首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
The Janus protein tyrosine kinases (Jaks) play critical roles in transducing growth and differentiation signals emanating from ligand-activated cytokine receptor complexes. The activation of the Jaks is hypothesized to occur as a consequence of auto- or transphosphorylation on tyrosine residues associated with ligand-induced aggregation of the receptor chains and the associated Jaks. In many kinases, regulation of catalytic activity by phosphorylation occurs on residues within the activation loop of the kinase domain. Within the Jak2 kinase domain, there is a region that has considerable sequence homology to the regulatory region of the insulin receptor and contains two tyrosines, Y1007 and Y1008, that are potential regulatory sites. In the studies presented here, we demonstrate that among a variety of sites, Y1007 and Y1008 are sites of trans- or autophosphorylation in vivo and in in vitro kinase reactions. Mutation of Y1007, or both Y1007 and Y1008, to phenylalanine essentially eliminated kinase activity, whereas mutation of Y1008 to phenylalanine had no detectable effect on kinase activity. The mutants were also examined for the ability to reconstitute erythropoietin signaling in gamma2 cells, which lack Jak2. Consistent with the kinase activity, mutation of Y1007 to phenylalanine eliminated the ability to restore signaling. Moreover, phosphorylation of a kinase-inactive mutant (K882E) was not detected, indicating that Jak2 activation during receptor aggregation is dependent on Jak2 and not another receptor-associated kinase. The results demonstrate the critical role of phosphorylation of Y1007 in Jak2 regulation and function.  相似文献   

4.
5.
Regulation of Stat3 activation by MEK kinase 1   总被引:6,自引:0,他引:6  
  相似文献   

6.
7.
Using microarray technology, we previously demonstrated that IFN-gamma induces suppressor of cytokine signaling-3 (SOCS-3) in Stat1-/- mouse embryonic fibroblasts and bone marrow-derived macrophages. In this study, we have investigated the mechanism by which SOCS-3 is induced by Stat1-independent signal transduction pathway. Tyrosine kinases Jak1 and Jak2 are required for SOCS-3 induction by IFN-gamma in mouse embryonic fibroblasts. IFN-gamma stimulated strong and sustained activation of Stat1 whereas Stat3 activation was weak and transient in wild-type fibroblasts. In contrast, Stat3 is activated strongly and in a sustained manner in Stat1-/- fibroblasts. The Src kinase inhibitor SU6656 suppressed IFN-gamma activation of Stat3 in both wild-type and Stat1-/- fibroblasts. However, SU6656 inhibited IFN-gamma induction of SOCS-3 completely in Stat1-/- but not in wild-type fibroblasts. Knock down of Stat3 by short interfering RNA abrogated Stat3 activation and SOCS-3 induction by IFN-gamma in Stat1-/- fibroblasts. In human fibrosarcoma cell line 2fTGH, IFN-gamma activated Stat1 but not Stat3. SOCS-3 induction by IFN-gamma is strictly Stat1-dependent. The Stat1 docking site is required for SOCS-3 induction by IFN-gamma in human lung adenocarcinoma cells. We propose a model in which sustained activation of Stat1 or Stat3 mediates SOCS-3 induction by IFN-gamma in wild-type and Stat1-/- mouse embryonic fibroblasts, respectively.  相似文献   

8.
Janus kinases are essential for signal transduction by a variety of cytokine receptors and when inappropriately activated can cause hematopoietic disorders and oncogenesis. Consequently, it can be predicted that the interaction of the kinases with receptors and the events required for activation are highly controlled. In a screen to identify phosphorylation events regulating Jak2 activity in EpoR signaling, we identified a mutant (Jak2-Y613E) which has the property of being constitutively activated, as well as an inactivating mutation (Y766E). Although no evidence was obtained to indicate that either site is phosphorylated in signaling, the consequences of the Y613E mutation are similar to those observed with recently described activating mutations in Jak2 (Jak2-V617F and Jak2-L611S). However, unlike the V617F or L611S mutant, the Y613E mutant requires the presence of the receptor but not Epo stimulation for activation and downstream signaling. The properties of the Jak2-Y613E mutant suggest that under normal conditions, Jak2 that is not associated with a receptor is locked into an inactive state and receptor binding through the FERM domain relieves steric constraints, allowing the potential to be activated with receptor engagement.  相似文献   

9.
The basic biological processes under the control of the Jak/Stat signaling pathway in Drosophila are reviewed. As shown, the fruit fly Drosophila melanogaster is a very convenient model organism for investigation of Jak/Stat functions in various aspects of ontogenesis.  相似文献   

10.
11.
Using anti-phosphotyrosine immunoaffinity chromatography, we have searched for serine/threonine kinases that are directly regulated by tyrosine phosphorylation in v-src-transformed rat 3Y1 fibroblasts. Tyrosine phosphoprotein preparations from v-src-transformed cells contain a kinase activity that phosphorylates histone H1 in vitro on serine residues and this activity is present at a 20-fold greater level than that in parental cell preparations. This activity elutes from a MonoQ FPLC column as a single peak and gel filtration chromatography suggests that the kinase has a molecular mass of approximately 55 kDa. Tyrosine phosphatase treatment inactivates the histone H1 kinase and this result indicates that the specific activity of the kinase is regulated by tyrosine phosphorylation. Experiments with cells transformed with a temperature-sensitive mutant of the v-src oncogene demonstrate that the tyrosine phosphorylation of the histone H1 kinase is an early event in v-src transformation. The kinase is distinct from known cdc2 family members that contain the PSTAIR motif, because the kinase can be separated almost completely from these proteins by immunoprecipitation with an antibody against p34cdc2. The profile of antibody reactivity and sensitivity to modulators of protein kinases suggests that this activity is distinct from known second messenger-regulated kinases and from previously characterized MAP kinases.  相似文献   

12.
Upon stimulation of cells with interleukin-1 (IL-1) the IL-1 receptor type I (IL-1RI) associated kinase-1 (IRAK-1) transiently associates to and dissociates from the IL-1RI and thereafter translocates into the nucleus. Here we show that nuclear translocation of IRAK-1 depends on its kinase activity since translocation was not observed in EL-4 cells overexpressing a kinase negative IRAK-1 mutant (EL-4(IRAK-1-K239S)). IRAK-1 itself, an endogenous substrate with an apparent molecular weight of 24kDa (p24), and exogenous substrates like histone and myelin basic protein are phosphorylated by nuclear located IRAK-1. Phosphorylation of p24 cannot be detected in EL-4(IRAK-1-K239S) cells. IL-1-dependent recruitment of IRAK-1 to the IL-1RI and subsequent phosphorylation of IRAK-1 is a prerequisite for nuclear translocation of IRAK-1. It is therefore concluded that intracellular localization of IRAK-1 depends on its kinase activity and that IRAK-1 may also function as a kinase in the nucleus as shown by a new putative endogenous substrate.  相似文献   

13.
目的探究抑制布氏田鼠Lasiopodomys brandtii伏隔核区leptin-Stat3(瘦素-Stat3)细胞信号通路对其能量代谢以及体质量的影响。方法在布氏田鼠伏隔核区定点注射Jak/Stat3抑制剂(WP1066),使用TSE代谢笼系统检测布氏田鼠的基础代谢,并随时记录布氏田鼠的体质量。结果在伏隔核区定点注射Jak/Stat3抑制剂后,布氏田鼠伏隔核区P-Stat3表达量以及瘦素表达水平明显下降(P0.05),而血清瘦素浓度以及血糖浓度没有显著变化(P0.05)。TSE代谢笼实验检测发现,实验组布氏田鼠总能量消耗显著降低(P0.05)、呼吸交换率显著增加(P0.05)、总耗氧量显著降低(P0.05)、总自主运动量显著减弱(P0.05)、总饮水量显著增加(P0.05)、体质量显著增加(P0.05)。结论调控伏隔核区的leptin-Stat3信号通路能够调控基础代谢,进而在10 d内改变布氏田鼠体质量。  相似文献   

14.
RelB, an NF-kappaB/Rel-related transacting factor, was initially identified as an immediate-early gene product in fibroblasts and subsequently shown to exhibit constitutive DNA binding activity in lymphoid cells. The data presented in this report show that RelB is also constitutively active, as monitored by electrophoretic mobility shift assay, in the v-Src-transformed fibroblast cell line, SR1. By contrast, nontransformed parental (3Y1) cells displayed inducible NF-kappaB activity; RelB activity was also observed, although to a lesser extent, in two additional v-Src-transformed fibroblast lines. RelB activation in SR1 cells did not require an increase in RelB expression or result from a decrease in the levels of IkappaB alpha or p105, proteins previously shown to bind to and inhibit the activity of the Rel proteins. Numerous studies have shown that stimulus-dependent Rel activation requires degradation of IkappaB alpha, p105 or other member of the IkappaB family, and that this process is precluded by agents that inhibit proteasome activity. We show that treatment of SR1 cells with proteasome inhibitors abolishes RelB activity and thus suggest that RelB in these cells is associated with IkappaB and that v-Src transformation activates RelB by accelerating IkappaB proteolysis. Additional data show that serum and tumor necrosis factor-alpha (TNF-alpha) increase RelB protein levels in 3Y1 cells and that this process is blocked by proteasome inhibitors.  相似文献   

15.
A CC chemokine CCL18 stimulates collagen production in pulmonary fibroblasts through an unknown signaling mechanism. In this study, involvement of Sp1 and Smad3 in CCL18 signaling in primary human pulmonary fibroblast cultures was investigated. Phosphorylation of Sp1, DNA-binding by Sp1, and the activity of an Sp1-dependent reporter were all increased in response to CCL18 stimulation. CCL18 did not stimulate a detectable increase in Smad3 phosphorylation or Smad3/4 DNA-binding activity, although some basal phosphorylation and DNA binding by Smad3/4 were noted. Transient overexpression of dominant negative mutants of Sp1 and Smad3 abrogated CCL18-dependent upregulation as well as basal production of collagen. These observations suggested that CCL18 activates collagen production in pulmonary fibroblasts through an Sp1-dependent pathway that also requires basal Smad3 activity. Possible involvement of autocrine TGF-beta in CCL18 signaling was considered. CCL18 stimulated increases in collagen mRNA and protein production without detectable changes in TGF-beta1, -beta2, and -beta3 mRNA or protein levels. Neutralizing anti-TGF-beta antibodies, latency-associated peptide, ALK5-specific inhibitor SD431542, and an inhibitor of the protease-dependent TGF-beta activation aprotinin, each failed to block CCL18-stimulated collagen production. These observations suggest that both CCL18 signaling in pulmonary fibroblasts and basal Smad3 activity are independent of autocrine TGF-beta.  相似文献   

16.
17.
The protein kinase D (PKD) family consists of three serine/threonine protein kinases termed PKD, PKD2, and PKD3, which are similar in overall structure and primary amino acid sequence. However, each isozyme displays a distinctive intracellular localization. Taking advantage of the structural homology and opposite nuclear localization of PKD2 and PKD3, we generated an extensive set of chimeric proteins between both isozymes to determine which PKD3 domain(s) mediates its nuclear localization. We found that the C-terminal region of PKD3, which contains its catalytic domain, is necessary but not sufficient for its nuclear localization. Real time imaging of a photoactivatable green fluorescent protein fused to PKD3 revealed that point mutations that render PKD3 catalytically inactive completely prevented its nuclear import despite its interaction with importin alpha and beta. We also found that activation loop phosphorylation of PKD3 did not require its nuclear localization, and it was not sufficient to promote the nuclear import of PKD3. These results identify a novel function for the kinase activity of PKD3 in promoting its nuclear entry and suggest that the catalytic activity of PKD3 may regulate its nuclear import through autophosphorylation and/or interaction with another protein(s).  相似文献   

18.
19.
Epithelial sheet movement is an essential morphogenetic process during mouse embryonic eyelid closure in which Mitogen-Activated Protein 3 Kinase 1 (MAP3K1) and c-Jun play a critical role. Here we show that MAP3K1 associates with the cytoskeleton, activates Jun N-terminal kinase (JNK) and actin polymerization, and promotes the eyelid inferior epithelial cell elongation and epithelium protrusion. Following epithelium protrusion, c-Jun begins to express and acts to promote ERK phosphorylation and migration of the protruding epithelial cells. Homozygous deletion of either gene causes defective eyelid closure, but non-allelic non-complementation does not occur between Map3k1 and c-Jun and the double heterozygotes have normal eyelid closure. Results from this study suggest that MAP3K1 and c-Jun signal through distinct temporal-spatial pathways and that productive epithelium movement for eyelid closure requires the consecutive action of MAP3K1-dependent cytoskeleton reorganization followed by c-Jun-mediated migration.  相似文献   

20.
Isolated, intact dermal fibroblasts can transfer the terminal phosphate of adenosine triphosphate, [γ-32P]ATP, to an exogenously added macromolecule (histone). The incorporation of labeled phosphate to histone is attributed to an extracellularly directed protein kinase activity (ecto-kinase) which cannot be accounted for by soluble cytoplasmic protein kinase that might have been released and become bound to cell membranes during the cell preparation. The addition of soluble cytoplasmic enzyme preparations to the cell suspension was fully recoverable in the supernatant and the first wash. The activity of ectokinase was abolished by incubation of intact cells with trypsin for 5 min, whereas the activity of cytoplasmic enzyme was unaffected by the trypsin treatment. These data suggest that dermal fibroblasts contain protein kinase on the outer surface of plasma membrane which can phosphorylate exogenously added macromolecules. The ecto-protein kinase activity is dependent on cell number, time of incubation, and the concentration of Mg2+ in the reaction mixture. Lineweaver-Burk plot analyses yielded Km values for ATP and histone of 7 × 10?5 and 3 × 10?6m, respectively. The ecto-protein kinase activity of normal fibroblasts and fibrosarcoma cells were also compared. The enzyme activity of normal cells was higher than that of the malignant cells and was not significantly affected by cyclic nucleotides, whereas the activity of the malignant cells were stimulated by the addition of micromolar concentrations of the cyclic nucleotides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号