首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
RP135 is a 24-residue peptide corresponding to the principal neutralizing determinant of the envelope glycoprotein gp120 of the human immunodeficiency virus type 1. We have studied the conformation of RP135 in complex with a neutralizing antibody 0.5 raised against gp120 by 2D NMR spectroscopy. The antigenic determinant recognized by this antibody was mapped using a combination of HOHAHA and ROESY measurements, in which resonances of the Fab and the tightly bound peptide residues are eliminated and the mobile residues of the bound peptide are sequentially assigned. We found that residues Ser6 - Thr19 are part of the epitope, while Lys5 and Ile20 are at its boundaries. Difference spectroscopy was applied to study the conformation of the bound peptide representing the epitope within the 52 kDa of the Fab complex. Specific residues of the peptide were deuterated or replaced and the difference between the NOESY spectrum of the complex with the unlabeled residue and the NOESY spectrum of the complex with the modified residue revealed the interactions of the labeled residue both within the peptide and with the Fab fragment. A total of 122 distance restraints derived from the difference spectra enabled the calculation of the structure of the bound peptide. The peptide forms a 10-residue loop, while the two segments flanking this loop interact extensively with each other and possibly form anti-parallel -strands. The loop conformation could be observed due to the unusual large size (17 residues) of the antigenic determinant recognized by 0.5.  相似文献   

2.
The structure of a complex between human rhinovirus 2 (HRV2) and the Fab fragment of neutralizing monoclonal antibody (MAb) 3B10 has been determined to 25-Å resolution by cryoelectron microscopy and three-dimensional reconstruction techniques. The footprint of 3B10 on HRV2 is very similar to that of neutralizing MAb 8F5, which binds bivalently across the icosahedral twofold axis. However, the 3B10 Fab fragment (Fab-3B10) is bound in an orientation, inclined at approximately 45° to the surface of the virus capsid, which is compatible only with monovalent binding of the antibody. The canyon around the fivefold axis is not directly obstructed by the bound Fab. The X-ray structures of a closely related HRV (HRV1A) and a Fab fragment were fitted to the density maps of the HRV2–Fab-3B10 complex obtained by cryoelectron microscope techniques. The footprint of 3B10 on the viral surface is largely on VP2 but also covers the VP3 loop centered on residue 3064 and the VP1 loop centered on residue 1267. MAb 3B10 can interact directly with VP2 residue 2164, the site of an escape mutation on VP2, and with VP1 residues 1264 to 1267, the site of a deletion escape mutation. Deletion of these residues shortens the VP1 loop, moving it away from the MAb binding site. All structural and biochemical evidence indicates that MAb 3B10 binds to a conformation epitope on HRV2.  相似文献   

3.
The human monoclonal antibody 2F5 neutralizes primary human immunodeficiency virus type 1 (HIV-1) with rare breadth and potency. A crystal structure of a complex of 2F5 and a peptide corresponding to its core epitope on gp41, ELDKWAS, revealed that the peptide interacts with residues at the base of the unusually long (22-residue) third complementarity-determining region of the heavy chain (CDR H3) but not the apex. Here, we perform alanine-scanning mutagenesis across CDR H3 and make additional substitutions of selected residues to map the paratope of Fab 2F5. Substitution of residues from the base of the H3 loop or from CDRs H1, H2, and L3, which are proximal to the peptide, significantly diminished the affinity of Fab 2F5 for gp41 and a short peptide containing the 2F5 core motif. However, nonconservative substitutions to a phenylalanine residue at the apex of the H3 loop also markedly decreased 2F5 binding to both gp41 and the peptide, suggesting that recognition of the core epitope is crucially dependent on features at the apex of the H3 loop. Furthermore, substitution at the apex of the H3 loop had an even more pronounced effect on the neutralizing activity of 2F5 against three sensitive HIV-1. These observations present a challenge to vaccine strategies based on peptide mimics of the linear epitope.  相似文献   

4.
BACKGROUND: The third hypervariable (V3) loop of HIV-1 gp120 has been termed the principal neutralizing determinant (PND) of the virus and is involved in many aspects of virus infectivity. The V3 loop is required for viral entry into the cell via membrane fusion and is believed to interact with cell surface chemokine receptors on T cells and macrophages. Sequence changes in V3 can affect chemokine receptor usage, and can, therefore, modulate which types of cells are infected. Antibodies raised against peptides with V3 sequences can neutralize laboratory-adapted strains of the virus and inhibit syncytia formation. Fab fragments of these neutralizing antibodies in complex with V3 loop peptides have been studied by X-ray crystallography to determine the conformation of the V3 loop. RESULTS: We have determined three crystal structures of Fab 58.2, a broadly neutralizing antibody, in complex with one linear and two cyclic peptides the amino acid sequence of which comes from the MN isolate of the gp120 V3 loop. Although the peptide conformations are very similar for the linear and cyclic forms, they differ from that seen for the identical peptide bound to a different broadly neutralizing antibody, Fab 59.1, and for a similar peptide bound to the MN-specific Fab 50.1. The conformational difference in the peptide is localized around residues Gly-Pro-Gly-Arg, which are highly conserved in different HIV-1 isolates and are predicted to adopt a type II beta turn. CONCLUSIONS: The V3 loop can adopt at least two different conformations for the highly conserved Gly-Pro-Gly-Arg sequence at the tip of the loop. Thus, the HIV-1 V3 loop has some inherent conformational flexibility that may relate to its biological function.  相似文献   

5.
The broadly neutralizing HIV-1 antibody 2F5 recognizes an epitope in the gp41 membrane proximal external region (MPER). The MPER adopts a helical conformation as free peptide, as post-fusogenic forms of gp41, and when bound to the 4E10 monoclonal antibody (Mab). However, when bound to 2F5, the epitope is an extended-loop. The antibody-peptide structure reveals binding between the heavy and light chains with most the long, hydrophobic CDRH3 not contacting peptide. However, mutagenesis identifies this loop as critical for binding, neutralization and for putative hydrophobic membrane interactions. Here, we examined length requirements of the 2F5 CDRH3 and plasticity regarding binding and neutralization. We generated 2F5 variants possessing either longer or shorter CDRH3s and assessed function. The CDRH3 tolerated elongations and reductions up to four residues, displaying a range of binding affinities and retaining some neutralizing capacity. 2F5 antibody variants selective recognition of conformationally distinctive MPER probes suggests a new role for the CDRH3 loop in destabilizing the helical MPER. Binding and neutralization were enhanced by targeted tryptophan substitutions recapitulating fully the activities of the wild-type 2F5 antibody in a shorter CDRH3 variant. MPER alanine scanning revealed binding contacts of this variant downstream of the 2F5 core epitope, into the 4E10 epitope region. This variant displayed increased reactivity to cardiolipin-beta-2-glycoprotein. Tyrosine replacements maintained neutralization while eliminating cardiolipin-beta-2-glycoprotein interaction. The data suggest a new mechanism of action, important for vaccine design, in which the 2F5 CDRH3 contacts and destabilizes the MPER helix downstream of its core epitope to allow induction of the extended-loop conformation.  相似文献   

6.
Solid-state NMR measurements have been carried out on frozen solutions of the complex of a 24-residue peptide derived from the third variable (V3) loop of the HIV-1 envelope glycoprotein gp120 bound to the Fab fragment of an anti-gp120 antibody. The measurements place strong constraints on the conformation of the conserved central GPGR motif of the V3 loop in the antibody-bound state. In combination with earlier crystal structures of V3 peptide-antibody complexes and existing data on the cross-reactivity of the antibodies, the solid-state NMR measurements suggest that the Gly-Pro-Gly-Arg (GPGR) motif adopts an antibody-dependent conformation in the bound state and may be conformationally heterogeneous in unbound, full-length gp120. These measurements are the first application of solid-state NMR methods in a structural study of a peptide-protein complex.  相似文献   

7.
The E2 envelope glycoprotein of hepatitis C virus (HCV) binds to the host entry factor CD81 and is the principal target for neutralizing antibodies (NAbs). Most NAbs recognize hypervariable region 1 on E2, which undergoes frequent mutation, thereby allowing the virus to evade neutralization. Consequently, there is great interest in NAbs that target conserved epitopes. One such NAb is AP33, a mouse monoclonal antibody that recognizes a conserved, linear epitope on E2 and potently neutralizes a broad range of HCV genotypes. In this study, the X-ray structure of AP33 Fab in complex with an epitope peptide spanning residues 412 to 423 of HCV E2 was determined to 1.8 Å. In the complex, the peptide adopts a β-hairpin conformation and docks into a deep binding pocket on the antibody. The major determinants of antibody recognition are E2 residues L413, N415, G418, and W420. The structure is compared to the recently described HCV1 Fab in complex with the same epitope. Interestingly, the antigen-binding sites of HCV1 and AP33 are completely different, whereas the peptide conformation is very similar in the two structures. Mutagenesis of the peptide-binding residues on AP33 confirmed that these residues are also critical for AP33 recognition of whole E2, confirming that the peptide-bound structure truly represents AP33 interaction with the intact glycoprotein. The slightly conformation-sensitive character of the AP33-E2 interaction was explored by cross-competition analysis and alanine-scanning mutagenesis. The structural details of this neutralizing epitope provide a starting point for the design of an immunogen capable of eliciting AP33-like antibodies.  相似文献   

8.
We describe solid state NMR measurements on frozen solutions of the complex of the 24-residue HIV-1 gp120 V3 loop peptide RP135 with the Fab fragment of the anti-gp120 antibody 0.5, using rotational echo double resonance (REDOR). In order to probe possible hydrogen bonding between arginine side chains and glycine backbone carbonyls in the region of the conserved Gly-Pro-Gly-Arg (GPGR) motif of the V3 loop, RP135 samples were prepared with 15N labels at the nitrogen positions of arginine side chains and 13C labels at glycine carbonyl positions and 13C-detected 13C-15N REDOR measurements were performed on peptide/antibody complexes of these labeled samples. Such hydrogen bonding was previously observed in a crystal structure of the V3 loop peptide/antibody complex RP142/59.1 [Ghiara et al. (1994) Science, 264, 82–85], but is shown by the REDOR measurements to be absent in the RP135/0.5 complex. These results confirm the antibody-dependent conformational differences in the GPGR motif suggested by previously reported solid state NMR measurements of and backbone dihedral angles in the RP135/0.5 complex. In addition, we describe REDOR measurements on the helical synthetic peptide MB(i+4)EK in frozen solution that establish our ability to detect 13C-15N dipole–dipole couplings in the distance range appropriate to these hydrogen bonding studies. We also report the results of molecular modeling calculations on the central portion RP135, using a combination of the solid state NMR restraints of Weliky et al. [Nat. Struct. Biol., 6, 141–145, 1999] and the liquid state NMR restraints of Tugarinov et al. (Nat. Struct. Biol., 6, 331–335, 1999]. The dynamics calculations demonstrate the mutual compatibility of the two sets of experimental structural restraints and reduce ambiguities in the solid state NMR restraints that result from symmetry and signal-to-noise considerations.  相似文献   

9.
A component to the problem of inducing broad neutralizing HIV-1 gp41 membrane proximal external region (MPER) antibodies is the need to focus the antibody response to the transiently exposed MPER pre-hairpin intermediate neutralization epitope. Here we describe a HIV-1 envelope (Env) gp140 oligomer prime followed by MPER peptide-liposomes boost strategy for eliciting serum antibody responses in rhesus macaques that bind to a gp41 fusion intermediate protein. This Env-liposome immunization strategy induced antibodies to the 2F5 neutralizing epitope 664DKW residues, and these antibodies preferentially bound to a gp41 fusion intermediate construct as well as to MPER scaffolds stabilized in the 2F5-bound conformation. However, no serum lipid binding activity was observed nor was serum neutralizing activity for HIV-1 pseudoviruses present. Nonetheless, the Env-liposome prime-boost immunization strategy induced antibodies that recognized a gp41 fusion intermediate protein and was successful in focusing the antibody response to the desired epitope.  相似文献   

10.
Most human immunodeficiency virus type 1 (HIV-1) neutralizing antibodies in infected individuals and in immunized animals are directed against the third variable loop (V3) of the envelope glycoprotein (gp120) of the virus. This loop plays a crucial role in phenotypic determination, cytopathicity (syncytium induction), and coreceptor usage of HIV-1. The human monoclonal antibody 447-52D was found to neutralize a broad spectrum of HIV-1 strains. In order to solve the solution structure of the V3MN peptide bound to the 447-52D Fab fragment by NMR, large quantities of labeled peptide and a protocol for the purification of the Fab fragment were needed. An expression plasmid coding for the 23-residue V3 peptide of the HIV-1MN strain (V3MN peptide, YNKRKRIHIGPGRAFYTTKNIIG) linked to a derivative of the RNA-binding domain of hnRNCP1 was constructed. The fusion protein attached to the V3 peptide prevents its degradation. Using this system, U-15N, U-13C,15N, and U-13C,15N, 50% 2H labeled fusion protein molecules were expressed in Escherichia coli grown on rich Celtone medium with yields of about 240 mg/liter. The V3MN peptide was released by CNBr cleavage and purified by RP-HPLC, giving final yields of 6-13 mg/liter. This expression system is generally applicable for biosynthesis of V3-related peptides and was also used to prepare the V3JR-FL. The 447-52D Fab fragment was obtained by a short enzymatic papain cleavage of the whole antibody. Preliminary NMR spectra demonstrate that full structural analysis of the V3MN complexed to the 447-52D Fab is feasible. This system enables studies of the same epitope bound to different HIV-1 neutralizing antibodies.  相似文献   

11.
Interaction of CC chemokine receptor 5 (CCR5) with the human immunodeficiency virus type 1 (HIV-1) gp120/CD4 complex involves its amino-terminal domain (Nt-CCR5) and requires sulfation of two to four tyrosine residues in Nt-CCR5. The conformation of a 27-residue Nt-CCR5 peptide, sulfated at Y10 and Y14, was studied both in its free form and in a ternary complex with deglycosylated gp120 and a CD4-mimic peptide. NMR experiments revealed a helical conformation at the center of Nt-CCR5(1-27), which is induced upon gp120 binding, as well as a helical propensity for the free peptide. A well-defined structure for the bound peptide was determined for residues 7-23, increasing by 2-fold the length of Nt-CCR5's known structure. Two-dimensional saturation transfer experiments and measurement of relaxation times highlighted Nt-CCR5 residues Y3, V5, P8-T16, E18, I23 and possibly D2 as the main binding determinant. A calculated docking model for Nt-CCR5(1-27) suggests that residues 2-22 of Nt-CCR5 interact with the bases of V3 and C4, while the C-terminal segment of Nt-CCR5(1-27) points toward the target cell membrane, reflecting an Nt-CCR5 orientation that differs by 180° from that of a previous model. A gp120 site that could accommodate CCR5Y3 in a sulfated form has been identified. The present model attributes a structural basis for binding interactions to all gp120 residues previously implicated in Nt-CCR5 binding. Moreover, the strong interaction of sulfated CCR5Tyr14 with gp120Arg440 revealed by the model and the previously found correlation between E322 and R440 mutations shed light on the role of these residues in HIV-1 phenotype conversion, furthering our understanding of CCR5 recognition by HIV-1.  相似文献   

12.
The human antibody b12 recognizes a discontinuous epitope on gp120 and is one of the rare monoclonal antibodies that neutralize a broad range of primary human immunodeficiency virus type 1 (HIV-1) isolates. We previously reported the isolation of B2.1, a dimeric peptide that binds with high specificity to b12 and competes with gp120 for b12 antibody binding. Here, we show that the affinity of B2.1 was improved 60-fold over its synthetic-peptide counterpart by fusing it to the N terminus of a soluble protein. This affinity, which is within an order of magnitude of that of gp120, probably more closely reflects the affinity of the phage-borne peptide. The crystal structure of a complex between Fab of b12 and B2.1 was determined at 1.8 A resolution. The structural data allowed the differentiation of residues that form critical contacts with b12 from those required for maintenance of the antigenic structure of the peptide, and revealed that three contiguous residues mediate B2.1's critical contacts with b12. This single region of critical contact between the B2.1 peptide and the b12 paratope is unlikely to mimic the discontinuous key binding residues involved in the full b12 epitope for gp120, as previously identified by alanine scanning substitutions on the gp120 surface. These structural observations are supported by experiments that demonstrate that B2.1 is an ineffective immunogenic mimic of the b12 epitope on gp120. Indeed, an extensive series of immunizations with B2.1 in various forms failed to produce gp120 cross-reactive sera. The functional and structural data presented here, however, suggest that the mechanism by which b12 recognizes the two antigens is very different. Here, we present the first crystal structure of peptide bound to an antibody that was originally raised against a discontinuous protein epitope. Our results highlight the challenge of producing immunogens that mimic discontinuous protein epitopes, and the necessity of combining complementary experimental approaches in analyzing the antigenic and immunogenic properties of putative molecular mimics.  相似文献   

13.
X-ray quality crystals of an Fab fragment from an antipeptide monoclonal antibody (R/V3-50.1) that recognizes the principal neutralizing determinant (PND) of the gp120 glycoprotein of human immunodeficiency virus type 1 (HIV-1) (MN isolate) were grown as uncomplexed and peptide complexed forms. Crystals of the free Fab grew from high salt in orthorhombic space groups P2(1)2(1)2(1) and I222 and from polyethylene glycol in space groups P1 and P2(1). Seeds from either the P1 and P2(1) native (uncomplexed) Fab crystals induced nucleation of crystals of the Fab complexed to a 16-residue synthetic peptide corresponding to the PND when streak seeded into preequilibrated solutions of this complex. Data were collected from these complex crystals and from each of the four native Fab forms to at least 2.8 A resolution. The genes for the variable domain of the Fab were cloned and sequenced and the primary amino acid sequence was deduced from this information. Knowledge of the three-dimensional structure of this Fab-peptide complex will be important in the understanding of the PND of HIV-1 and its recognition by neutralizing monoclonal antibodies.  相似文献   

14.
The three-dimensional structure of the Fab fragment of a monoclonal antibody (LNKB-2) to human interleukin-2 (IL-2) complexed with a synthetic antigenic nonapeptide, Ac-Lys-Pro-Leu-Glu-Glu-Val-Leu-Asn-Leu-OMe, has been determined at 3.0 A resolution. In the structure, four out of the six hypervariable loops of the Fab (complementarity determining regions [CDRs] L1, H1, H2, and H3) are involved in peptide association through hydrogen bonding, salt bridge formation, and hydrophobic interactions. The Tyr residues in the Fab antigen binding site play a major role in antigen-antibody recognition. The structures of the complexed and uncomplexed Fab were compared. In the antigen binding site the CDR-L1 loop of the antibody shows the largest structural changes upon peptide binding. The peptide adopts a mostly alpha-helical conformation similar to that in the epitope fragment 64-72 of the IL-2 antigen. The side chains of residues Leu 66, Val 69, and Leu 70, which are shielded internally in the IL-2 structure, are involved in interactions with the Fab in the complex studied. This indicates that antibody-antigen complexation involves a significant rearrangement of the epitope-containing region of the IL-2 with retention of the alpha-helical character of the epitope fragment.  相似文献   

15.
The three-dimensional structures of the Fab fragment of a neutralizing antibody raised against a foot-and-mouth disease virus (FMDV) of serotype C1, alone and complexed to an antigenic peptide representing the major antigenic site A (G-H loop of VP1), have been determined. As previously seen in a complex of the same antigen with another antibody which recognizes a different epitope within antigenic site A, the receptor recognition motif Arg-Gly-Asp and some residues from an adjacent helix participate directly in the interaction with the complementarity-determining regions of the antibody. Remarkably, the structures of the two antibodies become more similar upon binding the peptide, and both undergo considerable induced fit to accommodate the peptide with a similar array of interactions. Furthermore, the pattern of reactivities of five additional antibodies with versions of the antigenic peptide bearing amino acid replacements suggests a similar pattern of interaction of antibodies raised against widely different antigens of serotype C. The results reinforce the occurrence of a defined antigenic structure at this mobile, exposed antigenic site and imply that intratypic antigenic variation of FMDV of serotype C is due to subtle structural differences that affect antibody recognition while preserving a functional structure for the receptor binding site.  相似文献   

16.
The human monoclonal antibody, mAb 2F5, has broad HIV-1 neutralizing activity and binds a conserved linear epitope within the envelope glycoprotein gp41 having a core recognition sequence ELDKWA. In this study, the structural requirements of this epitope for high-affinity binding to mAb 2F5 were explored using peptide synthesis and competitive enzyme-linked immunosorbant assay (ELISA). Expansion of the minimal epitope to an end-capped, linear nonapeptide, Ac-LELDKWASL-amide, was sufficient to attain maximal affinity within the set of native gp41-sequence peptides assayed. Scanning single-residue alanine and d-residue substitutions then confirmed the essential recognition requirements of 2F5 for the central DKW sequence, and also established the importance of the terminal leucine residues in determining high-affinity binding of the linear nonapeptide. Further studies of side-chain and backbone-modified analogs revealed a high degree of structural specificity for the DK sequence in particular, and delineated the steric requirements of the Leu(3) and Trp(6) residues. The nine-residue 2F5 epitope, flanked by pairs of serine residues, retained a high affinity for 2F5 when it was conformationally constrained as a 15-residue, disulfide-bridged loop. However, analogs with smaller or larger loop sizes resulted in lower 2F5 affinities. The conformational effects of the gp41 C-peptide helix immediately adjacent to the N-terminal end of the ELDKWA epitope were examined through the synthesis of helix-initiated analogs. Circular dichroism (CD) studies indicated that the alpha-helical conformation was propagated efficiently into the LELDKWASL epitope, but without any significant effect on its affinity for 2F5. This study should guide the design of a second generation of conformationally constrained ELDKWA analogs that might elicit an immune response that mimics the HIV-neutralizing actions of 2F5.  相似文献   

17.
A novel synthetic foot-and-mouth disease virus (FMDV) peptide vaccine consisting of a synthetic B-cell and macrophage activator covalently linked to an amphiphilic alpha-helical T-cell epitope was developed. The low molecular weight vaccine of 3400 daltons is composed of virus VP1 antigenic determinant and the immunologically active lipotripeptide tripalmitoyl-S-glyceryl-cysteinyl-seryl-serine (P3CSS) as built-in adjuvant. The vaccine, tripalmitoyl-S-glyceryl-cysteinyl-seryl-seryl-FMDV-VP1 (VP1 = serotype O1K 135-154) induces protection against homologous challenge and serotype-specific virus neutralizing antibodies in guinea pigs after single administration without further adjuvants or carriers. A P3CSS conjugate with the FMDV-VP1 segment 135-154 of strain O Wuppertal produced only poor cross-protection against challenge with O1K virus. The antigenic determinant VP1(135-154) is an amphiphilic alpha-helix, as shown by CD. Molecular dynamics simulations (MDS) carried out using the highly homologous alpha-helical alcohol dehydrogenase (ADH) segment H3 as starting conformation for VP1(138-149) suggest that the FMDV segment 138-149 may adopt alpha-helical conformation during binding to its T-cell receptor, and that the development of the system during MDS may be considered as the dissociation step of the complex.  相似文献   

18.
BACKGROUND: The protein 0.5beta is a potent strain-specific human immunodeficiency virus type 1 (HIV-1) neutralizing antibody raised against the entire envelope glycoprotein (gp120) of the HIV-1(IIIB) strain. The epitope recognized by 0.5beta is located within the third hypervariable region (V3) of gp120. Recently, several HIV-1 V3 residues involved in co-receptor utilization and selection were identified. RESULTS: Virtually complete sidechain assignment of the variable fragment (Fv) of 0.5beta in complex with the V3(IIIB) peptide P1053 (RKSIRIQRGPGRAFVTIG, in single-letter amino acid code) was accomplished and the combining site structure of 0.5beta Fv complexed with P1053 was solved using multidimensional nuclear magnetic resonance (NMR). Five of the six complementarity determining regions (CDRs) of the antibody adopt standard canonical conformations, whereas CDR3 of the heavy chain assumes an unexpected fold. The epitope recognized by 0.5beta encompasses 14 of the 18 P1053 residues. The bound peptide assumes a beta-hairpin conformation with a QRGPGR loop located at the very center of the binding pocket. The Fv and peptide surface areas buried upon binding are 601 A and 743 A(2), respectively, in the 0.5beta Fv-P1053 mean structure. The surface of P1053 interacting with the antibody is more extensive and the V3 peptide orientation in the binding site is significantly different compared with those derived from the crystal structures of a V3 peptide of the HIV-1 MN strain (V3(MN)) complexed to three different anti-peptide antibodies. CONCLUSIONS: The surface of P1053 that is in contact with the anti-protein antibody 0.5beta is likely to correspond to a solvent-exposed region in the native gp120 molecule. Some residues of this region of gp120 are involved in co-receptor binding, and in discrimination between different chemokine receptors utilized by the protein. Several highly variable residues in the V3 loop limit the specificity of the 0.5beta antibody, helping the virus to escape from the immune system. The highly conserved GPG sequence might have a role in maintaining the beta-hairpin conformation of the V3 loop despite insertions, deletions and mutations in the flanking regions.  相似文献   

19.
IgG1 b12 is a broadly neutralizing antibody against human immunodeficiency virus type 1 (HIV-1). The epitope recognized by b12 overlaps the CD4 receptor-binding site (CD4bs) on gp120 and has been a target for vaccine design. Determination of the three-dimensional structure of immunoglobulin G1 (IgG1) b12 allowed modeling of the b12-gp120 interaction in which the protruding third complementarity-determining region (CDR) of the heavy chain (H3) was crucial for antibody binding. In the present study, extensive mutational analysis of the antigen-binding site of Fab b12 was carried out to investigate the validity of the model and to identify residues important for gp120 recognition and, by inference, key to the anti-HIV-1 activity of IgG1 b12. In all, 50 mutations were tested: 40 in H3, 4 each in H2 and L1, and 2 in L3. The results suggest that the interaction of gp120 with H3 of b12 is crucially dependent not only on a Trp residue at the apex of the H3 loop but also on a number of residues at the base of the loop. The arrangement of these residues, including aromatic side chains and side chains that hydrogen bond across the base of the loop, may rigidify H3 for penetration of the recessed CD4-binding cavity. The results further emphasize the importance to gp120 binding of a Tyr residue at the apex of the H2 loop that forms a second finger-like structure and a number of Arg residues in L1 that form a positively charged, shelf-like structure. In general, the data are consistent with the b12-gp120 interaction model previously proposed. At the gene level, somatic mutation is seen to be crucial for the generation of many of the structural features described. The Fab b12 mutants were also tested against the b12 epitope-mimic peptide B2.1, and the reactivity profile had many similarities but also significant differences from that observed for gp120. The paratope map of b12 may facilitate the design of molecules that are able to elicit b12-like activities.  相似文献   

20.
In various western countries, subtype P1.4 of Neisseria meningitidis serogroup B causes the greatest incidence of meningococcal disease. To investigate the molecular recognition of this subtype, we crystallised a peptide (P1HVVVNNKVATH(P11)), corresponding to the subtype P1.4 epitope sequence of outer membrane protein PorA, in complex with a Fab fragment of the bactericidal antibody MN20B9.34 directed against this epitope. Structure determination at 1.95 A resolution revealed a unique complex of one P1.4 antigen peptide bound to two identical Fab fragments. One Fab recognises the putative epitope residues in a 2:2 type I beta-turn at residues P5NNKV(P8), whereas the other Fab binds the C-terminal residues of the peptide that we consider a crystallisation artefact. Interestingly, recognition of the P1.4 epitope peptide is mediated almost exclusively through the complementarity-determining regions of the heavy chain. We exploited the observed turn conformation for designing conformationally restricted cyclic peptides for use as a peptide vaccine. The conformational stability of the two peptide designs was assessed by molecular dynamics simulations. Unlike the linear peptide, both cyclic peptides, conjugated to tetanus toxoid as a carrier protein, elicited antibody responses in mice that recognised meningococci of subtype P1.7-2,4. Serum bactericidal assays showed that some, but not all, of the sera induced with the cyclic peptide conjugates could activate the complement system with titres that were very high compared to the titres induced by complete PorA protein in its native conformation administered in outer membrane vesicles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号