首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
2.
Chinese hamster ovary (CHO) cells are a prevalent tool in biological research and are among the most widely used host cell lines for production of recombinant therapeutic proteins. While research in other organisms has been revolutionized through the development of DNA sequence-based tools, the lack of comparable genomic resources for the Chinese hamster has impeded similar work in CHO cell lines. A comparative genomics approach, based upon the completely sequenced mouse genome, can facilitate genomic work in this important organism. Using chromosome synteny to define regions of conserved linkage between Chinese hamster and mouse chromosomes, a working scaffold for the Chinese hamster genome has been developed. Mapping CHO and Chinese hamster sequences to the mouse genome creates direct access to relevant information in public databases. Additionally, mapping gene expression data onto a chromosome scaffold affords the ability to interpret information in a genomic context, potentially revealing important structural and regulatory features in the Chinese hamster genome. Further development of this genomic scaffold will provide opportunities to use biomolecular tools for research in CHO cell lines today and will be an asset to future efforts to sequence the Chinese hamster genome.  相似文献   

3.
4.
Three normalized cDNA libraries were constructed, two of which were constructed from reproductive tissues ovary and testis, and the other one from pooled immune tissues including head kidney, intestine, liver and spleen. A total of 10 542 clones were sequenced generating 10 128 expressed sequence tags (ESTs). Cluster analysis indicated a total of 5808 unique sequences including 1712 contigs and 4096 singletons. A total of 4249 (73%) of the unique ESTs had significant hits to the non‐redundant protein database, 2253 of which were annotated using Gene Ontology (GO) terms. A total of 311 microsatellites (with 246 having sufficient flanking sequences for primer design) and 6294 putative SNPs were identified. These genome resources provide the material basis for future microarray development, marker validation and genetic linkage and QTL analysis.  相似文献   

5.
6.
Chinese hamster ovary (CHO) cell lines are widely used for scientific research and biotechnology. A CHO genomic bacterial artificial chromosome (BAC) library was constructed from a mouse dihydrofolate reductase (DHFR) gene‐amplified CHO DR1000L‐4N cell line for genome‐wide analysis of CHO cell lines. The CHO BAC library consisted of 122,281 clones and was expected to cover the entire CHO genome five times. A CHO chromosomal map was constructed by fluorescence in situ hybridization (FISH) imaging using BAC clones as hybridization probes (BAC‐FISH). Thirteen BAC‐FISH marker clones were necessary to identify all the 20 individual chromosomes in a DHFR‐deficient CHO DG44 cell line because of the aneuploidy of the cell line. To determine the genomic structure of the exogenous Dhfr amplicon, a 165‐kb DNA region containing exogenous Dhfr was cloned from the BAC library using high‐density replica (HDR) filters and Southern blot analysis. The nucleotide sequence analysis revealed a novel genomic structure in which the vector sequence containing Dhfr was sandwiched by long inverted sequences of the CHO genome. Biotechnol. Bioeng. 2009; 104: 986–994. © 2009 Wiley Periodicals, Inc.  相似文献   

7.
8.
9.
应用生物信息学方法,构建了一套针对cDNA或EST文库的高通量、自动化分析体系,CLASP(cDNA Library Analysis SystemPrimary)。CLASP基于Linux操作系统,主要由Perl程序构成。它以cDNA文库(ESTs)序列为分析对象,具有自动查找序列同源基因并进行染色体定位(包括细胞遗传学定位和SIS定位)、EST自动延伸等功能;并对不同来源序列进行聚类分析。应用该体系对3对肺癌相关抑制性消减杂交(SSH)cDNA文库进行了分析。结果在所有3对文库的2083条EST中有1492条找到了同源基因,其中1365条得到染色体定位。对所余591条未知基因的EST进行了电子延伸,其中有214条EST得到不同程度的延伸。对上述cDNA文库中已知基因的EST以及电子延伸后的EST再分别进行聚类分析,而后综合两个聚类分析的结果,由此可发现不同文库间的共同与差异表达基因,可用于特定性状相关的基因功能预测。  相似文献   

10.
11.
12.
13.
Two complementary DNA (cDNA) libraries were constructed from tissues isolated from primordia and basidiomes of Agaricus bisporus to characterize genes involved in mushroom development. Using single-pass sequencing of 869 cDNA clones, we found 477 expressed sequence tags (ESTs), including 466 not previously described in the databases for A. bisporus. A BLASTX search revealed that 374 ESTs had similarities with protein sequences available from databases; 193 of these ESTs were categorized according to their putative function. Most ESTs were assigned to one of four roles: metabolism (23%), cell structure (15%), cell growth and division (12%), and protein destination and storage (10%). The remaining ESTs with putative homologues were classified in 10 additional categories. Many ESTs could not be functionally assigned. Based on redundancy levels, at least 4 ESTs were preferentially expressed in each tissue type. Sequence analysis also suggested the presence of paralog tyrosinase genes in the A. bisporus genome.  相似文献   

14.
15.
16.
17.
18.
To investigate the immunological responses of turbot to nodavirus infection or pIC stimulation, we constructed cDNA libraries from liver, kidney and gill tissues of nodavirus-infected fish and examined the differential gene expression within turbot kidney in response to nodavirus infection or pIC stimulation using a turbot cDNA microarray. Turbot were experimentally infected with nodavirus and samples of each tissue were collected at selected time points post-infection. Using equal amount of total RNA at each sampling time, we made three tissue-specific cDNA libraries. After sequencing 3230 clones we obtained 3173 (98.2%) high quality sequences from our liver, kidney and gill libraries. Of these 2568 (80.9%) were identified as known genes and 605 (19.1%) as unknown genes. A total of 768 unique genes were identified.The two largest groups resulting from the classification of ESTs according to function were the cell/organism defense genes (71 uni-genes) and apoptosis-related process (23 uni-genes). Using these clones, a 1920 element cDNA microarray was constructed and used to investigate the differential gene expression within turbot in response to experimental nodavirus infection or pIC stimulation. Kidney tissue was collected at selected times post-infection (HPI) or stimulation (HPS), and total RNA was isolated for microarray analysis. Of the 1920 genes studied on the microarray, we identified a total of 121 differentially expressed genes in the kidney: 94 genes from nodavirus-infected animals and 79 genes from those stimulated with pIC. Within the nodavirus-infected fish we observed the highest number of differentially expressed genes at 24 HPI. Our results indicate that certain genes in turbot have important roles in immune responses to nodavirus infection and dsRNA stimulation.  相似文献   

19.
Discovery of single nucleotide polymorphisms (SNPs) requires analysis of redundant sequences such as those available in large public databases. The ability to detect SNPs, especially those of low frequency, is dependent on the depth and scale of the discovery effort. Large numbers of SNPs have been identified by mining large-scale EST surveys and whole genome sequencing projects. These surveys however are subject to ascertainment bias and the inherent errors in large-scale single pass sequencing efforts. For example, the number of steps involved in the construction and sequencing of cDNA libraries make ESTs highly error prone, resulting in an increased frequency of nonvalid SNPs obtained in these surveys. Sequences of mtDNA genes are often incorporated into cDNA libraries as an artifact of the library construction process and are typically either subtracted from cDNA libraries or are considered superfluous when evaluating the information content of EST datasets. Sequences of mtDNA genes provide a unique resource for the analysis of SNP parameters in EST projects. This study uses sequences from four turkey muscle cDNA libraries to demonstrate how mtDNA sequences gleaned from collections of ESTs can be used to estimate SNP parameters and thus help predict the validity of SNPs.  相似文献   

20.
Discovery of single nucleotide polymorphisms (SNPs) requires analysis of redundant sequences such as those available in large public databases. The ability to detect SNPs, especially those of low frequency, is dependent on the depth and scale of the discovery effort. Large numbers of SNPs have been identified by mining large-scale EST surveys and whole genome sequencing projects. These surveys however are subject to ascertainment bias and the inherent errors in large-scale single pass sequencing efforts. For example, the number of steps involved in the construction and sequencing of cDNA libraries make ESTs highly error prone, resulting in an increased frequency of nonvalid SNPs obtained in these surveys. Sequences of mtDNA genes are often incorporated into cDNA libraries as an artifact of the library construction process and are typically either subtracted from cDNA libraries or are considered superfluous when evaluating the information content of EST datasets. Sequences of mtDNA genes provide a unique resource for the analysis of SNP parameters in EST projects. This study uses sequences from four turkey muscle cDNA libraries to demonstrate how mtDNA sequences gleaned from collections of ESTs can be used to estimate SNP parameters and thus help predict the validity of SNPs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号