction and avoids the use of decarboxylated S-adenosylmethionine, which is unstable and not easily available. This assay was applied to assess changes in enzyme activity in oat leaves subjected to osmotic stress in the dark. The results indicate that osmotically-induced putrescine (Put) accumulation in cereals results not only from the activation of the arginine decarboxylase pathway, but also from the inhibition of the activity of Spd synthase, the enzyme which catalyzes the transformation of Put to Spd. Other possibilities which could contribute to the decline of Spd and spermine levels under osmotic stress are also discussed.Abbreviations ADC arginine decarboxylase - Dap diaminopropane - DFMA -difluoromethylarginine - MGBG methylglyoxal-bis-guanylhydrazone - MTA 5-deoxy-5-methylthioadenosine - ODC ornithine decarboxylase - PA polyamines - PAO polyamine oxidase - PCA perchloric acid - PLP pyridoxal phosphate - Put putrescine - SAM S-adenosylmethionine - dSAM decarboxylated S-adenosylmethionine - SAMDC S-adenosylmethionine decarboxylase - Spd spermidine - Spm spermine  相似文献   

10.
We studied the effects of inhibitors of ornithine decarboxylase (ODC), arginine decarboxylase (ADC) and spermidine synthase (Spd synthase) on organogenesis and the titers of polyamines (PA) and alkaloids in tobacco calli. DL--difluoromethylarginine (DFMA) and D-arginine (D-Arg), both inhibitors of ADC activity, were more effective than DL--difluoromethylornithine (DFMO), an inhibitor of ODC, in reducing titers of PA and the putrescine (Put)-derived alkaloids (nornicotine and nicotine). Dicyclohexylammonium sulfate (DCHA), an inhibitor of Spd synthase, was also more efficient than DFMO in reducing PA and alkaloid levels. Root organogenesis is inversely related to the titers of Put and alkaloids. Thus, DFMA and D-Arg, which strongly inhibit Put and alkaloid biosynthesis, markedly promote root organogenesis, while control callus with high Put and alkaloid content showed poor root organization. These results suggest that morphological differentiation is not required for activation of secondary metabolic pathways and support the view that ADC has a major role in the generation of Put going to the pyrrolidine ring of tobacco alkaloids.  相似文献   

11.
The role of exogenous spermidine (Spd) in alleviating fruit granulation in the grafted seedlings of a Citrus cultivar (Huangguogan) was investigated. Granulation resulted in increased electrical conductivity, cell membrane permeability, and total pectin, soluble pectin, cellulose, and lignin contents. However, it decreased the activities of superoxide dismutase, peroxidase, and catalase, as well as the (Spd + Spm):Put ratio. The application of exogenous Spd onto Huangguogan seedlings significantly increased proline and ascorbate contents, but decreased the H2O2 and O 2 levels, which suggested that exogenous Spd provided some protection from oxidative damage. In addition, exogenous Spd decreased cell membrane permeability and MDA content, and increased the (Spd + Spm):Put ratio. The activities of antioxidant enzymes, such as catalase, peroxidase, and superoxide dismutase, were increased in Spd-treated seedlings affected by fruit granulation, resulting in a decrease in oxidative stress levels. The protective effects of Spd were reflected by a decrease in superoxide levels through osmoregulation, increased proline and ascorbate contents, and increased antioxidant activities. Our observations reveal the importance of exogenous Spd in alleviating citrus fruit granulation.  相似文献   

12.
腐胺、亚精胺和精胺对稀脉萍的成花均有一定的抑制作用,这种作用随多肢的浓度增加而增强。多胺合成抑制剂MGBG强烈抑制稀脉萍群体的增殖速率,并使稀脉萍群体在非诱导光周期下开花。这种由MGBG引起的增殖速率的降低及成花诱导作用均可被多胺逆转。稀脉萍成花诱导过程中,内源腐胺含量显著升高,亚精胺则下降。  相似文献   

13.
In order to determine the impact of polyamines on the yield-related parameters of rice (Oryza sativa L.) exposed to NaCl, the plants belonging to a salt-sensitive cultivar I Kong Pao were maintained from the young seedling stage until harvest on nutrient solutions containing 0 or 30 mM NaCl in the presence or absence of 10 μM putrescine (Put), 10 μM spermidine (Spd) or 10 μM spermine (Spm). Exogenous Put and to a lesser extent exogenous Spd improved growth and yield of salt-treated plants in relation to an increase in K+/Na+ ratio of shoots and roots as compared to plants exposed to NaCl in the absence of exogenous polyamines. Exogenous Put also improved the net CO2 assimilation, at least partly as a consequence of an increase in the stomatal conductance. Yield increase of salt-treated plants exposed to Put was related to an improvement of floral morphogenesis leading to a higher number of fertile tillers per plant and a higher number of spikelets per panicle. Putrescine also improved the pollen viability in salt-treated plants, allowing a higher seed set and thus a higher grain yield per plant. Although polyamines accumulated in the shoots to some extent in response to exogenous application, neither Put nor Spd accumulated in the seeds. In contrast, Spm did not afford any protection of salt-treated plants but was translocated to the seeds during maturation. Seeds with a high internal Spm concentration exhibited delayed germination in the presence of NaCl. These data are discussed in relation to the implication of polyamine in the metabolism and physiology of salt-treated plants.  相似文献   

14.
The objective of this study was to investigate the role of endogenous polyamines (PAs) (the sum of free plus soluble conjugate plus insoluble bound) on rooting potential of leafy cuttings of an easy, that is,“Arbequina” and a difficult-to-root olive cultivar, that is, “Kalamata”. Subsamples of cuttings were taken for PAs analysis before planting in the mist system and during the early phases of rhizogenesis (EPR). “Arbequina” exhibited higher initial free and total PA content than “Kalamata”. Spermidine (Spd) was the predominant PA observed in both cultivars. A low content of free putrescine (Put) and Spd was found in both cultivars, whereas spermine (Spm) was occasionally detected. “Arbequina” as well as “Kalamata” exhibited the highest free Put and free Spd in summer and Put was the predominant PA among the free PAs. “Arbequina” exhibited the highest individual and total PAs in spring, followed by those in summer and autumn. In contrast, “Kalamata” had the maximum PAs in summer and the lowest in autumn. Changes in the endogenous content of individual and total PAs during the EPR were also observed. Treatment of “Kalamata” cuttings in autumn with both indole-3-butyric acid (IBA) and Put increased rooting compared to IBA alone. Among the PAs administered, Put was the most effective, whereas Spd and Spm failed to promote rooting. PAs, especially in their free form, seem to be involved in the rooting process of olive cuttings; Put application enhanced the rooting response of the difficult-to-root “Kalamata” olive cultivar.  相似文献   

15.
In order to analyze the putative impact of polyamines (PAs) on the plant response to salt, seedlings from the salt-sensitive rice cultivar I Kong Pao (IKP) were exposed for 5, 12 and 19 days to 0, 50 or 100 mM NaCl in the absence, or in the presence of exogenous PAs (putrescine (Put), spermidine (Spd) or spermine (Spm) 1mM) or inhibitors of PA synthesis (methylglyoxalbis-guanyl hydrazone (MGBG) 1mM, cyclohexylammonium (CHA) 5mM and D-arginine (D-Arg) 5mM). The addition of PAs in nutritive solution reduced plant growth in the absence of NaCl and did not afford protection in the presence of salt. PA-treated plants exhibited a higher K+/Na+ ratio in the shoots, suggesting an improved discrimination among monovalent cations at the root level, especially at the sites of xylem loading. The diamine Put induced a decrease in the shoot water content in the presence of NaCl, while Spd and Spm had no effects on the plant water status. In contrast to Spd, Spm was efficiently translocated to the shoots. Both PAs (Spd and Spm) induced a decrease in cell membrane stability as suggested by a strong increase in malondialdehyde content of PA-treated plants exposed to NaCl. These results are discussed in relation to the putative functions of PAs in stressed plant metabolism.  相似文献   

16.
Protective effects of exogenous spermidine (Spd), activity of antioxygenic enzymes, and levels of free radicals in a well-known medicinal plant, Panax ginseng was examined. Seedlings grown in salinized nutrient solution (150 mM NaCl) for 7 d exhibited reduced relative water content, plant growth, increased free radicals, and showing elevated lipid peroxidation. Application of Spd (0.01, 0.1, and 1 mM) to the salinized nutrient solution showed increased plant growth by preventing chlorophyll degradation and increasing PA levels, as well as antioxidant enzymes such as CAT, APX, and GPX activity in the seedlings of ginseng. During salinity stress, Spd was effective for lowering the accumulation of putrescine (Put), with a significant increase in the spermidine (Spd) and spermine (Spm) levels in the ginseng seedlings. A decline in the Put level ran parallel to the higher accumulation of proline (Pro), and exogenous Spd also resulted in the alleviation of Pro content under salinity. Hydrogen peroxide (H2O2) and superoxide (O2) production rates were also reduced in stressed plants after Spd treatment. Furthermore, the combined effect of Spd and salt led to a significant increase in diamine oxidase (DAO), and subsequent decline in polyamine oxidase (PAO). These positive effects were observed in 0.1 and 1 mM Spd concentrations, but a lower concentration (0.01 mM) had a very limited effect. In summary, application of exogenous Spd could enhance salt tolerance of P. ginseng by enhancing the activities of enzyme scavenging system, which influence the intensity of oxidative stress.  相似文献   

17.
采用蛭石栽培,在100mmol·L-1NaCl胁迫下,对耐盐性不同的2个菜用大豆[Glycinemax(L.)Merr.]品种结荚期干物质积累、单株产量及叶片游离态多胺(PAs)水平的变化进行了研究。结果表明:NaCl胁迫显著降低了菜用大豆植株干重及单株产量,但耐盐品种"绿领特早"的降幅低于盐敏感品种"理想高产95-1";与"理想高产95-1"相比,"绿领特早"叶片在整个NaCl胁迫期间均维持了相对较低的H2O2含量、游离态腐胺(Put)含量及较高的游离态亚精胺(Spd)含量,在胁迫6~15d期间维持了相对较高的游离态精胺(Spm)含量、(Spd+Spm)/Put值及较低的Put/PAs值。说明耐盐品种"绿领特早"叶片具有较强的由游离态Put向游离态Spd和Spm转化的能力,维持了较低的游离态Put含量和较高的游离态Spd及Spm含量,进而抑制了活性氧过量积累。  相似文献   

18.
19.
F. Shoeb  J. S. Yadav  S. Bajaj  M. V. Rajam   《Plant science》2001,160(6):1229-1235
The importance of cellular polyamine (PA) levels and the ratio of putrescine (Put) to spermidine (Spd) for plant regeneration ability via somatic embryogenesis in several commercially grown indica rice varieties is reported here. The genotypes namely NDR-624, IR-20, IR-36, BJ-1 (having Put:Spd ratio2.3) showed superior plant regeneration while KL, PB-1 and TN-1 (having Put:Spd ratio3.8) showed moderate plant regeneration ability. The genotypes namely HS, Bindli, DV-85, ACB-72, IR-64 and IR-72 (having Put:Spd ratio5.0) showed poor plant regeneration ability. In contrast KH-7 (Put:Spd ratio10.0) showed no response at all. Favorable modification of cellular PA titers and their Put:Spd ratio by the addition of exogenous PAs (Put, Spd) or their biosynthesis inhibitor, difluoromethylarginine (DFMA) led to the induction/promotion of plant regeneration in poorly responding genotypes. These results showed a close relationship between cellular PA levels and their Put:Spd ratio with in vitro morphogenetic capacity in indica rice and suggest that the cellular PAs and Put:Spd ratios are important determinants (biomarkers) of plant regeneration ability in indica rice, and the improvement/induction of plant regeneration in morphogenetically poor and recalcitrant species could be achieved by modulating PA metabolism.  相似文献   

20.
Plants of goat's rue (Galega orientalis) inoculated with Rhizobium galegae strain HAMBI 540 were grown in the presence of putrescine (Put), spermidine (Spd) or spermine (Spm), and several symbiotic characteristics were investigated to delineate the influence of polyamines (PA) on this nitrogen-fixing system. All three PA exerted a concentration-dependent effect on the nodule parameters tested. The increment of nodulation ability and nodule biomass accumulation was extreme (from 2.4- to 4.0-fold) when plants were subjected to 10 and 50 M of various PA. However, at 100 M a negative effect was observed. The acetylene-reduction activity of nodulated roots was increased also in response to treatment with the lower PA concentrations. The level of nitrogenase activity supported by succinate was significantly higher in bacteroids isolated from PA-treated nodules than in bacteroids from control nodules. The symbiotic parameters were also dependent on the type of PA used; the most effective being the diamine Put, while Spm showed a smaller physiological effect with respect to the others. Polyamines altered the ultrastructure of Galega nodule infected cells. After treatment with these substances, pronounced changes in the relative volume of the main components of infected cells and their compartments were observed. The significance of the structural observations and morphometric analyses, their relationship to differences in nitrogen fixation and possible modes of action are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号