首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Seven multiforms of indanol dehydrogenase were isolated in a highly purified state from male rabbit liver cytosol. The enzymes were monomeric proteins with similar molecular weights of 30,000-37,000 but with distinct electrophoretic mobilities. All the enzymes oxidized alicyclic alcohols including benzene dihydrodiol and hydroxysteroids at different optimal pH, but showed clear differences in cofactor specificity, steroid specificity, and reversibility of the reaction. Two NADP+-dependent enzymes exhibited both 17 beta-hydroxysteroid dehydrogenase activity for 5 alpha-androstanes and 3 alpha-hydroxysteroid dehydrogenase activity for 5 beta-androstan-3 alpha-ol-17-one. Three of the other enzymes with dual cofactor specificity catalyzed predominantly 5 beta-androstane-3 alpha,17 beta-diol dehydrogenation. The reverse reaction rates of these five enzymes were low, whereas the other two enzymes, which had 3 alpha-hydroxysteroid dehydrogenase activity for 5 alpha-androstanes or 3(17)beta-hydroxysteroid dehydrogenase activity for 5 alpha-androstanes, highly reduced 3-ketosteroids and nonsteroidal aromatic carbonyl compounds with NADPH as a cofactor. All the enzymes exhibited Km values lower for the hydroxysteroids than for the alicyclic alcohols. The results of kinetic analyses with a mixture of 1-indanol and hydroxysteroids, pH and heat stability, and inhibitor sensitivity suggested strongly that, in the seven enzymes, both alicyclic alcohol dehydrogenase and hydroxysteroid dehydrogenase activities reside on a single enzyme protein. On the basis of these data, we suggest that indanol dehydrogenase exists in multiple forms in rabbit liver cytosol and may function in in vivo androgen metabolism.  相似文献   

2.
An enzymatic cycling procedure for beta-NADP+ generated by the enzyme 3'-phosphodiesterase, 2':3'-cyclic nucleotide (EC 3.1.4.37) from its substrate 2':3'-cyclic NADP+ is described. The enzymes glucose-6-phosphate dehydrogenase (EC 1.1.1.49) and diaphorase (EC 1.8.1.4) are used to cycle the cofactor between its oxidized and reduced forms in the presence of glucose-6-phosphate and p-iodonitrotetrazolium violet (INT) with the concomitant production of colored INT-formazan, monitored at 492 nm. The amplification is about 400-fold per hour and is sensitive enough to detect 6 x 10(-13) mol of NADP(H). A simple procedure for the optimization of this cycling assay is also described. Conjugates to 3'-phosphodiesterase, 2':3'-cyclic nucleotide may be used in heterogeneous enzyme immunoassays for the detection of small quantities of haptens or proteins in biological fluids.  相似文献   

3.
Characterization of pulmonary carbonyl reductase of mouse and guinea pig   总被引:2,自引:0,他引:2  
Carbonyl reductases were purified from mouse and guinea pig lung. The mouse enzyme exhibited structural and catalytic similarity to the guinea pig enzyme: tetrameric structure consisting of an identical 23 kDa subunit; basicity (pI of 8.8); low substrate specificity for aliphatic and aromatic carbonyl compounds; dual cofactor specificity for NADPH and NADH; stereospecific transfer of the 4-pro S hydrogen of NADPH; and sensitivity to pyrazole, 2-mercaptoethanol and ferrous ion. Although 3-ketosteroids were extensively reduced by the mouse enzyme but not by the guinea pig enzyme in the forward reaction, the two enzymes similarly oxidized some alicyclic alcohols such as acenaphthenol, cyclohex-2-en-1-ol and benzenedihydrodiol in the presence of NADP+ and NAD+. A partial similarity between the two enzymes was observed immunologically, using antibodies against the purified guinea pig enzyme. The lung enzymes differ in several aspects from other oxidoreductases from extrapulmonary tissues. The immunoreactive protein was detected only in lung of the tissues of the two species.  相似文献   

4.
Dihydrodiol dehydrogenase activity was detected in the cytosol of various mouse tissues, among which kidney exhibited high specific activity comparable to the value for liver. The enzyme activity in the kidney cytosol was resolved into one major and three minor peaks by Q-Sepharose chromatography: one minor form cross-reacted immunologically with hepatic 3 alpha-hydroxysteroid dehydrogenase and another with aldehyde reductase. The other minor form was partially purified and the major form was purified to homogeneity. These two forms, although different in their charges, were monomeric proteins with the same molecular weight of 39,000 and had similar catalytic properties. They oxidized cis-benzene dihydrodiol and alicyclic alcohols as well as trans-dihydrodiols of benzene and naphthalene in the presence of NADP+ or NAD+, and reduced several xenobiotic aldehydes and ketones with NAD(P)H as a cofactor. The enzymes also catalyzed the oxidation of 3 alpha-hydroxysteroids and epitestosterone, and the reduction of 3- and 17-ketosteroids, showing much lower Km values (10(-7)-10(-6) M) for the steroids than for the xenobiotic alcohols. The results of mixed substrate experiments, heat stability, and activity staining on polyacrylamide gel electrophoresis suggested that, in the two enzymes, both dihydrodiol dehydrogenase and 3(17)alpha-hydroxysteroid dehydrogenase activities reside on a single enzyme protein. Thus, dihydrodiol dehydrogenase existed in four forms in mouse kidney cytosol, and the two forms distinct from the hepatic enzymes may be identical to 3(17)alpha-hydroxysteroid dehydrogenases.  相似文献   

5.
Two acidic and three basic forms of monomeric dihydrodiol dehydrogenase with molecular weights in the range of 36,000-39,000 were purified from human liver. One acidic enzyme (pI 5.2), which was specific for NADP- and dihydrodiols of benzene and naphthalene, was immunologically identified as aldehyde reductase. The other four enzymes oxidized alicyclic alcohols as well as the dihydrodiols using both NADP+ and NAD+ as cofactors, but showed differences in specificity for hydroxysteroids and inhibitor sensitivity. Two of the basic enzymes (pI 9.7 and 9.1) exhibited a 20 alpha-hydroxysteroid dehydrogenase activity and sensitivity to 1,10-phenanthroline, whereas the third basic enzyme (pI 7.6) oxidized some 3 alpha-hydroxysteroids at low rates and was inhibited by cyclopentane-1,1-diacetic acid. Another acidic enzyme, which accounted for the largest amount of enzyme activity in the tissue and appeared in two heterogenous forms with pI values of 5.9 and 5.4, showed a high 3 alpha-hydroxysteroid dehydrogenase activity and was the most sensitive to inhibition by medroxyprogesterone acetate. The Km values of the enzymes, except the pI 5.2 enzyme, for hydroxysteroids (10(-6) to 10(-7) M) were lower than those for xenobiotic alcohols.  相似文献   

6.
BackgroundIn acetic acid bacteria such as Gluconobacter oxydans or Gluconobacter cerinus, pyrroloquinoline quinone (PQQ) in the periplasm serves as the redox cofactor for several membrane-bound dehydrogenases that oxidize polyhydric alcohols to rare sugars, which can be used as a healthy alternative for traditional sugars and sweeteners. These oxidation reactions obey the generally accepted Bertrand Hudson's rule, in which only the polyhydric alcohols that possess cis d-erythro hydroxyl groups can be oxidized to 2-ketoses using PQQ as a cofactor, while the polyhydric alcohols excluding cis d-erythro hydroxyl groups ruled out oxidation by PQQ-dependent membrane-bound dehydrogenases.MethodsMembrane fractions of G. oxydans were prepared and used as a cell-free catalyst to oxidize galactitol, with or without PQQ as a cofactor.ResultsIn this study, we reported an interesting oxidation reaction that the polyhydric alcohols galactitol (dulcitol), which do not possess cis d-erythro hydroxyl groups, can be oxidized by PQQ-dependent membrane-bound dehydrogenase(s) of acetic acid bacteria at the C-3 and C-5 hydroxyl groups to produce rare sugars l-xylo-3-hexulose and d-tagatose.ConclusionsThis reaction may represent an exception to Bertrand Hudson's rule.General significanceBertrand Hudson's rule is a well-known theory in polyhydric alcohols oxidation by PQQ-dependent membrane-bound dehydrogenase in acetic acid bacteria. In this study, galactitol oxidation by a PQQ-dependent membrane-bound dehydrogenase represents an exception to the Bertrand Hudson's rule. Further identification of the associated enzymes and deciphering the explicit enzymatic mechanism will prove this theory.  相似文献   

7.
Five different immobilized NAD+ derivatives were employed to compare the behavior of four amino acid dehydrogenases chromatographed using kinetic-based enzyme capture strategies (KBECS): S6-, N6-, N1-, 8'-azo-, and pyrophosphate-linked immobilized NAD+. The amino acid dehydrogenases were NAD+-dependent phenylalanine (EC 1.4.1.20), alanine (EC 1.4.1.1), and leucine (EC 1.4.1.9) dehydrogenases from various microbial species and NAD(P)+-dependent glutamate dehydrogenase from bovine liver (GDH; EC 1.4.1.3). KBECS for bovine heart L-lactate dehydrogenase (EC 1.1.1.27) and yeast alcohol dehydrogenase (EC 1.1.1.1) were also applied to assist in a preliminary assessment of the immobilized cofactor derivatives. Results confirm that the majority of the enzymes studied retained affinity for NAD+ immobilized through an N6 linkage, as opposed to an N1 linkage, replacement of the nitrogen with sulfur to produce an S6 linkage, or attachment of the cofactor through the C8 position or the pyrophosphate group of the cofactor. The one exception to this was the dual-cofactor-specific GDH from bovine liver, which showed no affinity for N6-linked NAD+ but was biospecifically adsorbed to S6-linked NAD+ derivatives in the presence of its soluble KBEC ligand. The molecular basis for this is discussed together with the implications for future development and application of KBECS.  相似文献   

8.
Two NADPH-dependent aromatic aldehyde-ketone reductases purified from guinea pig liver catalyzed oxidoreduction of 17 beta-hydroxysteroids and 17-ketosteroids. One enzyme efficiently oxidized 5 beta-androstanes and reduced 17-ketosteroids of A/B cis configuration, whereas the other enzyme efficiently oxidized 5 alpha-androstanes and equally reduced both 5 alpha-and 5 beta-androstanes of 17-ketosteroids. However, aromatic aldehydes and ketones, and 3-ketosteroids were irreversibly reduced by the two enzymes. The two enzymes utilized NADP+ or NADPH as cofactor, but little activity with NAD+ or NADH was found. Phosphate ions enhanced the NAD+-dependent dehydrogenase activity and NADH-dependent reductase activity of the two enzymes, whereas the activities with NADP+ and NADPH were not affected. The ratios of the two activities of ketone reduction and 17 beta-hydroxysteroid oxidation of the two enzymes were almost constant during the purification steps after the two enzymes had been separated by DEAE-cellulose chromatography. By kinetic studies and electrophoresis and isoelectric focusing experiments it was confirmed that both of the two enzymes were responsile for the reduction aldehydes, ketones, and ketosteroids and for the oxidation of 17 beta-hydroxysteroids. These results indicate that 17 beta-hydroxysteroid dehydrogenases may play important roles in the metabolism of exogeneous aldehydes and ketones as well as steroids.  相似文献   

9.
Secondary alcohols (C3 to C10) were oxidized to the corresponding methylketones by resting mycelia of Scedosporium sp. A-4 grown on propane, but 3-pentanol and 3-hexanol were not oxidized. The oxidation of 2-propanol to acetone was inhibited by pyrazole, potassium cyanide, sodium azide and Hg2 +. Alcohol dehydrogenase activity was found in the cell-free soluble fraction and this activity requires a cofactor, specifically NAD+. The oxidation of both 1-propanol and 2-propanol may be catalyzed by the same alcohol dehydrogenase.  相似文献   

10.
Dimeric and monomeric proteins containing dihydrodiol dehydrogenase and aldehyde reductase activities were purified from pig lens. The dimeric enzyme of Mr 65,000 specifically oxidized the trans-dihydrodiols of naphthalene and benzene with NADP+ as a strict cofactor, and reduced alpha-diketones, aromatic aldehydes and glyceraldehyde with NADPH as a cofactor. The monomeric enzyme of Mr 35,000, although identical with aldose reductase, oxidized the trans-dihydrodiol of naphthalene at a pH optimum of 7.6. These results suggest that the two enzymes are involved in the pathogenesis of naphthalene cataract.  相似文献   

11.
Whole cells of Pseudomonas putida N.C.I.B 9869, when grown on either 3,5-xylenol or p-cresol, oxidized both m- and p-hydroxybenzyl alcohols. Two distinct NAD+-dependent m-hydroxybenzyl alcohol dehydrogenases were purified from cells grown on 3,5-xylenol. Each is active with a range of aromatic alcohols, including both m- and p-hydroxybenzyl alcohol, but differ in their relative rates with the various substrates. An NAD+-dependent alcohol dehydrogenase was also partially purified from p-cresol grown cells. This too was active with m- and p-hydroxybenzyl alcohol and other aromatic alcohols, but was not identical with either of the other two dehydrogenases. All three enzymes were unstable, but were stabilized by dithiothreitol and all were inhibited with p-chloromercuribenzoate. All were specific for NAD+ and each was shown to catalyse conversion of alcohol into aldehyde.  相似文献   

12.
The stereospecificity of hydrogen transfer between steroid (17-hydroxyprogesterone) and both natural cofactors by bovine testicular 20 alpha-hydroxysteroid dehydrogenase (20 alpha-HSD) has been determined. Cofactors used in these studies, [4-pro-S-3H]NADH ([4B-3H]NADH) and [4-pro-S-3H]NADPH ([4B-3H]NADPH) were generated with human placental estradiol 17 beta-dehydrogenase (EC 1.1.1.62) utilizing [17 alpha-3H]estradiol-17 beta and NAD+ or NADP+, respectively. The resulting [4B-3H]NADH and [4B-3H]NADPH were purified by ion-exchange chromatography and separately incubated with molar excess of 17-hydroxyprogesterone as substrate in the presence of 20 alpha-HSD. Following incubation, steroid reactant and product were extracted, separated by HPLC and quantitated as to mass and content of tritium. The oxidized and reduced cofactors were separated by ion-exchange chromatography and quantitated as to mass and tritium content. In all incubations, equimolar amounts of 17,20 alpha-dihydroxy-4-pregnen-3-one and oxidized cofactor were obtained. Further, all recovered radioactivity remained with cofactor and none was found in the steroid product. In additional experiments, both reduced cofactors were separately incubated with glutamate dehydrogenase, an enzyme known to transfer from the B-side of the nicotinamide ring. Here radioactivity was present only in the unreacted cofactor fractions and in the product, glutamic acid. The results indicate that bovine testicular 20 alpha-HSD catalyzes transfer of the 4A-hydrogen from the dihydronicotinamide moiety of the reduced cofactor. Finally, this work described modifications that represent considerable improvement in the purification and assay of bovine 20 alpha-HSD as originally described.  相似文献   

13.
1. Pteridine cofactor of phenylalanine hydroxylase (EC 1.14.16.1) and dihydropteridine reductase (EC 1.6.99.7) in the phenylalanine hydroxylating system have been studied in the fetal rat liver. 2. Activities of pteridine cofactor and dihydropteridine reductase were measured as about 6 and 50%, respectively, of the levels of adult liver in the liver from fetuses on 20 days of gestation, at this stage the activity of phenylalanine hydroxylase was almost negligible in the liver. 3. Development of the activity of sepiapterin reductase (EC 1.1.1.153), an enzyme involved in the biosynthesis of pteridine cofactor, was studied in rat liver during fetal (20-22 days of gestation), neonatal and adult stages comparing with the activity of dihydrofolate reductase (EC 1.5.1.3). Activities of the enzymes were about 80 and 50%, respectively, of the adult levels at 20 days of gestation. 4. Some characteristics of sepiapterin reductase and dihydropteridine reductase of fetal liver were reported.  相似文献   

14.
Alkylhydroperoxide reductases (AhpR, EC 1.6.4.*) are essential for the oxygen tolerance of aerobic organisms by converting otherwise toxic hydroperoxides of lipids or nucleic acids to the corresponding alcohols. The AhpF component belongs to the family of pyridine nucleotide-disulphide oxidoreductases and channels electrons from NAD(P)H towards the AhpC component which finally reduces cognate substrates. The structure of the catalytic core of the Escherichia coli AhpF (A212-A521) with a bound FAD cofactor was determined at 1.9 A resolution in its oxidized state. The dimeric arrangement of the AhpF catalytic core and the predicted interaction mode between the N-terminal PDO-like domain and the NADPH domain favours an intramolecular electron transfer between the two redox-active disulphide centres of AhpF.  相似文献   

15.
Oxidation of fatty alcohols to acids in gourami caeca was investigated by measuring the reduction of NAD+ and the formation of labeled hexadecanoic acid from [1(-14)C]hexadecanol. Virtually all dehydrogenase activity is in the microsomal fraction. Maximal activity is obtained with NAD+ as cofactor whereas with NADP+ 60% of that activity is obtained. The enzyme is rather specific for long chain alcohols and 2 NADH are formed for each molecule of hexadecanol oxidized to acid. It is stabilized by mercaptoethanol, and completely inhibited by p-chloromercuribenzoate. The activity is optimal at pH 9.5. At higher pH, small amounts of aldehyde are found. The first reaction in the sequence, fatty alcohol leads to aldehyde leads to acid seems to occur under the more physiological condition at a much slower rate than the second reaction so that free aldehyde is not detected. Addition of palmitic acid indicated an uncompetitive product inhibition. The oxidation of alcohol to acid is reversible only to a very minor extent even in the presence of NADPH, CoA, ATP and Mg2+. Location, activity and properties of the enzyme are in agreement with the earlier observation from dietary experiments that in the gourami fatty alcohols of wax esters are oxidized to acids in the course of absorption.  相似文献   

16.
NADP+-dependent dihydrodiol dehydrogenase (trans-1,2-dihydrobenzene-1,2-diol: NADP+ oxidoreductase, EC 1.3.1.20) activity in the cytosol of guinea-pig testis was separated into two major and two minor peaks by Q-Sepharose chromatography; one minor form was immunologically cross-reacted with hepatic aldehyde reductase. The two major enzyme forms were purified to homogeneity. One form, which had the highest amount in the tissue, was a monomeric protein with a molecular weight of 32,000 and isoelectric point of 4.2, showed strict specificity for benzene dihydrodiol and NADP+, and reduced pyridine aldehydes, glyceraldehyde and diacetyl at low rates. Another form, with a molecular weight of 36,000 and isoelectric point of 5.0, oxidized n-butanol, glycerol and sorbitol as well as benzene dihydrodiol in the presence of NADP+ or NAD+, and exhibited much higher reductase activity towards various aldehydes, aldoses and diacetyl. The pI 5.0 form was more sensitive to inhibition by sorbinil and p-chloromercuriphenyl sulfonate than the pI 4.2 form and was activated by sulfate ion. The two enzymes did not catalyze the oxidation of hydroxysteroids and xenobiotic alicyclic alcohols and were immunologically different from hepatic 17 beta-hydroxysteroid-dihydrodiol dehydrogenase. The results indicate that guinea-pig testis contains at least two dihydrodiol dehydrogenases distinct from the hepatic enzymes, one of which, the pI 5.0 enzyme form, may be identical to aldose reductase.  相似文献   

17.
Tetrameric rabbit muscle glyceraldehyde 3-phosphate dehydrogenase (GAPDH; EC 1.2.1.12) binds successively four molecules of its cofactor (NAD+) with affinities of ca 10(11) M(-1), 10(9) M(-1), 10(7) M(-1), and 10(5) M(-1). The reduction in the dynamics of the protein is greatest upon binding the first NAD+ molecule. Smaller reductions then occur upon binding the second and third NAD+ molecules, and the fourth NAD+ molecule binds without dynamic change. Reduction of the GAPDH dynamics, with consequent improvements in its internal bonding, can account for the increase in NAD+ binding affinity from 10(5) M(-1) to 10(11) M(-1). Evidence is provided that comparable fractions of the binding energy of other ligands, and of the catalytic efficiency of enzymes, may be derived in the same way.  相似文献   

18.
Sharma P  Dubey RS 《Plant cell reports》2007,26(11):2027-2038
When seedlings of rice (Oryza sativa L.) cultivar Pant-12 were raised in sand cultures containing 80 and 160 μM Al3+ in the medium for 5–20 days, a regular increase in Al3+ uptake with a concomitant decrease in the length of roots as well as shoots was observed. Al3+ treatment of 160 μM resulted in increased generation of superoxide anion (O2 ) and hydrogen peroxide (H2O2), elevated amount of malondialdehyde, soluble protein and oxidized glutathione and decline in the concentrations of thiols (-SH) and ascorbic acid. Among antioxidative enzymes, activities of superoxide dismutase (SOD EC 1.15.1.1), guaiacol peroxidase (Guaiacol POX EC 1.11.1.7), ascorbate peroxidase (APX EC 1.11.1.11), monodehydroascorbate reductase (MDHAR EC 1.6.5.4), dehydroascorbate reductase (EC 1.8.5.1) and glutathione reductase (EC 1.6.4.2) increased significantly, whereas the activities of catalase (EC EC 1.11.1.6) and chloroplastic APX declined in 160 μM Al3+ stressed seedlings as compared to control seedlings. The results suggest that Al3+ toxicity is associated with induction of oxidative stress in rice plants and among antioxidative enzymes SOD, Guaiacol POX and cytosolic APX appear to serve as important components of an antioxidative defense mechanism under Al3+ toxicity. PAGE analysis confirmed the increased activity as well as appearance of new isoenzymes of APX in Al3+ stressed seedlings. Immunoblot analysis revealed that changes in the activities of APX are due to changes in the amounts of enzyme protein. Similar findings were obtained when the experiments were repeated using another popular rice cv. Malviya-36.  相似文献   

19.
The kinetic locking-on strategy improves the selectivity of protein purification procedures based on immobilized cofactor derivatives through use of enzyme-specific substrate analogues in irrigants to promote biospecific adsorption. This paper describes the development and application of this strategy to the one-chromatographic step affinity purification of NAD(P)+-dependent alcohol dehydrogenases using 8'-azo-linked immobilized NAD(P)+, S6-linked and N6-linked immobilized NAD+, and N6-linked immobilized NADP+ derivatives. These studies were carried out using alcohol dehydrogenases from Saccharomyces cerevisiae (YADH, EC 1.1.1.1), equine liver (HLADH, EC 1.1.1.1), and Thermoanaerobium brockii (TBADH, EC 1.1.1.2). The results reveal that the factors which require careful consideration before development of a truly biospecific system based on the locking-on strategy include: (i) the stability of the immobilized cofactor derivative; (ii) the spacer-arm composition of the affinity derivative; (iii) the accessible immobilized cofactor concentration; (iv) the soluble locking-on ligand concentration; (v) the dissociation constant of locking-on ligand, and (vi) the identification and elimination of nonbiospecific interference. The S6-linked immobilized NAD+ derivative (synthesized with a hydrophilic spacer arm) proved to be the most suitable of the affinity adsorbents investigated in the present study for use with the locking-on strategy. This conclusion was based primarily on the observations that this affinity adsorbent was stable, retained cofactor activity with the "test" enzymes under study, and was not prone to nonbiospecific interactions. Using this immobilized derivative in conjunction with the locking-on strategy, alcohol dehydrogenase from Saccharomyces cerevisiae was purified to electrophoretic homogeneity in a single affinity chromatographic step.  相似文献   

20.
Two alcohol dehydrogenases (alcohol: NAD oxidoreductase, EC 1.1.1.1 and alcohol: NADP oxidoreductase, EC 1.1.1.2) were partially purified from extracts of strawberry seeds by conventional methods. Some of physical, chemical and kinetic properties of the enzymes are described. On the basis of gel filtration, the molecular weights were estimated to be approximately 78,000 for NAD-dependent enzyme and 82,000 for NADP-dependent enzyme. Thiol-reacting compounds inhibited both enzymes. NAD-dependent alcohol dehydrogenase reacted only with aliphatic alcohols and aldehydes, while aromatic and terpene alcohols and aldehydes were the better substrates for NADP-dependent alcohol dehydrogenase than aliphatic alcohols and aldehydes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号