首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Amperometry and microfluorimetry were employed to investigate the Ca(2+)-dependence of catecholamine release induced from PC12 cells by cholinergic agonists. Nicotine-evoked exocytosis was entirely dependent on extracellular Ca(2+) but was only partly blocked by Cd(2+), a nonselective blocker of voltage-gated Ca(2+) channels. Secretion and rises of [Ca(2+)](i) observed in response to nicotine could be almost completely blocked by methyllycaconitine and alpha-bungarotoxin, indicating that such release was mediated by receptors composed of alpha7 nicotinic acetylcholine receptor subunits. Secretion and [Ca(2+)](i) rises could also be fully blocked by co-application of Cd(2+) and Zn(2+). Release evoked by muscarine was also fully dependent on extracellular Ca(2+). Muscarinic receptor activation stimulated release of Ca(2+) from a caffeine-sensitive intracellular store, and release from this store induced capacitative Ca(2+) entry that could be blocked by La(3+) and Zn(2+). This Ca(2+) entry pathway mediated all secretion evoked by muscarine. Thus, activation of acetylcholine receptors stimulated rises of [Ca(2+)](i) and exocytosis via Ca(2+) influx through voltage-gated Ca(2+) channels, alpha7 subunit-containing nicotinic acetylcholine receptors, and channels underlying capacitative Ca(2+) entry.  相似文献   

2.
The tyrosine kinase inhibitor genistein (5-200 microM) suppressed Ca(2+)-dependent fMLP (1 microM) and ATP (100 microM)-induced release of the lysosomal enzyme, beta-glucuronidase from neutrophil-like HL-60 granulocytes. Agonist-induced Ca2+ mobilization resulted from the release of intracellular Ca2+ stores and the influx of extracellular Ca2+. Genistein (200 microM) suppressed fMLP (1 microM) and ATP (100 microM)-induced Ca2+ mobilization, by 30-40%. Ca2+ release from intracellular stores was unaffected by genistein, however, genistein abolished agonist-induced Ca2+ (Mn2+) influx. Consistent with these findings, genistein (200 microM) or removal of extracellular Ca2+ (EGTA 1 mM), inhibited Ca(2+)-dependent agonist-induced beta-glucuronidase release by similar extents (about 50%). In the absence of extracellular Ca2+, genistein had a small additional inhibitory effect on fMLP and ATP-induced beta-glucuronidase release, suggesting an additional inhibitory site of action. Genistein also abolished store-operated (thapsigargin-induced) Ca2+ (Mn2+) influx. Neither fMLP nor ATP increased the rate of Mn2+ influx induced by thapsigargin (0.5 microM). These data indicate that agonist-induced Ca2+ influx and store-operated Ca2+ influx occur via the same genistein-sensitive pathway. Activation of this pathway supports approximately 50% of lysosomal enzyme release induced by either fMLP or ATP from HL-60 granulocytes.  相似文献   

3.
Stimulation through the antigen receptor (TCR) of T lymphocytes triggers cytosolic calcium ([Ca2+]i) oscillations that are critically dependent on Ca2+ entry across the plasma membrane. We have investigated the roles of Ca2+ influx and depletion of intracellular Ca2+ stores in the oscillation mechanism, using single-cell Ca2+ imaging techniques and agents that deplete the stores. Thapsigargin (TG; 5-25 nM), cyclopiazonic acid (CPA; 5-20 microM), and tert- butylhydroquinone (tBHQ; 80-200 microM), inhibitors of endoplasmic reticulum Ca(2+)-ATPases, as well as the Ca2+ ionophore ionomycin (5-40 nM), elicit [Ca2+]i oscillations in human T cells. The oscillation frequency is approximately 5 mHz (for ATPase inhibitors) to approximately 10 mHz (for ionomycin) at 22-24 degrees C. The [Ca2+]i oscillations resemble those evoked by TCR ligation in terms of their shape, amplitude, and an absolute dependence on Ca2+ influx. Ca(2+)- ATPase inhibitors and ionomycin induce oscillations only within a narrow range of drug concentrations that are expected to cause partial depletion of intracellular stores. Ca(2+)-induced Ca2+ release does not appear to be significantly involved, as rapid removal of extracellular Ca2+ elicits the same rate of [Ca2+]i decline during the rising and falling phases of the oscillation cycle. Both transmembrane Ca2+ influx and the content of ionomycin-releasable Ca2+ pools fluctuate in oscillating cells. From these data, we propose a model in which [Ca2+]i oscillations in T cells result from the interaction between intracellular Ca2+ stores and depletion-activated Ca2+ channels in the plasma membrane.  相似文献   

4.
A rise in cytosolic Ca(2+) concentration ([Ca(2+)](cyt)) due to Ca(2+) release from intracellular Ca(2+) stores and Ca(2+) influx through plasmalemmal Ca(2+) channels plays a critical role in mitogen-mediated cell growth. Depletion of intracellular Ca(2+) stores triggers capacitative Ca(2+) entry (CCE), a mechanism involved in maintaining Ca(2+) influx and refilling intracellular Ca(2+) stores. Transient receptor potential (TRP) genes have been demonstrated to encode the store-operated Ca(2+) channels that are activated by Ca(2+) store depletion. In this study, we examined whether CCE, activity of store-operated Ca(2+) channels, and human TRP1 (hTRP1) expression are essential in human pulmonary arterial smooth muscle cell (PASMC) proliferation. Chelation of extracellular Ca(2+) and depletion of intracellularly stored Ca(2+) inhibited PASMC growth in media containing serum and growth factors. Resting [Ca(2+)](cyt) as well as the increases in [Ca(2+)](cyt) due to Ca(2+) release and CCE were all significantly greater in proliferating PASMC than in growth-arrested cells. Consistently, whole cell inward currents activated by depletion of intracellular Ca(2+) stores and the mRNA level of hTRP1 were much greater in proliferating PASMC than in growth-arrested cells. These results suggest that elevated [Ca(2+)](cyt) and intracellularly stored [Ca(2+)] play an important role in pulmonary vascular smooth muscle cell growth. CCE, potentially via hTRP1-encoded Ca(2+)-permeable channels, may be an important mechanism required to maintain the elevated [Ca(2+)](cyt) and stored [Ca(2+)] in human PASMC during proliferation.  相似文献   

5.
Although Ca(2+)-signaling processes are thought to underlie many dendritic cell (DC) functions, the Ca(2+) entry pathways are unknown. Therefore, we investigated Ca(2+)-signaling in mouse myeloid DC using Ca(2+) imaging and electrophysiological techniques. Neither Ca(2+) currents nor changes in intracellular Ca(2+) were detected following membrane depolarization, ruling out the presence of functional voltage-dependent Ca(2+) channels. ATP, a purinergic receptor ligand, and 1-4 dihydropyridines, previously suggested to activate a plasma membrane Ca(2+) channel in human myeloid DC, both elicited Ca(2+) rises in murine DC. However, in this study these responses were found to be due to mobilization from intracellular stores rather than by Ca(2+) entry. In contrast, Ca(2+) influx was activated by depletion of intracellular Ca(2+) stores with thapsigargin, or inositol trisphosphate. This Ca(2+) influx was enhanced by membrane hyperpolarization, inhibited by SKF 96365, and exhibited a cation permeability similar to the Ca(2+) release-activated Ca(2+) channel (CRAC) found in T lymphocytes. Furthermore, ATP, a putative DC chemotactic and maturation factor, induced a delayed Ca(2+) entry with a voltage dependence similar to CRAC. Moreover, the level of phenotypic DC maturation was correlated with the extracellular Ca(2+) concentration and enhanced by thapsigargin treatment. These results suggest that CRAC is a major pathway for Ca(2+) entry in mouse myeloid DC and support the proposal that CRAC participates in DC maturation and migration.  相似文献   

6.
Ca(2+) influx triggered by depletion of sarcoplasmic reticulum (SR) Ca(2+) stores [mediated via store-operated Ca(2+) channels (SOCC)] was characterized in enzymatically dissociated porcine airway smooth muscle (ASM) cells. When SR Ca(2+) was depleted by either 5 microM cyclopiazonic acid or 5 mM caffeine in the absence of extracellular Ca(2+), subsequent introduction of extracellular Ca(2+) further elevated [Ca(2+)](i). SOCC was insensitive to 1 microM nifedipine- or KCl-induced changes in membrane potential. However, preexposure of cells to 100 nM-1 mM La(3+) or Ni(2+) inhibited SOCC. Exposure to ACh increased Ca(2+) influx both in the presence and absence of a depleted SR. Inhibition of inositol 1,4,5-trisphosphate (IP)-induced SR Ca(2+) release by 20 microM xestospongin D inhibited SOCC, whereas ACh-induced IP(3) production by 5 microM U-73122 had no effect. Inhibition of Ca(2+) release through ryanodine receptors (RyR) by 100 microM ryanodine also prevented Ca(2+) influx via SOCC. Qualitatively similar characteristics of SOCC-mediated Ca(2+) influx were observed with cyclopiazonic acid- vs. caffeine-induced SR Ca(2+) depletion. These data demonstrate that a Ni(2+)/La(3+)-sensitive Ca(2+) influx via SOCC in porcine ASM cells involves SR Ca(2+) release through both IP(3) and RyR channels. Additional regulation of Ca(2+) influx by agonist may be related to a receptor-operated, noncapacitative mechanism.  相似文献   

7.
The extracellular osmotic environment of chondrocytes fluctuates during joint loading as fluid is expressed from and reimbibed by the extracellular matrix. Matrix synthesis by chondrocytes is modulated by joint loading, possibly mediated by variations in intracellular composition. The present study has employed the Ca2+-sensitive fluoroprobe Fura-2 to determine the effects of hypotonic shock (HTS) on intracellular Ca2+ concentration ([Ca2+]i) and to characterise the mechanisms involved in the response for isolated bovine articular chondrocytes. In cells subjected to a 50% dilution, [Ca2+]i rapidly increased by approximately 250%, a sustained plateau being achieved within 300 s. The effect was inhibited by thapsigargin or by removal of extracellular Ca2+, indicating that the rise in [Ca2+]i reflects both influx from the extracellular medium and release from intracellular stores. Inhibition of the response by neomycin implicates activation of PLC and IP3 synthesis in the mobilisation of Ca2+ from intracellular stores. The rise was insensitive to inhibitors of L-type voltage-activated Ca2+ channels (LVACC) or reverse mode Na+/Ca2+ exchange (NCE) but could be significantly attenuated by ruthenium red, an inhibitor of transient receptor potential vanilloid (TRPV) channels and by Gd3+, a blocker of stretch-activated cation (SAC) channels. The HTS-induced rise in [Ca2+]i was almost completely absent in cells treated with Ni2+, a non-specific inhibitor of Ca2+ entry pathways. We conclude that in response to HTS the opening of SACC and a member of TRPV channel family leads to Ca2+ influx, simultaneously with the release from intracellular stores.  相似文献   

8.
Ca(2+) release from internal stores as a result of activation of phospholipase C or inhibition of the endoplasmic reticulum pump is accompanied by Ca(2+) influx from the extracellular space. Measurement of intracellular calcium concentration and fluorescence quenching in Fura2-loaded cells showed that platelets preincubated in lithium have significantly higher basal, but lower agonist-stimulated influx of Mn(2+) (acting as a surrogate of Ca(2+) influx), than platelets reloaded with calcium in a normal sodium medium. There is no difference in the basal entry of divalent ion in platelets preincubated in sodium, lithium, or N-methyl glucamine in the absence of calcium. In platelets preincubated in lithium there is a higher basal Mn(2+) entry without further increase upon store depletion by thapsigargin. In contrast, a significant increase in the divalent ion influx was found in sodium or N-methyl glucamine attributable to the opening of channels sensitive to store depletion. In the absence of extracellular calcium, the empty store opens channels and Li(+) did not have additional effect on channels that are already open. The refilling of the stores with Ca(2+) suppresses Mn(2+) entry after sodium or NMG preincubation, but not after lithium preincubation. We propose that lithium induces a calcium influx throughout store-operated channels. This hypothesis may explain the lack of additivity, in cell preincubated in lithium, of basal entry and thapsigargin-triggered entry of calcium.  相似文献   

9.
An increase in cytosolic free Ca(2+) concentration ([Ca(2+)](cyt)) results from Ca(2+) release from intracellular stores and extracellular Ca(2+) influx through Ca(2+)-permeable ion channels and is crucial for initiating intestinal epithelial restitution to reseal superficial wounds after mucosal injury. Capacitative Ca(2+) entry (CCE) induced by Ca(2+) store depletion represents a major Ca(2+) influx mechanism, but the exact molecular components constituting this process remain elusive. This study determined whether canonical transient receptor potential (TRPC)1 served as a candidate protein for Ca(2+)-permeable channels mediating CCE in intestinal epithelial cells and played an important role in early epithelial restitution. Normal intestinal epithelial cells (the IEC-6 cell line) expressed TRPC1 and TPRC5 and displayed typical records of whole cell store-operated Ca(2+) currents and CCE generated by Ca(2+) influx after depletion of intracellular stores. Induced TRPC1 expression by stable transfection with the TRPC1 gene increased CCE and enhanced cell migration during restitution. Differentiated IEC-Cdx2L1 cells induced by forced expression of the Cdx2 gene highly expressed endogenous TRPC1 and TRPC5 and exhibited increased CCE and cell migration. Inhibition of TRPC1 expression by small interfering RNA specially targeting TRPC1 not only reduced CCE but also inhibited cell migration after wounding. These findings strongly suggest that TRPC1 functions as store-operated Ca(2+) channels and plays a critical role in intestinal epithelial restitution by regulating CCE and intracellular [Ca(2+)](cyt).  相似文献   

10.
Two potential mechanisms by which the intracellular Ca(2 stores might modulate catecholamine release from bovine adrenal chromaffin cells were investigated: (i) that the cytosolic Ca(2+)transient caused by Ca(2+)release from the intracellular stores recruits additional chromaffin granules to a readily releasable pool that results in augmented catecholamine release when this is subsequently evoked, and (ii) that the Ca(2+)influx that follows depletion of intracellular stores (i.e. store-operated Ca(2+)entry) triggers release per se thereby augmenting evoked catecholamine release. When histamine or caffeine were applied in Ca(2+)-free perfusion media, a transient elevation of intracellular free Ca(2+)occurred owing to mobilization of Ca(2+)from the stores. When Ca(2+)was later readmitted to the perfusing fluid there followed a prompt and maintained rise in intracellular Ca(2+)concentrations of magnitude related to the degree of store mobilization. In parallel experiments, increased catecholamine secretion was measured under the conditions when Ca(2+)influx following store-mobilization occurred. Furthermore, the size of the catecholamine release increment correlated with the degree of Ca(2+)influx. Store-operated Ca(2+)entry evoked by mobilization with histamine and/or caffeine did not augment nicotine-evoked secretion per se; that is, it augmented evoked catecholamine release only to the extent that it increased basal catecholamine release. The nicotine-evoked catecholamine release was sensitive to cytosolic BAPTA, which, at the concentration used (50 microM BAPTA-AM), reduced release by approximately 25%. However, the increment in basal catecholamine release which followed Ca(2+)influx triggered by Ca(2+)store mobilization was not reduced by intracellular BAPTA. This finding is inconsistent with the hypothesis that the elevated cytosolic Ca(2+)from store mobilization recruits additional vesicles of catecholamine to the sub-plasmalemmal release sites to augment subsequently evoked secretion. This position is supported by the observation that histamine (10 microM) in Ca(2+)-free medium caused a pronounced elevation of cytosolic free Ca(2+), but this caused no greater catecholamine release when Ca(2+)was re-introduced than did prior exposure to Ca(2+)-free medium alone, which caused no elevation of cytosolic free Ca(2+). It is concluded that intracellular Ca(2+)stores can modulate secretion of catecholamines from bovine chromaffin cells by permitting Ca(2+)influx through a store-operated entry pathway. The results do not support the notion that the Ca(2+)released from intracellular stores plays a significant role in the recruitment of vesicles into the ready-release pool under the experimental conditions reported here.  相似文献   

11.
The cytotoxicity of infectious agents can be mediated by disruption of calcium signaling in target cells. Outer membrane proteins of the spirochete Treponema denticola, a periodontal pathogen, inhibit agonist-induced Ca(2+) release from internal stores in gingival fibroblasts, but the mechanism is not defined. We determined here that the major surface protein (Msp) of T. denticola perturbs calcium signaling in human fibroblasts by uncoupling store-operated channels. Msp localized in complexes on the cell surface. Ratio fluorimetry showed that in cells loaded with fura-2 or fura-C18, Msp induced cytoplasmic and near-plasma membrane Ca(2+) transients, respectively. Increased conductance was confirmed by fluorescence quenching of fura-2-loaded cells with Mn(2+) after Msp treatment. Calcium entry was blocked with anti-Msp antibodies and inhibited by chelating external Ca(2+) with EGTA. Msp pretreatment reduced the amplitude of [Ca(2+)](i) transients upon challenge with ATP or thapsigargin. In experiments using cells loaded with mag-fura-2 to report endoplasmic reticulum Ca(2+), Msp reduced Ca(2+) efflux from endoplasmic reticulum stores when ATP was used as an agonist. Msp alone did not induce Ca(2+) release from these stores. Msp inhibited store-operated influx of extracellular calcium following intracellular Ca(2+) depletion by thapsigargin and also promoted the assembly of subcortical actin filaments. This actin assembly was blocked by chelating intracellular Ca(2+) with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid acetoxymethyl ester. The reduced amplitude of agonist-induced transients and inhibition of store-operated Ca(2+) entry due to Msp were reversed by latrunculin B, an inhibitor of actin filament assembly. Thus, Msp retards Ca(2+) release from endoplasmic reticulum stores, and it inhibits subsequent Ca(2+) influx by uncoupling store-operated channels. Actin filament rearrangement coincident with conformational uncoupling of store-operated calcium fluxes is a novel mechanism by which surface proteins and toxins of pathogenic microorganisms may damage host cells.  相似文献   

12.
The involvement of Ca(2+) in the activation of eggs and in the first steps of the embryonic development of several species is a well-known phenomenon. An association between Ca(2+) sources with the fate of the blastopore during embryonic development has been investigated by several authors. Ca(2+) influx mediated by voltage-gated channels and Ca(2+) mobilization from intracellular stores are the major sources of Ca(2+) to egg activation and succeeding cell divisions. Studies on sea urchins embryonic development show that intracellular Ca(2+) stores are responsible for egg activation and early embryogenesis. In the present work we investigated the involvement of extracellular Ca(2+) in the first stages of the embryonic development of the sea urchin Echinometra lucunter. Divalent cation chelators EDTA and EGTA strongly blocked the early embryonic development. Adding to this, we demonstrated the involvement of voltage-gated Ca(2+) channels in E. lucunter embryogenesis since Ca(2+) channel blockers powerfully inhibited the early embryonic development. Our data also revealed that Ca(2+) influx is crucial for embryonic development during only the first 40?min postfertilization. However, intracellular Ca(2+) remains mandatory to embryonic development 40?min postfertilization, seen that both the intracellular Ca(2+) chelator BAPTA-AM and calmodulin antagonists trifluoperazine and chlorpromazine inhibited the first stages of development when added to embryos culture 50?min postfertilization. Our work highlights the crucial role of extracellular Ca(2+) influx through voltage-gated Ca(2+) channels for the early embryonic development of the sea urchin E. lucunter and characterizes an exception in the phylum Echinodermata.  相似文献   

13.
14.
Phosphatidic acid (PA) induces a biphasic Ca(2+) mobilization response in human neutrophils. The initial increase is due to the mobilization of Ca(2+) from intracellular stores, whereas the secondary increase is due to the influx of Ca(2+) from extracellular sources. The present investigation characterizes PA-induced Ca(2+) influx in neutrophils. Depolarization of neutrophils by 50 mM KCl enhanced PA-induced Ca(2+) influx, whereas verapamil, a Ca(2+) channel blocker, attenuated this response in a dose-dependent manner. These observations suggest that PA-induced Ca(2+) influx is mediated via verapamil-sensitive Ca(2+) channels. Stimulation of neutrophils with exogenous PA results in accumulation of endogenously generated PA with a time course similar to the effects of exogenous PA on Ca(2+) influx. Ethanol inhibited the accumulation of endogenous PA and calcium mobilization, indicating that activation of membrane phospholipase D plays a role in PA-mediated Ca(2+) influx. The results of this study suggest that exogenously added PA stimulates the generation of intracellular PA, which then mediates Ca(2+) influx through verapamil-sensitive Ca(2+) channels.  相似文献   

15.
One current hypothesis for the initiation of Ca2+ entry into nonelectrically excitable cells proposes that Ca2+ entry is linked to the state of filling of intracellular Ca2+ stores. In the human T lymphocyte cell line Jurkat, stimulation of the antigen receptor leads to release of Ca2+ from internal stores and influx of extracellular Ca2+. Similarly, treatment of Jurkat cells with the tumor promoter thapsigargin induced release of Ca2+ from internal stores and also resulted in influx of extracellular Ca2+. Initiation of Ca2+ entry by thapsigargin was blocked by chelation of Ca2+ released from the internal storage pool. The Ca2+ entry pathway also could be initiated by an increase in the intracellular concentration of Ca2+ after photolysis of the Ca(2+)-cage, nitr-5. Thus, three separate treatments that caused an increase in the intracellular concentration of Ca2+ initiated Ca2+ influx in Jurkat cells. In all cases, Ca(2+)-initiated Ca2+ influx was blocked by treatment with any of three phenothiazines or W-7, suggesting that it is mediated by calmodulin. These data suggest that release of Ca2+ from internal stores is not linked capacitatively to Ca2+ entry but that initiation is linked instead by Ca2+ itself, perhaps via calmodulin.  相似文献   

16.
The presence of the capacitative Ca(2+) entry mechanism was investigated in porcine oocytes. In vitro-matured oocytes were treated with thapsigargin in Ca(2+)-free medium for 3 h to deplete intracellular calcium stores. After restoring extracellular calcium, a large calcium influx was measured by using the calcium indicator dye fura-2, indicating capacitative Ca(2+) entry. A similar divalent cation influx could also be detected with the Mn(2+)-quench technique after inositol 1,4,5-triphosphate-induced Ca(2+) release. In both cases, lanthanum, the Ca(2+) permeable channel inhibitor, completely blocked the influx caused by store depletion. Heterologous expression of Drosophila trp in porcine oocytes enhanced the thapsigargin-induced Ca(2+) influx. Polymerase chain reaction cloning using primers that were designed based on mouse and human trp sequences revealed that porcine oocytes contain a trp homologue. As in other cell types, the capacitative Ca(2+) entry mechanism might help in refilling the intracellular stores after the release of Ca(2+) from the stores. Further investigation is needed to determine whether the trp channel serves as the capacitative Ca(2+) entry pathway in porcine oocytes or is simply activated by the endogenous capacitative Ca(2+) entry mechanism and thus contributes to Ca(2+) influx.  相似文献   

17.
A correlated electrophysiological and light microscopic evaluation of trichocyst exocytosis was carried out the Paramecium cells which possess extensive cortical Ca stores with footlike links to the plasmalemma. We used not only intra- but also extracellular recordings to account for polar arrangement of ion channels (while trichocysts can be released from all over the cell surface). With three widely different secretagogues, aminoethyldextran (AED), veratridine and caffeine, similar anterior Nain and posterior Kout currents (both known to be Ca(2+)-dependent) were observed. Direct de- or hyperpolarization induced by current injection failed to trigger exocytosis. For both, exocytotic membrane fusion and secretagogue-induced membrane currents, sensitivity to or availability of Ca2+ appears to be different. Current responses to AED were blocked by W7 or trifluoperazine, while exocytosis remained unaffected. Reducing [Ca2+]o to < or = 0.16 microM (i.e., resting [Ca2+]i) suppressed electrical membrane responses triggered with AED, while we had previously documented normal exocytotic membrane fusion. From this we conclude that the primary effect of AED (as of caffeine) is the mobilization of Ca2+ from the subplasmalemmal pools which not only activates exocytosis (abolished by iontophoretic EGTA injection) but secondarily also spatially segregated plasmalemmal Ca(2+)-dependent ion channels (indicative of subplasmalemmal [Ca2+]i increase, but irrelevant for Ca2+ mobilization). The 45Ca2+ influx previously observed during AED triggering may serve to refill depleted stores. Apart from the insensitivity of our system to depolarization, the mode of direct Ca2+ mobilization from stores by mechanical coupling to the cell membrane (without previous Ca(2+)-influx from outside) closely resembles the model currently discussed for skeletal muscle triads.  相似文献   

18.
Store-operated Ca(2+) channels, which are activated by the emptying of intracellular Ca(2+) stores, provide one major route for Ca(2+) influx. Under physiological conditions of weak intracellular Ca(2+) buffering, the ubiquitous Ca(2+) releasing messenger InsP(3) usually fails to activate any store-operated Ca(2+) entry unless mitochondria are maintained in an energized state. Mitochondria rapidly take up Ca(2+) that has been released by InsP(3), enabling stores to empty sufficiently for store-operated channels to activate. Here, we report a novel role for mitochondria in regulating store-operated channels under physiological conditions. Mitochondrial depolarization suppresses store-operated Ca(2+) influx independently of how stores are depleted. This role for mitochondria is unrelated to their actions on promoting InsP(3)-sensitive store depletion, can be distinguished from Ca(2+)-dependent inactivation of the store-operated channels and does not involve changes in intracellular ATP, oxidants, cytosolic acidification, nitric oxide or the permeability transition pore, but is suppressed when mitochondrial Ca(2+) uptake is impaired. Our results suggest that mitochondria may have a more fundamental role in regulating store-operated influx and raise the possibility of bidirectional Ca(2+)-dependent crosstalk between mitochondria and store-operated Ca(2+) channels.  相似文献   

19.
The regulation of growth hormone (GH) secretion by intracellular Ca(2+) stores was studied in dissociated goldfish somatotropes. We characterized a caffeine-activated intracellular store that had been shown to mediate GH release in response to gonadotropin-releasing hormone. The peak response of caffeine stimulation was reduced by approximately 28% by 100 microM ryanodine in a use-dependent manner suggesting that the first 10 min of GH release is partially mediated by a caffeine-activated ryanodine receptor. The temporal sensitivities of caffeine- and dopamine-evoked GH release to blockade of Cd(2+)-sensitive Ca(2+) channels were compared. We demonstrated that the initial phase of dopamine-evoked release was dependent on Ca(2+) channels, whereas the initial phase of caffeine-evoked release was sensitive only to pretreatment blockade. This would suggest that the maintenance of one class of caffeine-activated intracellular stores requires entry of Ca(2+) through Cd(2+)-sensitive Ca(2+) channels. This differential temporal requirement for Ca(2+) channels in Ca(2+) signaling may be a mechanism to segregate intracellular signaling pathways of multiple neuroendocrine regulators in the teleost pituitary.  相似文献   

20.
The effect on exocytosis of La(3+), a known inhibitor of plasma membrane Ca(2+)-ATPases and Na(+)/Ca(2+) exchangers, was studied using cultured bovine adrenal chromaffin cells. At high concentrations (0.3-3 mM), La(3+) substantially increased histamine-induced catecholamine secretion. This action was mimicked by other lanthanide ions (Nd(3+), Eu(3+), Gd(3+), and Tb(3+)), but not several divalent cations. In the presence of La(3+), the secretory response to histamine became independent of extracellular Ca(2+). La(3+) enhanced secretion evoked by other agents that mobilize intracellular Ca(2+) stores (angiotensin II, bradykinin, caffeine, and thapsigargin), but not that due to passive depolarization with 20 mM K(+). La(3+) still enhanced histamine-induced secretion in the presence of the nonselective inhibitors of Ca(2+)-permeant channels SKF96365 and Cd(2+), but the enhancement was abolished by prior depletion of intracellular Ca(2+) stores with thapsigargin. La(3+) inhibited (45)Ca(2+) efflux from preloaded chromaffin cells in the presence or absence of Na(+). It also enhanced and prolonged the rise in cytosolic [Ca(2+)] measured with fura-2 during mobilization of intracellular Ca(2+) stores with histamine in Ca(2+)-free buffer. The results suggest that the efficacy of intracellular Ca(2+) stores in evoking exocytosis is enhanced dramatically by inhibiting Ca(2+) efflux from the cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号