首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adventitious root formation by debladed petiole cuttings of English ivy (Hedera helix L.) proceeds via a direct rooting pattern for the easy-to-root juvenile phase, while the difficult-to-root mature phase roots through an indirect rooting pattern. Juvenile petiole cuttings treated with α-naphthaleneacetic acid (NAA, 100 μM) plus the polyamine biosynthesis inhibitor, difluoromethylarginine (DFMA, 1 mM), formed an increased number of roots per cutting initiated by the indirect rooting pattern. The increased root formation and change in rooting pattern were reversed by the addition of putrescine (1 mM). Delaying auxin application to petiole cuttings for 15 days also induced juvenile petioles to root by the indirect pattern. This could be reversed by rewounding the base of the cutting prior to auxin application after day 15. The data support the use of the terms “competent root-forming cells” and “induced competent root-forming cells” to describe the target cells for the initial events of root formation for the direct and indirect rooting patterns, respectively.  相似文献   

2.
植物激素与不定根的形成   总被引:15,自引:0,他引:15  
江玲  管晓春 《生物学通报》2000,35(11):17-19
高水平的生长素可诱导不定根原基发生,高水平的脱落酸似乎有同样的作用,但效应不如生长素强;赤霉素似乎可增强生长素对不定根原基的诱导作用,却抑制脱落酸的诱导作用;细胞分裂素抑制不定根的发生;且上述激素处理都具有时效性;而乙烯似乎与不定根的发生无直接关系;SA和JA在不定根形成中可能只影响内源生长素和细胞分裂素的合成和代谢。  相似文献   

3.
Roots that form from non-root tissues (adventitious roots) are crucial for cutting propagation in the forestry and horticulture industries. Strigolactone has been demonstrated to be an important regulator of these roots in both Arabidopsis and pea using strigolactone deficient mutants and exogenous hormone applications. Strigolactones are produced from a carotenoid precursor which can be blocked using the widely available but broad terpenoid biosynthesis blocker, fluridone. We demonstrate here that fluridone can be used to promote adventitious rooting in the model species Pisum sativum (pea). In addition, in the garden species Plumbago auriculata and Jasminium polyanthum fluridone was equally as successful at promoting roots as a commercial rooting compound containing NAA and IBA. Our findings demonstrate that inhibition of strigolactone signaling has the potential to be used to improve adventitious rooting in commercially relevant species.  相似文献   

4.
Molecular mechanism of adventitious root formation in rice   总被引:1,自引:0,他引:1  
Adventitious roots account for the majority of the rice root system and play an irreplaceable role in rice growth and development. Rice adventitious roots are formed by division of the innermost ground meristem cells in the central cylinder, and some lateral roots are observable in the adventitious root system. Multiple hormones have been implicated in the regulation of root development. Auxin is involved in the initiation of adventitious roots, whereas cytokinin inhibits adventitious root initiation, but promotes adventitious root elongation. Other phytohormones such as nitric oxide, ethylene, brassinosteroid, jasmonic acid and gibberellin may be also involved in regulating adventitious root initiation and development. Additionally, more than 600 root development related quantitative trait loci (QTLs) have been located by QTL analysis of root traits.  相似文献   

5.
Chemical induction of adventitious root formation in Taxus baccata cuttings   总被引:1,自引:0,他引:1  
The effect of some auxins (IBA and NAA), phenolic compounds (phloroglucinol, gentisic acid and coumarin), a combination of auxins and phenolics, and a systemic fungicide (Bavistin) have been examined for stimulatory effects on adventitious root formation in stem cuttings (current season's growth) of Taxus baccata L. In general lower concentration (0.25 mM) of both IBA and NAA was more effective in inducing rooting of cuttings taken from both male and female trees. The combined treatment of IBA+NAA (0.25 mM each) showed some success in cuttings from male trees only (55%, compared to 15% rooting in cuttings from female trees). Generally, the callus formation was quite high (70%) in all auxin treatments (alone or in combination). Among the phenolics, 40% rooting success was achieved with phloroglucinol only, while coumarin and gentisic acid were ineffective. The combined treatment of auxins and phenolics also failed to promote rooting. On the other hand, Bavistin was extremely effective for callusing (90%) as well as rooting (80%). The effectiveness of various compounds tested for rooting of young stem cuttings declined in the order: 0.25 mM IBA>0.05% Bavistin>0.25 mM NAA>1.25 mM IBA>15 mM phloroglucinol>IBA+NAA (0.25 mM each). In addition to the auxins, IBA and NAA that are widely used for commercial propagation, the auxin-like properties of the fungicide Bavistin could be exploited for adventitious rooting in T. baccata, and in other plant species.  相似文献   

6.
Cytokinin (CK) inhibits adventitious root (AR) formation in stem cuttings. Little is known, however, about the mechanism underlying the inhibitory effect. In this study, 2 mg l?1 of exogenous 6‐benzyl adenine (6‐BA) was administered to 3 and 7‐day‐old apple rootstocks ‘M.26’ cuttings (3 and 7 days 6‐BA) by transferring them from a rooting medium containing indole‐3‐butanoic acid to the medium containing 6‐BA. Anatomical and morphological observations revealed that the exogenous application of 6‐BA inhibited primordia formation in the 3 days 6‐BA but not the 7 days 6‐BA group. The concentration of auxin (IAA), the ratios of IAA/CK and IAA/abscisic acid were lower in 3 days 6‐BA than in 7 days 6‐BA. Expression analysis of genes known to be associated with AR formation was also analyzed. In the 3 days 6‐BA group, high level of CK inhibited the synthesis and transport of auxin, as a result, low endogenous auxin level suppressed the auxin signaling pathway genes, as were other AR development and cell cycle related genes; all of which had an inhibitory impact on AR primordium formation. On the contrary, low CK level in the 7 days 6‐BA, reduced the inhibitory impact on auxin levels, leading to an upregulated expression of genes known to promote AR primordia formation. Collectively, our data indicated that 3–7 days is the time period in which AR primordia formation occurs in cuttings of ‘M.26’ and that the inhibition of AR development by CK is due to the suppression of AR primordia development over 3–7 days period after culturing in rooting medium.  相似文献   

7.
When stem cuttings were put in water the dormancy of the bud was broken. No inhibitory substances could be found in the leaves and no effect of exogenous growth substances could be detected. Dormancy of buds in the present case seems to be the result of the mechanical resistance imposed by the leaf sheath upon the bud. Gibberellic acid was very effective in promoting root formation in the woody stem cutting ofPanicum maximum and the present results point to a direct effect on root initiation by gibberellic acid.  相似文献   

8.
Uridine strongly stimulated adventitious root formation in stem cuttings of sunflower (Helianthus annuus L.), mung bean (Vigna radiata L.) and common bean (Phaseolus vulgaris L.). A dose response curve of uridine induced rooting showed that the optimum concentration of uridine was 0.1 µM. At all concentrations employed, uridine had no significant effect on root elongation. The rooting response of stem cuttings to the optimal concentration of indole-3-butyric acid (10 µM) in combination with 0.1 µM uridine did not significantly differ from their response to either of these compounds when applied alone. However, the rooting response of the cuttings to sub-optimal IBA (0.01 µM) was significantly stimulated by uridine. These findings suggested that uridine may have stimulated rooting by increasing the sensitivity of the rooting tissue to auxin.  相似文献   

9.
不定根发生分子调控机制的研究进展   总被引:3,自引:0,他引:3  
魏丽  蒋湘宁  裴东 《生命科学》2006,18(3):266-272
不定根发生问题,既是植物无性繁殖和工厂化育苗实践的核心问题,又是植物发育和形态建成等方面的重要理论问题。由于不定根发生过程的复杂性,到目前为止对其调控机制的了解还十分有限。大量研究证实,不定根发生与植物生长素类物质密切相关,因此现有的研究不仅围绕生长素及其信号传导途径展开,而且还涉及到基因表观遗传学调控水平。目前已经鉴定出一些与不定根发生相关的生长素信号传导因子,如NO、cGMP、microRNAs等。同时,还克隆到一些与不定根发生相关的基因,如OsPIN1、OsCKI1、NPK1、ARL1等。此外,发现DNA甲基化可以抑制DNA与蛋白(MeCP2) 的结合,从而抑制基因转录;microRNA可以使基因沉默来调控不定根的发生状况。本文围绕不定根发生的激素调控、不定根发生的基因调控、不定根发生的生长素信号传导机制、表观遗传调控等几个方面综述了近年来的研究进展。  相似文献   

10.
Single-node leaf-bud cuttings of Schefflera arboricola Hayata and Stephanotis floribunda Brongn. were set and root formation, onset of axillary bud growth and plant height were measured. An increase in the number of roots in Schefflera, which was achieved with increasing cutting position on the stock plant (measured from top to base) or with increasing stem length below the node, accelerated the onset of axillary bud growth and resulted in an increase in plant height. Increasing the number of roots per cutting in Stephanotis through an increase in basal temperature also accelerated bud and shoot growth. Positional effects on root formation in Stephanotis showed no relationship with axillary bud growth and plant height. A positive relationship between number of roots per cutting and axillary bud growth was found among clones of Stephanotis . In general the results suggest that, with some exceptions, the onset of axillary bud growth is accelerated in cuttings as a result of accelerated root formation and a higher number of roots per cutting.  相似文献   

11.
Background and Aims Strigolactones (SLs) and their derivatives are plant hormones that have recently been identified as regulating root development. This study examines whether SLs play a role in mediating production of adventious roots (ARs) in rice (Oryza sativa), and also investigates possible interactions between SLs and auxin.Methods Wild-type (WT), SL-deficient (d10) and SL-insensitive (d3) rice mutants were used to investigate AR development in an auxin-distribution experiment that considered DR5::GUS activity, [3H] indole-3-acetic acid (IAA) transport, and associated expression of auxin transporter genes. The effects of exogenous application of GR24 (a synthetic SL analogue), NAA (α-naphthylacetic acid, exogenous auxin) and NPA (N-1-naphthylphalamic acid, a polar auxin transport inhibitor) on rice AR development in seedlings were investigated.Key Results The rice d mutants with impaired SL biosynthesis and signalling exhibited reduced AR production compared with the WT. Application of GR24 increased the number of ARs and average AR number per tiller in d10, but not in d3. These results indicate that rice AR production is positively regulated by SLs. Higher endogenous IAA concentration, stronger expression of DR5::GUS and higher [3H] IAA activity were found in the d mutants. Exogenous GR24 application decreased the expression of DR5::GUS, probably indicating that SLs modulate AR formation by inhibiting polar auxin transport. The WT and the d10 and d3 mutants had similar expression of DR5::GUS regardless of exogenous application of NAA or NPA; however, AR number was greater in the WT than in the d mutants.Conclusions The results suggest that AR formation is positively regulated by SLs via the D3 response pathway. The positive effect of NAA application and the opposite effect of NPA application on AR number of WT plants also suggests the importance of auxin for AR formation, but the interaction between auxin and SLs is complex.  相似文献   

12.
Adventitious root formation in excised cucumber (Cucumis sativus L.) cotyledons was significantly promoted by (±)-cis-chrysanthemic acid at 0.006–1.8 mM. The effect of (±)-cis-chrysanthemic acid on indole-3-acetic acid (IAA)-induced rooting was additive. Rooting in excised cucumber cotyledons was significantly promoted by several isomers of chrysanthemic acid and sodium (±)-cis-chrysanthemate at 0.18 mM. Rooting in mung bean (Phaseolus radiatus L.) hypocotyls was also stimulated by the sodium salt at 0.06–0.6 mM. Rooting of kidney bean (Phaseolus vulgaris L.) hypocotyls was also clearly enhanced by sodium (±)-cis-chrysanthemate at 0.18–6 mM.  相似文献   

13.
The influence of light of different spectral composition and levels of irradiance (2-40 Wm-2) on adventitious root formation (ARF) in birch shoot segments was investigated. Spontaneous rooting of shoot segments occurred in segments with intact apical or axillary meristems. Concerning ARF shoot meristems could be substituted by application of auxin. The very low rooting percentage of shoot segments in darkness was improved considerably by auxin application. Irradiation of cuttings was a requirement for a high percentage of spontaneous rooting. The promoting effect of light was dependent on its spectral composition and was the highest under red followed by white and blue light. The low rooting response under blue light was enhanced almost to the red light level by shielding the root-forming cutting base from light.  相似文献   

14.
The relationship between ethylene and adventitious root formation in mung bean hypocotyl cuttings was studied.Ethephon, an ethylene-releasing compound, at 5 x 10 -5 M increased root number and root dry weight on hypo-cotyl cuttings. When ethephon was applied to hypocotyl at different times after excision, there were two effectivetimes for root production i.e. between 06 h and 18-24 h. These two time periods correspond to the induction phase and the late initiation phase of root development, respectively. After excision, three peaks of ethylene productionwere observed. The first peak commencing at 6 h started the sequence of reactions leading root formation, the second peak appearing at 12 h coincided with the beginning of the increase of the IAA level during primordia initiation, and the third peak showing at 48 h played a role in root differentiation and growth. Ethylene stimulated rooting by enhancing the increase in auxins. Thus it appears that the IAA-induced ethylene production may be a factor involved in the stimulation of adventitious root formation.  相似文献   

15.
Shoot cultures of cucumber were used to analyse the roles of root-derived substances in adventitious root formation on hypocotyl tissues. Xylem sap collected from the roots of squash had a strong inhibitory effect on the formation of hypocotyl adventitious roots. Double-solvent extraction followed by fractionation with both normal and reverse phase column chromatographies and analysis by liquid chromatography/tandem mass spectrometry identified trans-zeatin riboside (ZR) as the primary suppressor of adventitious root formation. ZR was the predominant cytokinin present in the xylem sap, occurring at a concentration of 2x10(-8 )M. Application of ZR at concentrations from 3.16x10(-9) M effected inhibition of adventitious root formation. These results suggest that ZR transported from roots via xylem sap may act as an endogenous suppressor of hypocotyl adventitious root formation in planta.  相似文献   

16.
Adventitious root formation in excised cucumber (Cucumis sativus L.) cotyledons was significantly promoted by (±)-cis-chrysanthemic acid at 0.006–1.8 mM. The effect of (±)-cis-chrysanthemic acid on indole-3-acetic acid (IAA)-induced rooting was additive. Rooting in excised cucumber cotyledons was significantly promoted by several isomers of chrysanthemic acid and sodium (±)-cis-chrysanthemate at 0.18 mM. Rooting in mung bean (Phaseolus radiatus L.) hypocotyls was also stimulated by the sodium salt at 0.06–0.6 mM. Rooting of kidney bean (Phaseolus vulgaris L.) hypocotyls was also clearly enhanced by sodium (±)-cis-chrysanthemate at 0.18–6 mM.  相似文献   

17.
Adventitious root formation in vitro in 1-mm stem slices cut from microshoots of apple cv. Jork 9 was studied using light and electron microscopy. When indole-3-butyric acid (IBA) had been added to the medium, starch grains accumulated during the first 24 h of culture in cells of the cambial region and in cells in the vicinity of vascular tissue and in the primary rays. This accumulation occurred only in the basal part of explants. After that, the nuclei in these cells were activated, and the density of the cytoplasm and the number of cell organelles increased, whereas starch was broken down. Cambium cells started to divide transversely and at 96 h, after several divisions, a continuous ring of isodiametric cytoplasmic cells had appeared around the xylem near the basal cutting surface. The cells in this ring were rich in cell structures, and did not contain large starch grains and a central vacuole. Root meristemoids regenerated from the portions of the ring that were localized in the primary rays. From the other cells in the ring, callus developed. The meristemoids did not grow into the direction of the epidermis as in shoots, but along the vascular bundles. After emergence from the cutting surface, the meristemoids were transformed into small, dome-like primordia. They developed a typical root apex with root cap, root ground meristem and tracheid connection with shoot vascular tissue. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
19.
 In walnut (Juglans regia L.), an otherwise difficult-to-root species, explants of cotyledons have been shown to generate complete roots in the absence of exogenous growth regulators. In the present study, this process of root formation was shown to follow a pattern of adventitious, rather than primary or lateral, ontogeny: (i) the arrangement of vascular bundles in the region of root formation was of the petiole type; (ii) a typical root primordium was formed at the side of the procambium within a meristematic ring of actively dividing cells located around each vascular bundle; (iii) the developing root apical meristem was connected in a lateral way with the vascular bundle of the petiole. This adventitious root formation occurred in three main stages of cell division, primordium formation and organization of apical meristem. These stages were characterized by expression of LATERAL ROOT PRIMORDIUM-1 and CHALCONE SYNTHASE genes, which were found to be sequentially expressed during the formation of the primordium. Activation of genes related to root cell differentiation started at the early stage of primordium formation prior to organization of the root apical meristem. The systematic development of adventitious root primordia at a precise site gave indications on the positional and biochemical cues that are necessary for adventitious root formation. Received: 30 July 1999 / Accepted: 16 February 2000  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号