首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Studies on the polymorphism of human apolipoprotein A-I   总被引:3,自引:0,他引:3  
Upon preparative isoelectric focussing of human apo-HDL, four major forms of apolipoprotein A-I have been isolated. As identified by the following nomenclature and pI, they comprise: apolipoprotein A-I1, pI 5.62; apolipoprotein A-I2, pI 5.53; apolipoprotein A-I3, pI 5.45; apolipoprotein A-I4 pI 5.36. These forms of apolipoprotein A-I were shown to have identical migration on polyacrylamide gel electrophoresis, molecular weights of 26 000 on sodium dodecyl sulfate gel electrophoresis and a common antigenicity with antisera against apolipoprotein A-I or A-I1. Each form had very similar amino acid compositions with the exception of form apolipoprotein A-I4 which contained one isoleucine residue per mol. All forms but apolipoprotein A-I4 were activators of lecithin:cholesterol acyltransferase, the latter was inhibitory to the reaction. From these results, it was concluded that apolipoprotein A-I1, A-I2 and A-I3 are equivalent forms of apolipoprotein A-I whereas apolipoprotein A-I4 is different or heterogeneous. Upon refocussing, the polymorphs were shown to be stable at their pI and not affected by changes in concentration and by the presence of urea or ampholytes. Exposure of a form of apolipoprotein A-I to alkaline pH partially regenerated the original heterogeneity; however, apolipoprotein A-I4 regenerated from apolipoprotein A-I1 did not contain isoleucine, which further demonstrates form apolipoprotein A-I4 heterogeneity.  相似文献   

2.
A method has been developed for quantitative analysis of 'free' apolipoprotein A-I and apolipoprotein A-I associated with high-density lipoprotein (HDL) in serum. The method utilizes the difference between the rate of electrophoretic migration of apolipoprotein A-I associated with HDL (alpha) and 'free' apolipoprotein A-I (pre-beta) in agarose gel. Apolipoprotein A-I is subsequently quantitated by electrophoresis in a second dimensional gel containing anti-apolipoprotein A-I antibodies. Using this method all apolipoprotein A-I of normal fasting serum was found associated with HDL (n = 16). By contrast, 'free' apolipoprotein A-I accounted for up to 12% of the total in the serum of patients with isolated hypertriglyceridemia (n = 8) or mixed hyperlipoproteinemia (n = 8). Between 30 and 35% of 'free' apolipoprotein A-I was found in one patient afflicted with the apolipoprotein C-II deficiency syndrome. Also, 'free' apolipoprotein A-I could be detected in normal postabsorptive serum. 30 and 90 min following heparin-enhanced lipolysis 'free' apolipoprotein A-I accounted for 23 and 20%, respectively, of the total apolipoprotein A-I of serum. Apolipoprotein A-I associated with HDL remained unaltered. It appears, therefore, that 'free' apolipoprotein A-I is liberated from triglyceride-rich lipoproteins during lipolysis.  相似文献   

3.
We have studied the equilibrium uptake behavior and mass transfer rate of recombinant apolipoprotein A-I(Milano) (apo A-I(M)) on Q Sepharose HP under non-denaturing, partially denaturing, and fully denaturing conditions. The protein of interest in this study is composed of amphipathic alpha helices that serve to solubilize and transport lipids. The dual nature of this molecule leads to the formation of micellar-like structures and self association in solution. Under non-denaturing conditions equilibrium uptake is 134 mg/mL media and the isotherm is essentially rectangular. When fully denatured with 6 M urea, the equilibrium binding capacity decreases to 25 mg/mL media and the isotherm becomes less favorable. The decrease in both binding affinity and media capacity when the protein is completely denatured with 6 M urea can be explained by the loss of all alpha helical structure. The rate of apo A-I(M) mass transfer on Q Sepharose HP was characterized using a macropore diffusion model. Results of modeling studies indicate that effective pore diffusivity increases from 4.5 x 10(-9) cm2/s in the absence of urea to 6.0 x 10(-8) cm2/s when apo A-I(M) is fully denatured with 6 M urea. Based on light-scattering data reported for apo A-I, protein self association appears to be the dominant cause of slow protein mass transfer observed under non-denaturing conditions.  相似文献   

4.
The lipid-free apolipoproteins of human high density lipoprotein (HDL) have been assayed for their ability to substitute for native HDL in promoting the growth of a SV40-transformed REF52 cell line in serum-free medium. Total HDL-apolipoproteins (apoHDL) were found to mimic almost exactly the growth promoting effects of whole HDL. The apoHDL-associated growth promoting activity eluted from a Sephacryl S-200 column in two separate fractions coinciding with the protein peaks of apolipoprotein A-I and the C group of apolipoproteins. These two fractions, designated S-II and S-IV, respectively, acted additively in promoting WT1A cell growth when tested at saturating concentrations. The active component in the S-II fraction maximally stimulated WT1A cell growth at 40-60 micrograms/ml and was identified as apolipoprotein A-1 by NaDodSO4 polyacrylamide gel electrophoresis and affinity chromatography on anti-(apoA-I). The active component in the S-IV fraction was maximally active at 1-2 micrograms/ml and was identified as apolipoprotein C-III by DEAE ion exchange high pressure liquid chromatography and polyacrylamide gel electrophoresis (at pH 8.3) in 6 M urea. These results indicate that the growth promoting effect of HDL on WT1A cells is mediated via the HDL-apolipoproteins, A-I and C-III, and that the mechanism responsible does not necessarily involve their participation in the uptake (or utilization) of HDL-associated lipids.  相似文献   

5.
We have prepared, selected and cloned four mouse hybridomas that secreted monoclonal antibodies against human plasma apolipoprotein A-I. These antibodies are all of the IgG-I subclass, and were named anti-A-I 6B8, 5G6, 3D4 and 5A6. We characterized the specificity of the antibodies, finding that all four of them reacted similarly, and with only the major proteins having the molecular weight and isoelectric focusing characteristics of apolipoprotein A-I. The antibodies reacted with all known charge-polymorphs of apolipoprotein A-I and pro apolipoprotein A-I. Thus, the polymorphs of apolipoprotein A-I are alike in that they all contain the antigenic sites of these four antibodies. In a solid-phase, antibody competition radioimmunoassay we found inhibition or enhancement of antibody binding to apolipoprotein A-I, according to the pair of antibodies tested. Antibodies 6B8, 5G6 and 3D4 were different from one another and reacted with different antigenic determinants, but 5A6 was similar to 3D4 and reacted at the same site. We compared the reactions of the four antibodies with CNBr-cleaved fragments of apolipoprotein A-I separated by polyacrylamide gel electrophoresis. We found three different patterns of reaction with the apolipoprotein A-I fragments; 6B8, 5G6 and 3D4 were different, but 5A6 resembled 3D4. Thus, the four antibodies reacted with at least three different antigenic sites in apolipoprotein A-I, which were present in different CNBr fragments of apolipoprotein A-I, but not on fragment 4 which forms the carboxy-terminal segment.  相似文献   

6.
An active form of single-chain antibody (scFv) has been produced in Escherichia coli for murine monoclonal antibody MabA34 (gamma 1, kappa), which is specific for human plasma apolipoprotein (apo) A-I. The complementary DNAs (cDNAs) encoding the variable regions of heavy chain (VH) and light chain (VL) were connected by a (Gly4Ser)3 linker using an assembly polymerase chain reaction. The construct (VL-linker-VH) was placed under the control of highly efficient T7 promoter system. The cloned scFv was expressed in E. coli as inclusion bodies. After purification from E. coli lysate using sonication and low speed centrifugation, the inclusion body was solubilized and denatured in the presence of 8 M urea, renatured by dialysis, and scFv was finally purified using antigen-affinity chromatography. The purity and activity of purified scFv were confirmed by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis (PAGE), Western blotting and enzyme-linked immunosorbent assay (ELISA). The affinity constant was determined by a biosensor method using the BIAcore system. The results showed that the yield of correctly refolded scFv was more than 20 mg l-1 of E. coli flask culture and the specific binding activity to apo A-I was retained with an affinity constant of 6.74 x 10(-8) M (Kd). A notable thing is that guanidine-HCl as a denaturant induced more multimeric formation in the subsequent refolding procedure for the scFv of MabA34 and thus, it was not suitable as urea was. This fact is uncommon for what is generally known for the denaturation and refolding of recombinant antibodies.  相似文献   

7.
A general method for the isolation of haptoglobin 1-1, 2-1, and 2-2 human plasma is described. Plasma is fractionated by affinity chromatography on chicken hemoglobin-Sepharose using the full capacity of the column; then after washing the column thoroughly, haptoglobin is eluted with 8 M urea and the eluate is collected in fractions to separate active and denatured haptoglobin. The urea-free, active fractions of haptoglobin are fractionated by affinity chromatography on Affi-Gel Con A to remove nonglycoproteins, principally apolipoprotein A-I, and the haptoglobin is eluted with 0.5 M glucose. Then the haptoglobin-containing fractions are fractionated by negative immunoadsorption chromatography on anti-chicken hemoglobin-protein A-Sepharose to remove chicken hemoglobin-human haptoglobin complexes. Haptoglobin prepared by this three-step procedure is biologically active and nearly homogeneous. The recovery is approximately 70%, irrespective of phenotype. The procedure can be completed in 3 days. A partial purification of apolipoprotein A-I is obtained simultaneously by this method.  相似文献   

8.
The hepatic pattern of synthesis of the apolipoprotein A-I isoforms has been analyzed in the rat. After isolated livers were perfused with defibrinated rat blood and [3H]leucine, the radioactivity associated with apolipoprotein A-I and other apolipoproteins was determined following two-dimensional gel electrophoresis of the perfusate d < 1.21 g/ml lipoprotein fraction. In rat serum, apolipoprotein A-I is a polymorphic system consisting of two major isoproteins and a series of minor species. Following liver perfusion, 72% of the radioactivity associated with apolipoprotein A-I isoproteins was recovered in the more acidic and quantitatively less abundant of the two major isoforms. Only 8% was associated with the major apolipoprotein A-I isoform, and similar or lower amounts were found in the other minor isoproteins. These results are consistent with the concept that, in the rat, the major apolipoprotein A-I isoforms differ in their pattern of biosynthesis and/or metabolism.  相似文献   

9.
We studied the effect of storage time and conditions on the measurement of apolipoprotein A-I and A-II by radial immunodiffusion. Purified A-I and A-II standards were stable for at least 6 months before any change in immunoreactivity was detected if stored at 4 degrees C at concentrations of 0.06-0.24 mg/ml for A-I and 0.016-0.064 mg/dl for A-II in 0.84 M tetramethylurea, 6.4 M urea, and 8 mM Tris-hydrocholoride, pH 8.0. Purified A-I (0.8-1.6 mg/ml) and A-II (0.5-1.0 mg/ml) were stable for 1 year if stored at -60 degrees C in 5 mM NH4HCO3 with or without 4.2 M tetramethylurea. Serum or plasma could be stored at 4 degrees C (under conditions where evaporation and bacterial growth were minimized) for at least 46 days or at -20 degrees C for up to 3 years without any change in A-I or A-II levels. For four serum samples stored at -20 degrees C for 2 to 3 years, the coefficient of variation of measurement ranged from 6.3 to 9.8% for A-I and from 6.7 to 10.6% for A-II. Samples stored at 4 degrees C had comparable apolipoprotein levels to those stored at -20 degrees C. However, apolipoprotein levels in serum samples were 3-5% higher than those obtained on plasma samples. We conclude that purified A-I or A-II and serum and plasma can be stored for long periods without any change in the measurement of the A-I or A-II by radial immunodiffusion.  相似文献   

10.
A purification method for apolipoprotein A-I and A-II   总被引:1,自引:0,他引:1  
Apolipoproteins A-I and A-II were isolated from precipitates obtained by cold ethanol fractionation of human plasma. The starting material used in this report was precipitate B of the Kistler and Nitschmann method which corresponds approximately to fraction III of the Cohn and Oncley procedure. Through the use of urea, chloroform, and ethanol in appropriate concentrations, apolipoproteins A-I and A-II were isolated by a simple extraction technique avoiding time-consuming ultracentrifugation. Starting from 10 g of centrifuged precipitate B, approximately 100 mg of apolipoprotein A-I and 10 mg of apolipoprotein A-II were obtained. When incubated with normal human or rabbit plasma, both apolipoproteins were readily incorporated into high-density lipoproteins. Apolipoprotein A-I obtained by the cold ethanol method activated lecithin-cholesterol acyltransferase to the same extent as apolipoprotein A-I prepared by the classical flotation method. Apolipoprotein A-II had no such properties by itself, but was capable of potentiating lecithin-cholesterol acyltransferase activity of apolipoprotein A-I.  相似文献   

11.
The primary translation product of human intestinal apolipoprotein A-I mRNA was isolated from wheat germ and ascites cell-free translation systems. Comparison of its NH2-terminal sequence with that of plasma high density lipoprotein-associated A-I showed that it is initially synthesized as a preproprotein. Like rat preproapolipoprotein A-I, it contains an 18-amino acid prepeptide and a 6-amino acid propeptide. The highly unusual COOH-terminal Gln-Gln dipeptide present in the rat pro-segment is also represented at the same position in the human sequence. The functional division of the 24-amino acid NH2-terminal extention into pro- and presegments was verified by finding that the stable intracellular form of A-I in a human hepatoma cell line was the proprotein. Edman degradation of radiolabeled intracellular and extracellular A-I indicated that this apolipoprotein was secreted without proteolytic cleavage of its hexapeptide prosegment. Therefore, it appears that apolipoprotein A-I undergoes an additional proteolytic processing step before it is fully integrated into plasma high density lipoprotein. Two-dimensional gel electrophoresis of purified proapolipoprotein A-I isolated from the hepatocyte cell culture media indicated that it corresponds to isoforms 2 and 3, the basic A-I isoproteins which are the precursors of plasma A-I and the predominant plasma A-I isoforms found in patients with Tangier's disease (Zannis, V. I., Lees, A. M., Lees, R. S., and Breslow, J. L. (1982) J. Biol. Chem., 257, 4978-4986). Therefore this pathologic state probably arises from a defect in the conversion of proapolipoprotein A-I to apolipoprotein A-I.  相似文献   

12.
High density lipoproteins (HDL) from 14 patients with obstructive jaundice were examined by gradient gel electrophoresis to determine the effect of obstruction on particle size distribution. HDL from 7 of these patients were fractionated by gel permeation chromatography and further characterized by electron microscopy, SDS gel electrophoresis, apolipoprotein A-I and apolipoprotein A-II immunoturbidimetry, and analysis of chemical composition. In addition, lecithin:cholesterol acyltransferase (LCAT) activity was measured and correlated with plasma apolipoprotein A-I concentration and particle size distribution. HDL were abnormal in all patients regardless of severity, cause, or duration of obstruction. The major HDL subfraction in normal subjects, HDL3a (radius 4.1-4.3 nm) was either absent or considerably diminished, and HDL2b (radius 5.3 nm) was also frequently absent. Very small particles comparable in size to normal HDL3c (radius 3.8 nm) were prominent. In patients with a bilirubin concentration greater than 250 mumol/l, normal HDL had totally disappeared and were replaced by large discoidal particles of radius 8.5 nm and small spherical particles of radius 3.6-3.7 nm. Both populations of particles were markedly depleted of cholesteryl ester and enriched in free cholesterol and phospholipid. The discoidal particles were rich in apolipoproteins E, A-I, A-II, and C, while the small spherical particles contained predominantly apolipoprotein A-I. LCAT activity was diminished in all subjects to 8-54% of normal, and was strongly positively correlated (r = 0.91 P less than 0.05) with plasma apolipoprotein A-I levels.  相似文献   

13.
Three mouse monoclonal antibodies (Mabs) to human apo A-I were produced using apolipoprotein A-I or HDL3 as immunogens. These monoclonal antibodies, 2G11, 4A12 and 4B11, were characterized for their reactivity with isolated apolipoprotein A-I and HDL in solution. The immunoblotting patterns of the HDL3 two-dimensional electrophoresis show that these three monoclonal antibodies reacted with all the polymorphic forms of apolipoprotein A-I. Cotitration experiments indicated that they correspond to three distinct epitopes. In order to locate these three antigenic determinants on the isolated apolipoprotein A-I, the reactivity of the three monoclonal antibodies has been studied on CNBr-cleaved apolipoprotein A-I. The monoclonal antibodies 2G11 and 4A12 addressed to the amino (CNBr 1) and carboxy (CNBr 4) terminal segments, respectively. In comparison with the monoclonal antibodies characterized by Weech et al. ((1985) Biochim. Biophys. Acta 835, 390-401), monoclonal antibody 4A12 is the only one described in the literature which is specific of the carboxy terminal segment of apolipoprotein A-I. Monoclonal antibody 4B11 does not react with any CNBr fragment, its binding is temperature dependent, it could be directed to a conformational epitope. Relative differences were demonstrated in the expression of the three epitopes in HDL subfractions isolated by density gradient ultracentrifugation. According to Curtiss and Edgington ((1985) J. Biol. Chem. 260, 2982-2993) our results indicate the existence of an immunochemical heterogeneity in the organization of apolipoprotein A-I at the surface of HDL particles as well as in the soluble form of apolipoprotein A-I.  相似文献   

14.
A double antibody radioimmunoassay technique was developed for the measurement of apolipoprotein A-I, the major apoprotein of human high density lipoproteins. Apolipoprotein A-I was prepared from human delipidated high density lipoprotein (d equal to 1.085-1.210) by gel filtration and ion-exchange chromatography. Purified apolipoprotein A-I antibodies were obtained by means of apolipoprotein A-I immunoadsorbent. Apolipoprotein A-I was radiolabeled with 125-I by the iodine monochloride technique. 65-80% of 125 I-labeled apolipoprotein A-I could be bound by the different apolipoprotein A-I antibodies, and more than 95% of the 125-I-labeled apolipoprotein A-I was displaced by unlabeled apolipoprotein A-I. The immunoassay was found to be sensitive for the detection of about 10 ng of apolipoprotein A-I in the incubation mixture, and accurate with a variability of only 3-5% (S.E.M.). This technique enables the quantitation of apolipoprotein A-I in whole plasma or high density lipoprotein without the need of delipidation. The quantitation of apolipoprotein A-I in high density lipoprotein was found similar to that obtained by gel filtration technique. The displacement capacity of the different lipoproteins and apoproteins in comparison to unlabeled apolipoprotein A-I was: very low density lipoprotein, 1.8%; low density lipoprotein, 2.6%; high density lipoprotein, 68%; apolipoprotein B, non-detectable; apolipoprotein C, 0.5%; and apolipoprotein A-II, 4%. The distribution of immunoassayable apolipoprotein A-I among the different plasma lipoproteins was as follows: smaller than 1% in very low density lipoprotein and low density lipoprotein; 50% in high density lipoprotein, and 50% in lipoprotein fraction of density greater than 1.21 g/ml. The amount of apolipoprotein A-I in the latter fraction was found to be related to the number of centrifugations.  相似文献   

15.
A water-insoluble apoprotein was isolated from apo-VLDL by column chromatography on Sephadex G-200 in sodium dodecylsulfate followed by preparative polyacrylamide gel electrophoresis in a discontinous sodium dodecylsulfate system, or by preparative electrophoresis alone. The protein was similar in amino acid composition to the "arginine-rich protein" reported by Shore and Shore. It represented about 10% of the total protein mass of VLDL. The apoprotein showed one single band with an apparent Mr of 39000 in sodium dodecylsulfate gel electrophoresis, and was homogeneous in gel electrophoresis at pH 8.9 In 8M urea. Immunochemical studies also showed homogeneity of this protein, and antisera prepared against it did not react with any other of the well known apolipoproteins, but did react with VLDL and apo-VLDL preparations. Analytical isoelectric focusing in 8M urea resulted in a heterogeneous banding pattern showing three major polypeptides with pI values of 5.5, 5.6 and 5.75. Thus this apolipoprotein clearly differs from the apo-B and apo-C polypeptides of VLDL as well as from apoproteins A and D in its molecular weight, amino acid composition, focusing behavior and immunochemical properties.  相似文献   

16.
Procedures for the isolation of two lipoprotein fractions from plasma high-density lipoproteins (HDL), characterized by apolipoprotein A-I and apolipoprotein A-I together with apolipoprotein A-II, have been elaborated. Apolipoprotein A-I was identified as the protein moiety of one of these fractions (lipoprotein A-I) with polyacrylamide gel electrophoresis (at basic and acidic pH, as well as in the presence of sodium dodecyl sulphate), immuno-double-diffusion, and amino acid analysis. Apolipoproteins A-I and A-II were identified as the protein moiety of the other fraction (lipoprotein A) with polyacrylamide gel electrophoresis (basic and acidic pH) and immuno-double-diffusion. Lipoprotein A-I consisted of spherical particles with a diameter similar to that of HDL as judged from negative strains in the transmission electron microscope. The diameter was estimated to be 8.7 nm from gel chromatography. Lipoprotein A-I migrated in the HDL position on crossed immunoelectrophoresis. On iso-electric focusing lipoprotein A-I appeared as multiple bands in the pH range 5.05-5.55. Lipoprotein A-I had the density of an HDL-2 fraction (rho: 1.063-1.105). Lipoprotein A consisted of spherical particles with a diameter similar to that of HDL, as judged from negative strains in the transmission electron microscope. The diameter was estimated to be 7.9 nm from gel chromatography. The molar ratio between the A-I and A-II polypeptides was estimated to 1.3:1 with electroimmunoassay and calculations from the amino acid compositions. Lipoprotein A migrated in the position of HDL on crossed immuno-electrophoresis. On iso-electric focusing lipoprotein A appeared as one major and two minor bands in the pH range 5.10-5.30. Lipoprotein A had the hydrated density of an HDL-2 fraction.  相似文献   

17.
Apolipoprotein A-IV was isolated from the d less than 1.21 g/ml fraction of rat serum by gel filtration followed by heparin-Sepharose affinity chromatography; this method also facilitated the preparation of apolipoprotein A-I and apolipoprotein E. The apolipoprotein A-IV preparation was characterized by SDS-gel electrophoresis, isoelectric focusing, amino acid analysis and immunodiffusion. The lipid-binding properties of this protein were studied. Apolipoprotein A-IV associated with dimyristoylphosphatidylcholine (DMPC) to form recombinants which contained two molecules of apolipoprotein A-IV and had a lipid/protein molar ratio of 110. The density of the DMPC/apolipoprotein A-IV particles was determined to be 1.08 g/ml and the particles were visualized by electron microscopy as discs which were 5.8 nm thick and 18.0 nm in diameter. The stability of the DMPC/apolipoprotein A-IV recombinants, as determined by resistance to denaturation, was comparable to the stability of DMPC/apolipoprotein A-I complexes. However, by competition studies it was found that apolipoprotein A-I competed for the binding to DMPC more effectively than did apolipoprotein A-IV. It is concluded that, while rat apolipoprotein A-IV resembles other apolipoproteins in its lipid-binding characteristics, it may be displaced from lipid complexes by apolipoprotein A-I.  相似文献   

18.
19.
Apolipoprotein A-I is a major secretory product of the human hepatoma cell line, Hep G2; approx. 70% of apolipoprotein A-I was separated from the medium as lipid-poor apolipoprotein A-I in the d greater than 1.21 g/ml fraction while 30% was associated with high-density lipoproteins (HDL) of d 1.063-1.21 g/ml. The lipid-poor apolipoprotein A-I contains 50% proapolipoprotein A-I which is similar to the isoform distribution in Hep G2 preformed HDL. We tested the ability of lipid-poor apolipoprotein A-I from Hep G2 to form complexes with dimyristoylphosphatidylcholine (DMPC) vesicles at DMPC/apolipoprotein A-I molar ratios of 100:1 and 300:1. Lipid-poor apolipoprotein A-I was recovered in complex form while at a 300:1 ratio, 68.8 +/- 6.3% was recovered. On electron microscopy, the former complexes were small discs 16.9 nm +/- 4.5 S.D. in diameter while the latter were larger discs 21.4 +/- 4.4 nm diameter. Non-denaturing gradient gel electrophoresis of complexes formed at a 100:1 ratio had a peak in the region corresponding to 9.64 +/- 0.08 nm; these particles possessed two apolipoprotein A-I molecules. At the higher ratio, 300:1, two distinct complexes were identifiable, one which banded in the 9.7 nm region and the other in the 16.9-18.7 nm region. The former particles contained two molecules of apolipoprotein A-I and the latter, three molecules. This study demonstrates that lipid-poor apolipoprotein A-I which is rich in more basic isoforms forms discrete lipoprotein complexes similar to those formed by mature apolipoprotein A-I. It is further suggested that, under the appropriate conditions, precursor or nascent HDL may be assembled extracellularly.  相似文献   

20.
The protein heterogeneity of fractions isolated by immunoaffinity chromatography on anti-apolipoprotein A-I and anti-apolipoprotein A-II affinity columns was analyzed by high resolution two-dimensional gel electrophoresis. The two-dimensional gel electrophoresis profiles of the fractions were analyzed and automatically compared by the computer system MELANIE. Fractions containing apolipoproteins A-I + A-II and only A-I as the major protein components have been isolated from plasma and from high density lipoproteins prepared by ultracentrifugation. Similarities between the profiles of the fractions, as indicated by two-dimensional gel electrophoresis, suggested that those derived from plasma were equivalent to those from high density lipoproteins (HDL), which are particulate in nature. The established apolipoproteins (A-I, A-II, A-IV, C, D, and E) were visible and enriched in fractions from both plasma and HDL. However, plasma-derived fractions showed a much greater degree of protein heterogeneity due largely to enrichment in bands corresponding to six additional proteins. They were present in trace amounts in fractions isolated from HDL and certain of the proteins were visible in two-dimensional gel electrophoresis profiles of the plasma. These proteins are considered to be specifically associated with the immunoaffinity-isolated particles. They have been characterized in terms of Mr and pI. Computer-assisted measurements of protein spot-staining intensities suggest an asymmetric distribution of the proteins (as well as the established apolipoproteins), with four showing greater prominence in particles containing apolipoprotein A-I but no apolipoprotein A-II.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号