首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have compared clones of Syrian hamster cells selected for the first amplification of the CAD gene with clones selected for further amplification. The large domain amplified initially was not reamplified as an intact unit. Instead, subregions were reamplified preferentially, and parts of the initial array were often lost. These events reduced the average amount of coamplified DNA accompanying each copy of the selected gene. The degree of amplification was small in the first step (about three extra copies of CAD per cell), but second-step amplifications to a high copy number (up to 60 extra copies per cell) occurred frequently. After several separate steps of amplification, highly condensed arrays that brought many CAD genes close together were formed. In striking contrast to the stability of these highly amplified arrays, the low-copy chromosomal arrays formed early were quite unstable and were often lost completely within 1 or 2 months of growth without selection. The results suggest that different mechanisms may be involved in the first step of amplification and in the later evolution of an already amplified array.  相似文献   

2.
A salient feature of genomes of higher organisms is the birth and death of gene copies. An example is the alpha prolamin genes, which encode seed storage proteins in grasses (Poaceae) and represent a medium-size gene family. To better understand the mechanism, extent, and pace of gene amplification, we compared prolamin gene copies in the genomes of two different tribes in the Panicoideae, the Paniceae and the Andropogoneae. We identified alpha prolamin (setarin) gene copies in the diploid foxtail millet (Paniceae) genome (490 Mb) and compared them with orthologous regions in diploid sorghum (730 Mb) and ancient allotetraploid maize (2,300 Mb) (Andropogoneae). Because sequenced genomes of other subfamilies of Poaceae like rice (389 Mb) (Ehrhartoideae) and Brachypodium (272 Mb) (Pooideae) do not have alpha prolamin genes, their collinear regions can serve as "empty" reference sites. A pattern emerged, where genes were copied and inserted into other chromosomal locations followed by additional tandem duplications (clusters). We observed both recent (species-specific) insertion events and older ones that are shared by these tribes. Many older copies were deleted by unequal crossing over of flanking sequences or damaged by truncations. However, some remain intact with active and inactive alleles. These results indicate that genomes reflect only a snapshot of the gene content of a species and are far less static than conventional genetics has suggested. Nucleotide substitution rates for active alpha prolamins genes were twice as high as for low copy number beta, gamma, and delta prolamin genes, suggesting that gene amplification accelerates the pace of divergence.  相似文献   

3.
The genes encoding ribosomal RNA are the most abundant in the eukaryotic genome. They reside in tandem repetitive clusters, in some cases totaling hundreds of copies. Due to their repetitive structure, ribosomal RNA genes (rDNA) are easily lost by recombination events within the repeated cluster. We previously identified a unique gene amplification system driven by unequal sister-chromatid recombination during DNA replication. The system compensates for such copy number losses, thus maintaining proper copy number. Here, through a genome-wide screen for genes regulating rDNA copy number, we found that the rtt109 mutant exhibited a hyper-amplification phenotype (∼3 times greater than the wild-type level). RTT109 encodes an acetyl transferase that acetylates lysine 56 of histone H3 and which functions in replication-coupled nucleosome assembly. Relative to unequal sister-chromatid recombination-based amplification (∼1 copy/cell division), the rate of the hyper-amplification in the rtt109 mutant was extremely high (>100 copies/cell division). Cohesin dissociation that promotes unequal sister-chromatid recombination was not observed in this mutant. During hyper-amplification, production level of extra-chromosomal rDNA circles (ERC) by intra-chromosomal recombination in the rDNA was reduced. Interestingly, during amplification, a plasmid containing an rDNA unit integrated into the rDNA as a tandem array. These results support the idea that tandem DNA arrays are produced and incorporated through rolling-circle-type replication. We propose that, in the rtt109 mutant, rDNA hyper-amplification is caused by uncontrolled rolling-circle-type replication.  相似文献   

4.
Alpha satellite DNA, a diverse family of tandemly repeated DNA sequences located at the centromeric region of each human chromosome, is organized in a highly chromosome-specific manner and is characterized by a high frequency of restriction-fragment-length polymorphism. To examine events underlying the formation and spread of these polymorphisms within a tandem array, we have cloned and sequenced a representative copy of a polymorphic array from the X chromosome and compared this polymorphic copy with the predominant higher-order repeat form of X-linked alpha satellite. Sequence data indicate that the polymorphism arose by a single base mutation that created a new restriction site (for HindIII) in the sequence of the predominant repeat unit. This variant repeat unit, marked by the new HindIII site, was subsequently amplified in copy number to create a polymorphic domain consisting of approximately 500 copies of the variant repeat unit within the X-linked array of alpha satellite. We propose that a series of intrachromosomal recombination events between misaligned tandem arrays, involving multiple rounds of either unequal crossing-over or sequence conversion, facilitated the spread and fixation of this variant HindIII repeat unit.  相似文献   

5.
W. Stephan  S. Cho 《Genetics》1994,136(1):333-341
A simulation model of sequence-dependent amplification, unequal crossing over and mutation is analyzed. This model predicts the spontaneous formation of tandem-repetitive patterns of noncoding DNA from arbitrary sequences for a wide range of parameter values. Natural selection is found to play an essential role in this self-organizing process. Natural selection which is modeled as a mechanism for controlling the length of a nucleotide string but not the sequence itself favors the formation of tandem-repetitive structures. Two measures of sequence heterogeneity, inter-repeat variability and repeat length, are analyzed in detail. For fixed mutation rate, both inter-repeat variability and repeat length are found to increase with decreasing rates of (unequal) crossing over. The results are compared with data on micro-, mini- and satellite DNAs. The properties of minisatellites and satellite DNAs resemble the simulated structures very closely. This suggests that unequal crossing over is a dominant long-range ordering force which keeps these arrays homogeneous even in regions of very low recombination rates, such as at satellite DNA loci. Our analysis also indicates that in regions of low rates of (unequal) crossing over, inter-repeat variability is maintained at a low level at the expense of much larger repeat units (multimeric repeats), which are characteristic of satellite DNA. In contrast, the microsatellite data do not fit the proposed model well, suggesting that unequal crossing over does not act on these very short tandem arrays.  相似文献   

6.
7.
We suggest hypotheses to account for two major features of chromosomal organization in higher eukaryotes. The first of these is the general restriction of crossing over in the neighborhood of centromeres and telomeres. We propose that this is a consequence of selection for reduced rates of unequal exchange between repeated DNA sequences for which the copy number is subject to stabilizing selection: microtubule binding sites, in the case of centromeres, and the short repeated sequences needed for terminal replication of a linear DNA molecule, in the case of telomeres. An association between proximal crossing over and nondisjunction would also favor the restriction of crossing over near the centromere. The second feature is the association between highly repeated DNA sequences of no obvious functional significance and regions of restricted crossing over. We show that highly repeated sequences are likely to persist longest (over evolutionary time) when crossing over is infrequent. This is because unequal exchange among repeated sequences generates single copy sequences, and a population that becomes fixed for a single copy sequence by drift remains in this state indefinitely (in the absence of gene amplification processes). Increased rates of exchange thus speed up the process of stochastic loss of repeated sequences.  相似文献   

8.
Simulating Evolution by Gene Duplication   总被引:14,自引:5,他引:14       下载免费PDF全文
Tomoko Ohta 《Genetics》1987,115(1):207-213
By considering the recent finding that unequal crossing over and other molecular interactions are contributing to the evolution of multigene families, a model of the origin of repetitive genes was studied by Monte Carlo simulations. Starting from a single gene copy, how genetic systems evolve was examined under unequal crossing over, random drift and natural selection. Both beneficial and deteriorating mutations were incorporated, and the latter were assumed to occur ten times more frequently than the former. Positive natural selection favors those chromosomes with more beneficial mutations in redundant copies than others in the population, but accumulation of deteriorating mutations (pseudogenes) have no effect on fitness so long as there remains a functional gene. The results imply the following: Positive natural selection is needed in order to acquire gene families with new functions. Without it, too many pseudogenes accumulate before attaining a functional gene family. There is a large fluctuation in the outcome even if parameters are the same. When unequal crossing over occurs more frequently, the system evolves more rapidly. It was also shown, under realistic values of parameters, that the genetic load for acquiring a new gene is not as large as J.B.S. Haldane suggested, but not so small as in a model in which a system for selection started from already redundant genes.  相似文献   

9.
Cutting edge: expansion of the KIR locus by unequal crossing over   总被引:6,自引:0,他引:6  
The killer Ig-like receptor (KIR) genes have high sequence similarity and are organized in a head-to-tail fashion. These properties may enhance misalignment of homologous chromosomes during synapsis preceding meiotic recombination, resulting in unequal crossing over. We have identified an extended KIR haplotype that contains a novel hybrid gene and two copies of each of two previously described KIR genes. A parsimonious mechanism for the derivation of this haplotype invokes unequal crossing over between two known ancestral KIR haplotypes. These data raise the possibility that unequal crossing over may be responsible in part for the expansion/contraction of KIR haplotypes as well as other homologous gene families that map in tandem.  相似文献   

10.
The 140-nucleotide spliced leader (SL) RNA, involved in mRNA maturation in the African trypanosomes and in other kinetoplastida, is encoded by a tandem array of spliced leader genes. We show that the 1.4-kb SL gene repeat unit in Trypanosoma gambiense is organized in tandem arrays confined to two large (minimum size 350-450 kb) restriction fragments. SL genes in both arrays are interrupted by a total of eight conserved insertion elements. Cleavage of genomic DNA at restriction sites present within the insertion element but not in the SL gene repeat, releases variable numbers of SL genes from the tandem array. Since the insertion element contains a terminal poly(A) track of 36 bases and because a 49-bp duplication of target DNA has occurred at the integration site, we conclude that it is a retroposon. This retropson is uniquely associated with the SL gene clusters. These retroposons presumably originated from a single insertion event after which their copy number increased, possibly through unequal sister chromatid exchange.  相似文献   

11.
S Iida  I Kulka  J Meyer    W Arber 《Journal of bacteriology》1987,169(4):1447-1453
Tn2653 contains one copy of the tet gene and two copies of the cat gene derived from plasmid pBR325 and is flanked by inverted repeats of IS1. Transposed onto the P1-15 prophage, it confers a chloramphenicol resistance phenotype to the Escherichia coli host. Because the prophage is perpetuated as a plasmid at about one copy per host chromosome, the host cell is still tetracycline sensitive even though P1-15 is carrying one copy of the tet gene. We isolated P1-15::Tn2653 mutants conferring a tetracycline resistance phenotype, in which the whole transposon and variable flanking P1-15 DNA segments were amplified. Amplification was most probably preceded by IS1-mediated DNA rearrangements which led to long direct repeats containing Tn2653 sequences and P1-15 DNA. Subsequent recombination events between these direct repeats led to amplification of a segment containing the tetracycline resistance gene in tandem arrays.  相似文献   

12.
K J Danna  R Workman  V Coryell  P Keim 《Génome》1996,39(2):445-455
The organization of 5S rRNA genes in plants belonging to tribe Phaseoleae was investigated by clamped homogeneous electric field gel electrophoresis and Southern blot hybridization. Representatives of subtribe Glycininae included the diploid species Neonotonia wightii and Teramnus labialis, as well as three soybean accessions: an elite Glycine max (L.) Merr. cultivar (BSR101), an unadapted G. max introduction (PI 437.654), and a wild Glycine soja (PI 468.916). A cultivar of Phaseolus vulgaris (kidney bean), a member of subtribe Phaseolinae, was also examined. We determined the number of 5S rDNA arrays and estimated the size and copy number of the repeat unit for each array. The three soybean accessions all have a single 5S locus, with a repeat unit size of ~345 bp and a copy number ranging from about 600 in 'BSR101' to about 4600 in the unadapted soybean introduction. The size of the 5S gene cluster in 'BSR101' is the same in roots, shoots, and trifoliate leaves. Given that the genus Glycine probably has an allotetraploid origin, our data strongly suggest that one of the two progenitor 5S loci has been lost during diploidization of soybean. Neonotonia wightii, the diploid species most closely related to soybean, also has a single locus but has a repeat unit of 520 bp and a copy number of about 1300. The more distantly related species T. labialis and P. vulgaris exhibited a more complex arrangement of 5S rRNA genes, having at least three arrays, each comprising a few hundred copies of a distinct repeat unit. Although each array in P. vulgaris exhibits a high degree of homogeneity with regard to the sequence of the repeat unit, heterogeneity in array size (copy number) was evident when individual plants were compared. A cis-dependent molecular drive process, such as unequal crossing-over, could account for both the homogenization of repeat units within individual arrays and the observed variation in copy number among individuals. Key words : pulsed-field gel electrophoresis, rRNA genes, soybean, tandem arrays.  相似文献   

13.
Tandemly arrayed genes (TAGs) account for about one-third of the duplicated genes in eukaryotic genomes. They provide raw genetic material for biological evolution, and play important roles in genome evolution. The 22-kDa prolamin genes in cereal genomes represent typical TAG organization, and provide the good material to investigate gene amplification of TAGs in closely related grass genomes. Here, we isolated and sequenced the Coix 22-kDa prolamin (coixin) gene cluster (283 kb), and carried out a comparative analysis with orthologous 22-kDa prolamin gene clusters from maize and sorghum. The 22-kDa prolamin gene clusters descended from orthologous ancestor genes, but underwent independent gene amplification paths after the separation of these species, therefore varied dramatically in sequence and organization. Our analysis indicated that the gene amplification model of 22-kDa prolamin gene clusters can be divided into three major stages. In the first stage, rare gene duplications occurred from the ancestor gene copy accidentally. In the second stage, rounds of gene amplification occurred by unequal crossing over to form tandem gene array(s). In the third stage, gene array was further diverged by other genomic activities, such as transposon insertions, segmental rearrangements, etc. Unlike their highly conserved sequences, the amplified 22-kDa prolamin genes diverged rapidly at their expression capacities and expression levels. Such processes had no apparent correlation to age or order of amplified genes within TAG cluster, suggesting a fast evolving nature of TAGs after gene amplification. These results provided insights into the amplification and evolution of TAG families in grasses.  相似文献   

14.
The subtelomeric regions of organisms ranging from protists to fungi undergo a much higher rate of rearrangement than is observed in the rest of the genome. While characterizing these ~40-kb regions of the human fungal pathogen Cryptococcus neoformans, we have identified a recent gene amplification event near the right telomere of chromosome 3 that involves a gene encoding an arsenite efflux transporter (ARR3). The 3,177-bp amplicon exists in a tandem array of 2-15 copies and is present exclusively in strains with the C. neoformans var. grubii subclade VNI A5 MLST profile. Strains bearing the amplification display dramatically enhanced resistance to arsenite that correlates with the copy number of the repeat; the origin of increased resistance was verified as transport-related by functional complementation of an arsenite transporter mutant of Saccharomyces cerevisiae. Subsequent experimental evolution in the presence of increasing concentrations of arsenite yielded highly resistant strains with the ARR3 amplicon further amplified to over 50 copies, accounting for up to ~1% of the whole genome and making the copy number of this repeat as high as that seen for the ribosomal DNA. The example described here therefore represents a rare evolutionary intermediate-an array that is currently in a state of dynamic flux, in dramatic contrast to relatively common, static relics of past tandem duplications that are unable to further amplify due to nucleotide divergence. Beyond identifying and engineering fungal isolates that are highly resistant to arsenite and describing the first reported instance of microevolution via massive gene amplification in C. neoformans, these results suggest that adaptation through gene amplification may be an important mechanism that C. neoformans employs in response to environmental stresses, perhaps including those encountered during infection. More importantly, the ARR3 array will serve as an ideal model for further molecular genetic analyses of how tandem gene duplications arise and expand.  相似文献   

15.
K Umene 《Journal of virology》1991,65(10):5410-5416
A series of herpes simplex virus type 1 derivatives, having a sequences composed of DR1, Ub, (DR2)3-7, DR4t (a truncated form of DR4), and Uc were isolated and examined. The derivative having a sequences with six copies of DR2 generated progeny viruses having a sequences with the same number (six copies) of DR2. Another derivative, having a sequences with three and seven copies of DR2, generated progeny viruses having a sequences with varied numbers (4, 5, 8, and 10 copies) of DR2, besides the original DR2 arrays (three and seven copies). Therefore, the variation in copy number of DR2 was assumed to be caused mainly by recombination between DR2 arrays rather than by slippage within a DR2 array during DNA replication. The presence of DR2-like sequences in internal direct repeat elements of DR4 and DR3.5 supported the hypothesis of the recombinogenic property of DR2. The equal distribution of divergence of a sequences to both ends of the virus genome favors the double-strand break and gap repair model to explain gene conversion and amplification of the a sequence.  相似文献   

16.
The control of expression of the Bacillus subtilis spoIIA locus was analyzed by titrating gene expression against gene copy number. A plasmid integrated into the B. subtilis chromosome and carrying the spoIIA control region fused to Escherichia coli lacZ was forced to form tandem repeats by the selection of clones that grow on high levels of chloramphenicol, the antibiotic against which the plasmid determines resistance. DNA from the clones was digested with BglII, which did not cut in the reiterated region, and the size of the fragment was determined by orthogonal-field-alternation gel electrophoresis to determine the copy number. Most clones had fairly homogeneous copy numbers. Gene expression was monitored by beta-galactosidase activity. The results indicate that spoIIA was under positive control by a moiety present at about five copies per chromosome. Spore formation was not affected by amplification, so spoIIA-lacZ reiteration did not sequester a molecule required elsewhere for sporulation.  相似文献   

17.
Efficient expression of a foreign protein product by the yeastSaccharomyces cerevisiaerequires a stable recombinant vector present at a high number of copies per cell. A conditional centromere yeast plasmid was constructed which can be amplified to high copy number by a process of unequal partitioning at cell division, followed by selection for increased copy number. However, in the absence of selection pressure for plasmid amplification, copy number rapidly drops from 25 plasmids/cell to 6 plasmids/cell in less than 10 generations of growth. Copy number subsequently decreases from 6 plasmids/cell to 2 plasmids/cell over a span of 50 generations. A combination of flow cytometric measurement of copy number distributions and segregated mathematical modeling were applied to test the predictions of a conceptual model of conditional centromereplasmid propagation. Measured distributions of plasmid content displayed a significant subpopulation of cells with a copy number of 4-6, evenin a population whose mean copy number was 13.5. This type of copy number distribution was reproduced by a mathematical model which assumes that amaximum of 4-6 centromere plasmids per cell can be stably partitionedat cell division. The model also reproduces the observed biphasic kinetics of plasmid number instability. The agreement between simulation and experimental results provides support for the proposed model and demonstrates the utility of the flow cytometry/segregated modeling approach for the study of multicopy recombinant vector propagation.  相似文献   

18.
The 60 kb repeats located in the distal heterochromatin of the X chromosome of Drosophila melanogaster were cloned in overlapping cosmids. These regions, designated as SCLRs, comprised the following types of repeated elements Stellate genes, which are known to be involved in spermatogenesis; copia-like retrotransposons; LINE elements, including amplified Type rDNA insertions; and rDNA fragments. The following steps in SCLR formation were hypothesized: insertion of mobile elements into the rDNA and Stellate gene clusters: internal tandem duplication events; recombination between the rDNA cluster and Stellate tandem repeat; and amplification of the whole SCLR structure. There are about nine SCLR copies per haploid genome, but there is approximately a twofold variation in copy number between fly stocks. The SCLR copy number differences between closely related stocks are suggested to be the result of unequal sister chromatid exchange (USCE). The restricted variation in SCLR copy number between unrelated stocks and the absence of chromosomes free of SCLRs suggests that natural selection is active in copy number maintenance.  相似文献   

19.
The PIGSFEAST (PF) exon of the Drosophila dumpy gene is undergoing concerted evolution by the process of unequal crossing over. We have developed a long-range PCR-based assay to amplify the approximately 12 kb long exon which contains variable numbers of 303 or 306 nt long repeats in a tandem array. We applied this procedure to mutation accumulation lines of Drosophila melanogaster established by M. Wayne and L. Higgins. Nine new repeat length variants were found in these lines allowing us to measure the rate of unequal crossing over in the PF exon. The rate, which for several reasons is an underestimate, is 7.05 × 10−4 exchanges per generation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号