首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of tumor necrosis factor-alpha (TNF-alpha) on DNA synthesis in AH66 rat hepatoma cells and rat hepatocytes were analysed by means of [3H]thymidine incorporation. DNA synthesis in AH66 cells was suppressed when AH66 cells were directly incubated with TNF-alpha. When primary culture of rat Kupffer cells was incubated with hepatocyte conditioned media pretreated with TNF-alpha (0-200 U/ml), and AH66 cells were then treated with these hepatocyte/Kupffer cell-conditioned media, TNF-alpha used in the pretreatment caused a dose-dependent increase in DNA synthesis in AH66 cells with a maximum effect amounting to a more than 10-fold increase. In contrast, DNA synthesis in primary culture of rat hepatocytes was not stimulated by the TNF-alpha-pretreated hepatocyte/Kupffer cell conditioned media. These results suggest that TNF-alpha-mediated hepatocyte-Kupffer cell interaction selectively promotes proliferation of rat hepatoma cells.  相似文献   

2.
We studied the genotoxic potential of a carcinogen in the human hepatoma cell line, HepG2 and in primary rat hepatocyte culture. HepG2 is a well differentiated human hepatoblastoma cell line with biotransforming capacity. Rat hepatocytes were obtained by the standard two-step in situ perfusion technique. Following benzo(a)pyrene treatment, both HepG2 and primary rat hepatocyte culture showed unscheduled DNA synthesis with different sensitivity. In 32P-postlabelling analysis, the chromatogram revealed quantitative and qualitative differences between HepG2 and primary rat hepatocyte cultures when treated with 10 μM benzo(a)pyrene for 18 hr. The results have demonstrated that the HepG2 cell line may be used in addition to primary rat hepatocytes in risk assessment for detection of environmental carcinogens.  相似文献   

3.
Possible roles of dibutyryladenosine 3',5'-cyclic monophosphate (cAMP) and dibutyryl-guanosine 3',5'-cyclic monophosphate (cGMP) in regulation of hepatocyte DNA synthesis were examined using primary cultures of young-adult rat hepatocytes maintained in arginine-free medium. Throughout the experimental period, nonparenchymal cells were hardly observed in the selective medium. When epidermal growth factor (EGF) was added to the cultures, a transient increase in the intracellular cAMP level preceded the elevation of hepatocyte DNA synthesis. EGF-stimulated hepatocyte DNA synthesis was remarkably enhanced by the elevation of the intracellular cAMP level induced by treatment with cAMP alone or a combination of cAMP and theophylline, an inhibitor of cyclic nucleotide phosphodiesterase. Furthermore, the early elevation of intracellular cAMP alone, which was induced by treatment with the combination of cAMP and theophylline, caused a remarkable increase in hepatocyte DNA synthesis. On the other hand, addition of EGF to the cultures caused a rapid decrease in the intracellular cGMP level followed by an increase in hepatocyte DNA synthesis. EGF-stimulated hepatocyte DNA synthesis was severely suppressed or completely inhibited by the elevation of the intracellular cGMP level induced by treatment with cGMP alone or a combination of cGMP and dipyridamole, a specific inhibitor of cGMP phosphodiesterase. These findings indicate that cAMP and cGMP act oppositely on the regulation of DNA synthesis of young-adult rat hepatocytes in primary culture: cAMP plays a positive role, whereas cGMP plays a negative role. Also it is strongly suggested that an early elevation of the intracellular cAMP level is essential for the onset of DNA synthesis in hepatocyte primary cultures.  相似文献   

4.
Density-dependent growth control of adult rat hepatocytes in primary culture   总被引:11,自引:0,他引:11  
Adult rat hepatocytes in primary culture, which show various liver functions, did not show any mitosis at confluent cell density, although they entered the S phase and remained in the G2 phase, judging by cytofluorometry, when insulin and epidermal growth factor (EGF) were added to 2-day cultures (Tomita, Y., Nakamura, T., & Ichihara, A. (1981) Exp. Cell Res. 135, 363-371). However, when the cell density was decreased by half or one third, the number of nuclei and cell number increased to 1.5-2.0 times that after culture for 35 h with insulin and EGF. Moreover, at these lower densities, DNA synthesis started much earlier, although at the usual high density DNA synthesis with these two hormones did not start until the hepatocytes had been cultured for over 40 h. These results suggest that proliferation of mature rat hepatocytes is regulated by the cell density. First, cells in G0 enter the G1 phase density-dependently; then cells in the G1 phase seem to be stimulated to enter the S phase by insulin and EGF, and a low cell density may permit cells after DNA synthesis to enter the M phase. DNA synthesis of rat hepatocyte cultures at low cell density was strongly inhibited by co-culture with a dense culture. Therefore, the density-dependent mechanism of hepatocyte proliferation seems to involve regulation by a soluble inhibitor(s) secreted by the hepatocytes into the culture medium.  相似文献   

5.
Hepatocytes isolated from normal adult rats were maintained at sub-confluent density in a defined medium in primary culture. In control cultures with added epidermal growth factor and low concentrations of dexamethasone, the rate of DNA synthesis was initially low but increased after about 30 hours in culture. Addition of the xenobiotic liver tumor promoters phenobarbital, alpha-hexachlorocyclohexane or p,p'-dichlorodiphenyltrichloroethane to cultures after cell attachment caused concentration-dependent stimulation of DNA synthesis measured after 2 days in culture. While dexamethasone (30 nM) alone had little effect on hepatocyte DNA synthesis, the stimulatory effects of the xenobiotics required the permissive presence of the steroid.  相似文献   

6.
Most prior studies have characterized hepatocyte proliferative responses in culture systems that do not express a stable differentiated phenotype. We investigated the DNA synthetic response of long-term stable hepatocyte cultures to growth factor stimulation as well as conditioning with nonparenchymal cells (NPCs). Primary rat hepatocytes were cultured on a single layer of collagen (h/C) or Matrigel (h/M), or in a collagen sandwich (C/h/C) or collagen-Matrigel sandwich (M/h/C). Hepatocytes were cultured for 7 days to allow phenotypic stabilization before growth factor addition, except for h/C cultures, which are unstable, where growth factors were added 1 day after seeding. Culture medium was supplemented with a mixture of hepatocyte, epidermal, and vascular endothelial growth factors and interleukin-6, either directly or after conditioning with NPCs for 24 h. Growth factors alone induced hepatocyte DNA synthesis, as measured via [3H]thymidine uptake, in the h/C, C/h/C, and M/h/C configurations. h/M exhibited very low levels of DNA synthesis. In the C/h/C and M/h/C configurations, the greatest stimulation was obtained using NPC-conditioned growth factors. This response was sustained for several days and without decreasing albumin or urea synthesis. These results suggest that hepatocyte mitogens and NPC-derived factors can stimulate DNA synthesis in stable and differentiated hepatocyte cultures.  相似文献   

7.
Dexamethasone inhibited the basal and EGF-stimulated DNA synthesis of adult rat hepatocytes in primary culture. The inhibition was glucocorticoid-specific: It was shown by dexamethasone and hydrocortisone, but not by progesterone, testosterone, or estradiol; and was counteracted by the glucocorticoid antagonist RU-38486 in a concentration-dependent manner. Dexamethasone acted by decreasing the rate of entry into S-phase (kG1/S), while cell cycle parameters were unaffected. The steroid was able to decrease the kG1/S severalfold even when added more than 20 hr after EGF, half-maximal effect occurring 11 hr after the addition of dexamethasone. Densely populated areas were much more sensitive to the inhibition by dexamethasone than sparsely populated areas within the same culture dish: A moderate (10 nM) concentration of dexamethasone nearly abolished the DNA synthesis in densely populated areas of hepatocyte cultures with only marginal effect on sparsely populated cells.  相似文献   

8.
In the present study we investigated the role of 5-hydroxytryptamine (5-HT) and 5-HT1A receptor during liver regeneration after partial hepatectomy (PH) and N-nitrosodiethylamine (NDEA) induced hepatocellular carcinoma in male Wistar rats. 5-HT content was significantly increased during liver regeneration after PH and NDEA induced hepatocellular carcinoma. Scatchard analysis using 8-OH-DPAT, a 5-HT1A specific agonist showed a decreased receptor during liver regeneration after PH and NDEA induced hepatocellular carcinoma. 5-HT when added alone to primary hepatocyte culture did not increase DNA synthesis but was able to increase the EGF mediated DNA synthesis and inhibit the TGFβ1 mediated DNA synthesis suppression in vitro. This confirmed the co-mitogenic activity of 5-HT. 8-OH-DPAT at a concentration of 10−4 M inhibited the basal and EGF-mediated DNA synthesis in primary hepatocyte cultures. It also suppressed the TGFβ1-mediated DNA synthesis suppression. This clearly showed that activated 5-HT1A receptor inhibited hepatocyte DNA synthesis. Our results suggest that decreased hepatic 5-HT1A receptor function during hepatocyte regeneration and neoplasia has clinical significance in the control of cell proliferation.  相似文献   

9.
Subpicomolar concentrations of human platelet-derived transforming growth factor beta (TGF-beta) inhibited growth factor-stimulated DNA synthesis in primary cultures of adult rat hepatocytes. This inhibition was not the result of changes in the size of intracellular pools of 3H-thymidine and was not dependent on the state of confluence of the cells. A 24-hr exposure to TGF-beta either before or after insulin/EGF stimulation was as inhibitory on DNA synthesis between 48 and 72 hr of culture as was TGF-beta present throughout 72 hr of culture. From 12 hr in culture to 24 hr, hepatocyte EGF binding sites dropped from about 230,000 to 85,000 per cell with no significant change in Kd, but with a loss in capacity for EGF-induced receptor down-regulation. Maximally inhibitory concentrations of TGF-beta did not compete with EGF for the EGF receptor, and a 4- to 24-hr exposure to TGF-beta did not alter subsequent EGF binding. Coincubation of hepatocytes with TGF-beta and EGF did not influence the 60% reduction in EGF binding sites produced by EGF alone. In addition, TGF-beta did not prevent EGF-induced autophosphorylation of the 170,000 dalton EGF receptor in membranes from whole liver. Our studies suggest that TGF-beta regulates hepatocyte growth independently of changes in EGF receptor number, ligand affinity, or postbinding autophosphorylation.  相似文献   

10.
We investigated the effects of microbial protease inhibitors, in particular the aminopeptidase inhibitor bestatin, on DNA synthesis and cell division induced by epidermal growth factor (EGF) in hepatocytes. Although bestatin did not significantly affect binding of EGF to hepatocytes, it inhibited EGF-induced DNA synthesis and cell division. DNA synthesis in rat hepatocytes was maximal 24-26 h after EGF addition to the medium. The time required for maximal DNA synthesis was not affected if bestatin was removed less than 12 h after addition, but synthesis was partially inhibited if bestatin was added to the medium several hours after EGF addition, depending on the time of bestatin addition. Our results suggest that bestatin arrests the new cell cycle induced by EGF at about 12 h after the initiation. Considering also our results obtained by employing other protease inhibitors, we concluded that specific proteases play important roles in hepatocyte DNA synthesis and cell division induced by EGF.  相似文献   

11.
An occurrence and a magnitude of alcoholic liver diseases depend on the balance between ethanol-induced injury and liver regeneration. Like ethanol, polyamines including putrescine, spermidine, and spermine modulate cell proliferation. Thus, the purpose of this study was to evaluate the relationship between effect of ethanol on hepatocyte (HC) proliferation and polyamine metabolism using the HepaRG cell model. Results showed that ethanol effect in proliferating HepaRG cells was associated with a decrease in intracellular polyamine levels and ornithine decarboxylase (ODC) activity. Ethanol also induced disorders in expression of genes coding for polyamine-metabolizing enzymes. The α-difluoromethyl ornithine, an irreversible inhibitor of ODC, amplified ethanol toxicity on cell viability, protein level, and DNA synthesis through accentuation of polyamine depletion in proliferating HepaRG cells. Conversely, putrescine reversed ethanol effect on cell proliferation parameters. In conclusion, this study suggested that ethanol effect on HC proliferation was closely related to polyamine metabolism and that manipulation of this metabolism by putrescine could protect against the anti-proliferative activity of ethanol.  相似文献   

12.
Two percent dimethyl sulfoxide (DMSO) reversibly inhibited DNA synthesis in primary rat hepatocyte cultures maintained with epidermal growth factor (EGF) or hepatocyte growth factor (HGF). These data suggest that, in vitro, DMSO is a non-specific inhibitor of hepatocyte proliferation, regardless of the stimulating mitogen. In addition, removal of DMSO from mitogen-free cultures resulted in an increase in DNA synthesis. Protein synthesis gradually but irreversibly declined in all cultures after DMSO removal. The relevance of these findings to regulation of hepatocyte growth is discussed.  相似文献   

13.
Primary monolyer cultures of adult rat hepatocytes can be induced to undergo DNA synthesis in serum-free medium in the presence of insulin, glucagon, and epidermal growth factor (three factors). We have found that hepatocyte DNA synthesis is affected not only by an endogenous stimulant produced by the hepatocytes and released into the culture medium. Serum has a strong inhibitory effect on hepatocyte DNA synthesis. Partially purified human platelet extract (“platelet inhibitor”) inhibits the three-factor-induced DNA synthesis in a concenration-dependent manner. Pure βTGF at 0.5 ng/ml as well as HPLC-purified PDGF at 10 ng/ml completely inhibit the three-factor-induced DNA synthesis. Determination of the time required for the presence of the three factors and the platelet inhibitor to exert their effects indicated that the inhibition of DNA synthesis is caused not by competition of the platelet inhibitor with any of the three factors but through an independent pathway. Hepatocyte DNA synthesis is density-dependent and is greater if medium is not changed during the course of an experiment than if medium is changed daily. Hepatocyte-conditioned medium is also affective in stimulating DNA synthesis beyond the level induced by the three factors. These results suggest that an endogenous stimulant for hepatocyte DNA synthesis is produced by the hepatocytes themselves. Our studies demonstrate that hepatocyte DNA synthesis is subject to both stimulatory and inhibitory controls. Unlike the three factors, the endogenous stimulant can overcome the inhibition by the platelet inhibitor, suggesting the importance of these factors in the physiological control of hepatocyte DNA synthesis.  相似文献   

14.
15.
Parathyroid hormone (PTH) mobilises calcium in the hepatocyte, an effect which is abolished by verapamil and staurosporine. In our study parathyroid hormone was shown to act additively to dHGF in inducing hepatocyte DNA synthesis. It is also shown that PTH induced the production of inositol 1,4,5 trisphosphate (IP3) andc-fos expression at early times in culture. Co-incubation of PTH and dHGF with ac-fos antisense oligodeoxynucleotide inhibited hepatocyte DNA synthesis, indicating that the additive effect of PTH is correlated with the induction ofc-fos. H-89, a PKA specific inhibitor, inhibited the PTH effect on IP3 production as well as the PTH effect on hepatocyte DNA synthesis. Verapamil and staurosporine also inhibited the PTH effect in dHGF-induced DNA synthesis. Therefore it is suggested that PKA mediated at a great extent the co-stimulatory effects of PTH on hepatocyte proliferation via IP3 production.  相似文献   

16.
A factor specifically inhibiting the hepatocyte cell cycle in vivo was found to block the G1-S transition of liver cells in vitro. It proved to be non-toxic in our culture conditions, as judged by the reversibility of the effect on cell proliferation. It was not active on DNA synthesis in fibroblastic cell lines (3T3).  相似文献   

17.
The effects of several extracellular matrix components (EMCs)--fibronectin (Fn), laminin (Ln), type I (C-I) and type IV (C-IV) collagen--on DNA synthesis in rat hepatocytes in primary culture were examined by both quantitative scintillation spectrometry and autoradiography of [3H]thymidine incorporation. Hepatocytes cultured on Fn showed the most active DNA synthesis initiated by epidermal growth factor (EGF) with decreasing levels of [3H]thymidine uptake exhibited in the cells cultured on C-IV, C-I, and Ln, respectively. The decreasing level of DNA synthesis in hepatocytes cultured on Fn, C-IV, C-I, and Ln respectively was not influenced by cell density. The number of EGF receptors of hepatocytes was also not influenced by EMCs. These data suggest that EMCs modify hepatocyte DNA synthesis by means of post-EGF-receptor mechanisms which are regulated by both growth factors and cell density.  相似文献   

18.
Basic fibroblast growth factor (bFGF) and transforming growth factor-alpha (TGF alpha) have been identified as potent hepatotrophic mitogens. bFGF and TGF alpha induce DNA synthesis in fetal and adult rat hepatocytes in primary culture and support fetal rat hepatocyte multiplication in chemically defined medium. No additional exogenous growth or progression factors are required by the cells for traversing the cell cycle or for cell division. These mitogenic polypeptides, previously identified in various cell types including liver and endothelial cells, platelets, and macrophages may act locally in a paracrine mode in controlling hepatocyte multiplication in the liver during development and regeneration.  相似文献   

19.
Abstract A factor specifically inhibiting the hepatocyte cell cycle in vivo was found to block the G1-S transition of liver cells in vitro . It proved to be non-toxic in our culture conditions, as judged by the reversibility of the effect on cell proliferation. It was not active on DNA synthesis in fibroblastic cell lines (3T3).  相似文献   

20.
Feedback inhibition of bile acid synthesis in cultured pig hepatocytes   总被引:1,自引:0,他引:1  
Bile acid synthesis by cultured pig hepatocytes, as measured by conversion of [14C]cholesterol to bile acids, increased during the second and third day of culture. This rise was inhibited after addition of various conjugated and unconjugated bile acids in a concentration of 100 microM. It could be completely prevented by cycloheximide, indicating that de novo protein synthesis is required for the increase in bile acid formation. No effect of exogenous bile salts on LDH release to the medium or on cellular ATP content was observed, demonstrating that hepatocyte viability was not affected. During the period in which bile acid synthesis was inhibited, pig hepatocytes were able to accumulate taurocholic acid (100 microM) up to 7-18 nmol per mg cell protein (decreasing during culture time). It is concluded that feedback regulation of bile acid synthesis is exerted by direct action of bile acids on the hepatocyte.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号