首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Redox enzymes in bioelectronic devices usually lack direct electrical contact with electrodes, owing to the spatial separation of their redox centers from the conductive surfaces by the protein shells. The reconstitution of apo-enzymes on cofactor-functionalized nanostructures associated with electrodes provides a means to align the biocatalysts on the conductive surface and to electrically contact redox enzymes with electrodes. The reconstitution of apo-enzymes on cofactor-functionalized gold nanoparticles or carbon nanotubes has led to effective electrical communication between the redox proteins and the electrodes. Alternatively, the reconstitution of redox enzymes on molecular wires that enable electron tunneling or dynamic charge shuttling represent supramolecular biocatalytic nanostructures exhibiting electrical contact. The bioelectrocatalytic activities of the electrically wired reconstituted enzymes on electrodes have allowed the development of amperometric biosensors and biofuel cell elements.  相似文献   

2.
Development of reagentless biosensors implies the tight and functional immobilisation of biological recognition elements on transducer surfaces. Specifically, in the case of amperometric enzyme electrodes, electron-transfer pathways between the immobilised redox protein and the electrode surface have to be established allowing a fast electron transfer concomitantly avoiding free-diffusing redox species. Based on the specific nature of different redox proteins and non-manual immobilisation procedures possible biosensor designs are discussed, namely biosensors based on (i) direct electron transfer between redox proteins and electrodes modified with self-assembled monolayers; (ii) anisotropic orientation of redox proteins at monolayer-modified electrodes; (iii) electron-transfer cascades via redox hydrogels; and (iv) electron-transfer via conducting polymers.  相似文献   

3.
The simultaneous detection of nitric oxide and glutamate using an array of individually addressable electrodes, in which the individual electrodes in the array were suitably modified with a highly sensitive nitric oxide sensing chemistry or a glutamate oxidase/redox hydrogel-based glutamate biosensor is presented. In a sequence of modification steps one of the electrodes was covered first with a positively charged Ni porphyrin entrapped into a negatively charged electrodeposition paint followed by the manual modification of the second working electrode by a bienzyme sensor architecture based on crosslinked redox hydrogels with entrapped peroxidase and glutamate oxidase. Adherently growing C6-glioma cells were grown on membrane inserts and placed in close distance to the modified sensor surfaces. The current responses recorded at each electrode after stimulation of glutamate and NO release by means of K+ and bradykinin clearly demonstrate the ability of the individual electrode in the array to detect the analyte towards which its sensitivity and selectivity was targeted without interference from the neighbouring electrode or other analytes present in the test mixture.  相似文献   

4.
This research is directed towards developing a more sensitive and rapid electrochemical sensor for enzyme labeled immunoassays by coupling redox cycling at interdigitated electrode arrays (IDA) with the enzyme label beta-galactosidase. Coplanar and comb IDA electrodes with a 2.4 microm gap were fabricated and their redox cycling currents were measured. ANSYS was used to model steady state currents for electrodes with different geometries. Comb IDA electrodes enhanced the signal about three times more than the coplanar IDAs, which agreed with the results of the simulation. Magnetic microbead-based enzyme assay, as a typical example of biochemical detection, was done using the comb and coplanar IDAs. The enzymes could be placed close to the sensing electrodes (approximately 10 microm for the comb IDAs) and detection took less than 1 min with a limit of detection of 70 amol of beta-galactosidase. We conclude that faster and more sensitive assays can be achieved with the comb IDA.  相似文献   

5.
The electrochemistry of redox proteins is now well established. Conditions exist which allow electron-transfer reactions of all simple proteins to proceed rapidly and reversibly at electrodes. Coupling of the electrode reaction to enzymes, for which the redox proteins act as cofactors, allows exploitation of this good electrochemistry. This is well illustrated by the enzyme-catalysed electrochemical oxidation of p-cresol to p-hydroxybenzaldehyde, which has been shown to proceed along with coupling to the electrode via the copper protein, azurin, or the organometallic compound ferroceneboronic acid. Ferrocene derivatives, in general, show a degree of versatility, coupling the electron-transfer reactions of many enzymes. Thus derivatives of the ferricinium ion act as excellent electron-transfer reagents from the enzyme glucose oxidase. The system is capable of detecting glucose in blood. Similar procedures, in conjunction with the appropriate enzyme, have yielded assays for, among others, H2O2 and cholesterol.  相似文献   

6.
Protein film voltammetry is a relatively new approach to studying redox enzymes, the concept being that a sample of a redox protein is configured as a film on an electrode and probed by a variety of electrochemical techniques. The enzyme molecules are bound at the electrode surface in such a way that there is fast electron transfer and complete retention of the chemistry of the active site that is observed in more conventional experiments. Modulations of the electrode potential or catalytic turnover result in the movement of electrons to, from, and within the enzyme; this is detected as a current that varies in characteristic ways with time and potential. Henceforth, the potential dimension is introduced into enzyme kinetics. The presence of additional intrinsic redox centers for providing fast intramolecular electron transfer between a buried active site and the protein surface is an important factor. Centers which carry out cooperative two-electron transfer, most obviously flavins, produce a particularly sharp signal that allows them to be observed, even as transient states, when spectroscopic methods are not useful. High catalytic activity produces a large amplification of the current, and useful information can be obtained even if the coverage on the electrode is low. Certain enzymes display optimum activity at a particular potential, and this can be both mechanistically informative and physiologically relevant. This paper outlines the principles of protein film voltammetry by discussing some recent results from this laboratory.  相似文献   

7.
This work reports on the direct electrochemistry of the Desulfovibrio gigas aldehyde oxidoreductase (DgAOR), a molybdenum enzyme of the xanthine oxidase family that contains three redox-active cofactors: two [2Fe-2S] centers and a molybdopterin cytosine dinucleotide cofactor. The voltammetric behavior of the enzyme was analyzed at gold and carbon (pyrolytic graphite and glassy carbon) electrodes. Two different strategies were used: one with the molecules confined to the electrode surface and a second with DgAOR in solution. In all of the cases studied, electron transfer took place, although different redox reactions were responsible for the voltammetric signal. From a thorough analysis of the voltammetric responses and the structural properties of the molecular surface of DgAOR, the redox reaction at the carbon electrodes could be assigned to the reduction of the more exposed iron cluster, [2Fe-2S] II, whereas reduction of the molybdopterin cofactor occurs at the gold electrode. Voltammetric results in the presence of aldehydes are also reported and discussed.  相似文献   

8.
This study demonstrated that redox hydrogel-modified carbon nanotube (CNT) electrodes can be developed as an amperometric sensor that are sensitive, specific and fast and do not require auxiliary enzymes. A redox polymer, poly(vinylimidazole) complexed with Os(4,4'-dimethylbpy)(2)Cl (PVI-dmeOs) was electrodeposited on Ta-supported multi-walled CNTs. The resulted PVI-dmeOs thin film did not change the surface morphology of the CNTs, but turned the CNT surface from hydrophobic to hydrophilic, as studied by scanning electron microscopy (SEM) and static water contact angle measurements. Cyclic voltammetry measurements in a Fe(CN)(6)(3-) solution and electrochemical impedance measurements in an equimolar Fe(CN)(6)(3-/4-) solution demonstrated that the PVI-dmeOs hydrogel thin film was electronic conductive with a resistance of about 15Omega. The PVI-dmeOs/CNT electrodes sensed rapidly, sensitively and specifically to model redox enzymes (glucose oxidase (GOD) and lactate oxidase (LOD)) in amperometric experiments in electrolyte solutions containing the substrates of the measured redox enzymes. Both the CNT substrate and the thin PVI-dmeOs film enhanced the sensing sensitivities. Exploration of the mechanisms suggests that the PVI-dmeOs film may enhance the sensing sensitivities by wiring the enzyme molecules through the redox centers tethered on the mobile redox polymer backbones to the CNT electrodes.  相似文献   

9.
A novel biosensor architecture, which is based on the combination of a manual and a non-manual deposition technique for sensor components on the electrode surface is reported. A water-soluble Os-poly(vinyl-imidazole) redox hydrogel is deposited on a graphite electrode by drop-coating (i.e. manually) followed by the electrochemically-induced deposition of an enzyme-containing non-conducting polymer film. The local polymer deposition is initiated by electrochemical generation of H(3)O(+) exclusively at the electrode surface causing a pH-shift to be established in the diffusion zone around the electrode (i.e. non-manually). This pH-shift leads to the protonation of a dissolved polyanionic polymer which in consequence changes significantly its solubility and is hence precipitating on the electrode surface. In the presence of a suitable enzyme, such as quinohemoprotein alcohol dehydrogenase (QH-ADH), the polymer precipitation leads to an entrapment of the redox enzyme within the polymer film. Simultaneously, the water-soluble Os-poly(vinyl-imidazole) redox hydrogel, which is slowly dissolving from the electrode surface after addition of the electrolyte, is co-entrapped within the precipitating polymer layer. This provides the pre-requisite for an efficient electron-transfer pathway from the redox enzyme via the polymer-bound redox centres to the electrode surface. The sensor preparation protocol has been optimised aiming on a high mediator concentration in the polymer film and an effective electron transfer.  相似文献   

10.
Glucose sensing electrodes have been realized by immobilizing glucose oxidase (GOx) on unmodified edge plane of highly oriented pyrolytic graphite (epHOPG) and the native oxide of heavily doped silicon (SiO2/Si). Both kinds of electrode show direct interfacial electron transfer due to the redox process of the immobilized GOx. The measured formal potential of the redox process agrees with that of the native enzyme, suggesting that the immobilized GOx has retained its enzymatic activity. The electron transfer rates of the GOx immobilized electrode are 2s(-1) for GOx/epHOPG electrode and 7.9s(-1) for GOx/SiO2/Si electrode, which are greater than those for which GOx is immobilized on modified electrodes, probably due to the fact that the enzyme makes direct contact to electrode surface. The preservation of the enzymatic activity of the immobilized GOx has been confirmed by observing the response of the GOx/epHOPG and GOx/SiO2/Si electrodes to glucose with a detection limit of 0.050 mM. The response signals the catalyzed oxidation of glucose and, therefore, confirms that the immobilized GOx retained its enzymatic activity. The properties of the electrode as a glucose sensor are presented.  相似文献   

11.
Direct and indirect electron transfer between electrodes and redox proteins   总被引:4,自引:0,他引:4  
The direct electrochemistry of redox proteins has been achieved at a variety of electrodes, including modified gold, pyrolytic graphite and metal oxides. Careful design of electrode surfaces and electrolyte conditions are required for the attainment of rapid and reversible protein-electrode interaction. The electron transfer reactions of more complex systems, such as redox enzymes, are now being examined. The 'well-behaved' electrochemistry of redox proteins can be usefully exploited by coupling the electrode reaction to enzymes for which the redox proteins act as cofactors. In systems where direct electron transfer is very slow, small electron carriers, or mediators, may be employed to enhance the rate of electron exchange with the electrode. The organometallic compound ferrocene and its derivatives have proved particularly effective in this role. A new generation of electrochemical biosensors employs ferrocene derivatives as mediators.  相似文献   

12.
An amperometric immunosensor for the detection of the herbicide atrazine has been developed. A redox polymer PVPOs(bpy)2Cl was co-immobilized with the specific antibody on the surface of the electrode by crosslinking with PEGDGE to form an electron-conducting hydrogel. In a competitive assay the occurrence of the antibody-antigen reaction on the surface of the sensing film was detected through the 'electrical wiring' of the redox centres of antigen-labelled horseradish peroxidase and the electrode surface in the presence of H2O2 at 0.1 V (vsAg/AgCl).  相似文献   

13.
Films of DNA, enzymes, polyions, and catalytic redox polyions of nanometer thickness on electrodes can provide active elements for sensors for screening the toxicity of chemicals and their metabolites, and for oxidative stress. The unifying feature of this approach involves layer-by-layer electrostatic assembly of films designed to detect DNA damage. Films containing DNA and enzymes enable detection of structural damage to DNA as a basis for toxicity screening. These films bioactivate chemicals to their metabolites, which can then react with DNA, mimicking toxicity pathways in the human liver. Metallopolyions that catalyze DNA oxidation can be incorporated into DNA/enzyme films leading to "reagentless" sensors. These sensors are suitable for detecting relative DNA damage rates in <5 min of the enzyme reactions. Films of the osmium polymer [Os(bpy)(2)(PVP)(10)Cl](+) [poly(vinylpyridine), PVP] can be used to monitor DNA oxidation selectively. Such films may be applicable to determination of oxidized DNA as a clinical biomarker for oxidative stress. Inclusion of the analogous ruthenium metallopolymer in the sensor provides a monitor for oxidation of other nucleobases.  相似文献   

14.
Many enzymes involved in bioenergetic processes contain chains of redox centers that link the protein surface, where interaction with electron donors or acceptors occurs, to a secluded catalytic site. In numerous cases these redox centers can transfer only single electrons even when they are associated to catalytic sites that perform two-electron chemistry. These chains provide no obvious contribution to enhance chemiosmotic energy conservation, and often have more redox centers than those necessary to hold sufficient electrons to sustain one catalytic turnover of the enzyme. To investigate the role of such a redox chain we analyzed the transient kinetics of fumarate reduction by two flavocytochromes c3 of Shewanella species while these enzymes were being reduced by sodium dithionite. These soluble monomeric proteins contain a chain of four hemes that interact with a flavin adenine dinucleotide (FAD) catalytic center that performs the obligatory two electron–two proton reduction of fumarate to succinate. Our results enabled us to parse the kinetic contribution of each heme towards electron uptake and conduction to the catalytic center, and to determine that the rate of fumarate reduction is modulated by the redox stage of the enzyme, which is defined by the number of reduced centers. In both enzymes the catalytically most competent redox stages are those least prevalent in a quasi-stationary condition of turnover. Furthermore, the electron distribution among the redox centers during turnover suggested how these enzymes can play a role in the switch between respiration of solid and soluble terminal electron acceptors in the anaerobic bioenergetic metabolism of Shewanella.  相似文献   

15.
The electrochemistry of the redox proteins, cytochrome c, cytochrome b5, plastocyanin and ferredoxin at modified gold electrodes has been examined on the basis that electron transfer takes place at electroactive sites which are microscopic in size. Using this model, it is now proposed that electrochemistry of these proteins occurs at suitably modified sites with fast rates at potentials near the standard redox potential. The microscopic model implies that redox proteins and enzymes take part in fast electron transfer at specific sites on the electrode, other sites being completely ineffective. This form of molecular recognition, i.e. the ability to discriminate between the different sites on an electrode surface, mimics homogeneous redox reactions wherein redox active proteins 'recognize' their biological partners in a very specific sense. Previously, protein electrochemistry has been interpreted via use of a macroscopic model in which the proteins are transported to the electrode surface by linear diffusion followed by quasi-reversible or irreversible electron transfer to the electrode surface. The microscopic model, which assumes that the movement of the protein occurs predominantly by radial diffusion to very small sites, would appear to explain the data more satisfactorily and be consistent with biologically important, homogeneous redox reactions which are known to be fast.  相似文献   

16.
Following previous electrochemical investigations of cellobiose dehydrogenase (CDH), the present investigation reports on the initial screening of the electrochemistry of three new CDHs, two from the white rot basidiomycetes Trametes villosa and Phanerochaete sordida and one from the soft rot ascomycete Myriococcum thermophilum, for their ability to directly exchange electrons with 10 different alkanethiol-modified Au electrodes. Direct electron transfer (DET) between the enzymes and some of the modified Au electrodes was shown, both, in the presence and in the absence of cellobiose. However, the length and the head functionality of the alkanethiols drastically influenced the efficiency of the DET reaction and also influenced the effect of pH on the biocatalytic/redox currents, suggesting the importance of structural/sequence differences between these CDH enzymes. In this respect, the white rot CDHs exhibit excellent biocatalytic and redox currents, whereas for the soft rot CDH the DET communication is much less efficient. Cyclic voltammograms indicate that the heme domain of the CDHs is the part of the enzymes that most readily exchanges electrons with the electrode. However, for P. sordida CDH on 11-mercaptoundecanol or dithiopropionic acid-modified Au electrodes, a second voltammetric wave was noticed suggesting that for some orientations of the enzyme, DET communication with the FAD cofactor can also be obtained.  相似文献   

17.
The similar dimensions of biomolecules such as enzymes, antibodies or DNA, and metallic or semiconductor nanoparticles (NPs) enable the synthesis of biomolecule-NP hybrid systems where the unique electronic, photonic and catalytic properties of NPs are combined with the specific recognition and biocatalytic properties of biomolecules. The unique functions of biomolecule-NP hybrid systems are discussed with several examples: (i) the electrical contacting of redox enzymes with electrodes is the basis for the development of enzymatic electrodes for amperometric biosensors or biofuel cell elements. The reconstitution of the apo-glucose oxidase or apo-glucose dehydrogenase on flavin adenine dinucleotide (FAD)-functionalized Au NPs (1.4 nm) associated with electrodes, or on pyrroloquinoline quinone (PQQ)-functionalized Au NPs (1.4 nm) associated with electrodes, respectively, yields electrically contacted enzyme electrodes. The aligned, reconstituted enzymes on the electrode surfaces reveal effective electrical contacting, and the glucose oxidase and glucose dehydrogenase reveal turnover rates of 5000 and 11,800 s(-1), respectively. (ii) The photoexcitation of semiconductor nanoparticles yields fluorescence with a wavelength controlled by the size of the NPs. The fluorescence functions of semiconductor NPs are used to develop a fluorescence resonance energy transfer (FRET) assay for nucleic acids, and specifically, for analyzing telomerase activity in cancer cells. CdSe-ZnS NPs are functionalized by a primer recognized by telomerase, and this is elongated by telomerase extracted from HeLa cancer cells in the presence of dNTPs and Texas-red-functionalized dUTP. The dye integrated into the telomers allows the FRET process that is intensified as telomerization proceeds. Also, the photoexcited electron-hole pair generated in semiconductor NPs is used to generate photocurrents in a CdS-DNA hybrid system associated with an electrode. A redox-active intercalator, methylene blue, was incorporated into a CdS-duplex DNA monolayer associated with a Au electrode, and this facilitated the electron transfer between the electrode and the CdS NPs. The direction of the photocurrent was controlled by the oxidation state of the intercalator. (iii) Biocatalysts grow metallic NPs, and the absorbance of the NPs provides a means to assay the biocatalytic transformations. This is exemplified with the glucose oxidase-induced growth of Au NPs and with the tyrosinase-stimulated growth of Au NPs, in the presence of glucose or tyrosine, respectively. The biocatalytic growth of the metallic NPs is used to grow nanowires on surfaces. Glucose oxidase or alkaline phosphatase functionalized with Au NPs (1.4 nm) acted as 'biocatalytic inks' for the synthesis of metallic nanowires. The deposition of the Au NP-modified glucose oxidase, or the Au NP-modified alkaline phosphatase on Si surfaces by dip-pen nanolithography led to biocatalytic templates, that after interaction with glucose/AuCl4- or p-aminophenolphosphate/Ag+, allowed the synthesis of Au nanowires or Ag nanowires, respectively.  相似文献   

18.
Reagentless fructose and alcohol biosensors have been produced with a versatile enzyme immobilisation technique which mimics natural interactions and flexibility of living systems. The electrode architecture is built up on electrostatic interactions by the sequential adsorption of redox polyelectrolytes and redox enzymes giving rise to the efficient transformation of substrate fluxes into electrocatalytic currents. All investigated multilayer structures were self-deposited on 3-mercapto-1-propanesulfonic acid monolayers self-assembled on gold electrodes. Fructose dehydrogenase, horseradish peroxidase (HRP) and the couple HRP-alcohol oxidase were electrochemically connected with a cationic poly[(vinylpyridine)Os(bpy)2Cl] redox polymer (RP) interface in a layer-by-layer self-deposited architecture. The dependence of the distance on the electrochemical response of this interface was also studied showing a clear decrease in the Faradaic current when the distance to the electrode surface was increased. The sensitivities obtained for each biosensor were 19.3, 58.1 and 10.6 mA M(-1) cm(-1) for fructose, H2O2 and methanol, respectively. The sensitivity values can be easily controlled by a rational deposition and manipulation of the charge in the catalytic layers. The electrostatic assembly of the electrochemical interface and the catalytic layers resulted in integrated biochemical systems in which mass transfer diffusion and heterogeneous catalytic and electron transfer steps are efficiently coupled and can be easily manipulated.  相似文献   

19.
The linear sweep voltammetric method is used as a new approach for kinetic determination with enzymes accepting reversible redox couples as cosubstrate. A monolayer of hydrogenase molecules is grafted onto a glassy carbon electrode which is both the support of the enzyme and the detector of the activity. Reduced viologen concentration in the enzyme microenvironment is controlled by the electrode potential. The catalytic current produced by the enzyme allows an easy kinetic constant determination without the classical constraints found in hydrogenase kinetic measurements.  相似文献   

20.
A Bacillus species was isolated from sewage capable of utilising alkylbenzene sulphonates (ABS) as the sole source of carbon and sulphur. The enzymic mechanism involved in alkyl-side-chain biodegradation of various ABS detergent isomers by the Bacillus species was demonstrated to involve the classical-Β-oxidation equence characteristic of long-chain fatty acid oxidation, by appropriate enzyme inductions. The combined results from both enzyme induction studies and molecular separation of induced enzymes by gel-filtration indicated a single set of enzymes to be responsible for the Β-oxidation of both ABS isomers and long-chain fatty acid isomers in the Bacillus species. The substrate specificity of partially purified enzymes after growth on appropriate substrates confirmed the feasibility of a single Β-oxidation pathway in this microorganism capable of catalising the oxidation of a wide range of different synthetic and naturally occurring chemicals and biochemicals containing alkyl side chains. This work was supported at Newcastle by grants from the Science Research Council and The Royal Society.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号