首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Binding of high-density lipoproteins to cultured mouse Ob1771 adipose cells was studied, using labeled human HDL3, mouse HDL and apolipoprotein AI- or AII-containing liposomes. In each case, saturation curves were obtained, yielding linear Scatchard plots. The Kd values were found to be respectively 18, 42, 30 and 3.4 micrograms/ml, whereas the maximal binding capacities were found to be 160, 100, 90 and 21 ng/mg of cell protein. Apoprotein AI not inserted into liposomes did not bind. The binding of 125I-HDL3 was competitively inhibited by apolipoprotein AI-containing liposomes greater than mouse HDL greater than HDL3. The binding of 125I-labeled apolipoprotein AI- and 125I-labeled apolipoprotein AII-containing liposomes was competitively inhibited by HDL3, apolipoprotein AI- and apolipoprotein AII-containing liposomes. Dimyristoylphosphatidylcholine liposomes containing or not cholesterol did not interfere with the binding of labeled HDL3 or apolipoprotein-containing liposomes. Binding studies on crude membranes of Ob1771 adipose cells revealed the presence of intracellular binding sites for LDL and HDL3. Thus, adipose cells have specific binding sites for apolipoprotein E-free HDL and apolipoprotein AI (or AII) is the ligand for these binding sites. Long-term exposure of adipose cells to LDL cholesterol as a function of LDL concentration led to an accumulation of cellular unesterified cholesterol. This process was saturable and reversible as a function of time and concentration by exposure to HDL3 or apolipoprotein AI-containing liposomes, whereas apolipoprotein AII-containing liposomes did not promote any cholesterol efflux. Since long-term exposure of adipose cells to LDL and HDL3 did not affect the number of apolipoprotein B,E receptors and apolipoprotein E-free binding sites, respectively, it appears that adipose cells do not show efficient cholesterol homeostasis and thus could accumulate or mobilize unesterified cholesterol.  相似文献   

2.
This study characterizes the interactions of various rat and human lipoproteins with the lipoprotein cell surface receptors of rat and human cells. Iodinated rat very low density lipoproteins (VLDL), rat chylomicron remnants, rat low density lipoproteins (LDL), and rat high density lipoproteins containing predominantly apoprotein E (HDL1) bound to high affinity cell surface receptors of cultured rat fibroblasts and smooth muscle cells. Rat VLDL and chylomicron remnants were most avidly bound; the B-containing LDL and the E-containing HDL1 displayed lesser but similar binding. Rat HDL (d = 1.125 to 1.21) exhibited weak receptor binding; however, after recentrifugation to remove apoprotein E, they were devoid of binding activity. Competitive binding studies at 4 degrees C confirmed these results for normal lipoproteins and indicated that VLDL (B-VLDL), LDL, and HDLc (cholesterol-rich HDL1) isolated from hypercholesterolemic rats had increased affinity for the rat receptors compared with their normal counterparts, the most pronounced change being in the LDL. The cell surface receptor pathway in rat fibroblasts and smooth muscle cells resembled the system described for human fibroblasts as follows: 1) lipoproteins containing either the B or E apoproteins interacted with the receptors; 2) receptor binding activity was abolished by acetoacetylation or reductive methylation of a limited number of lysine residues of the lipoproteins; 3) receptor binding initiated the process of internalization and degradation of the apo-B- and apo-E-containing lipoproteins; 4) the lipoprotein cholesterol was re-esterified as determined by [14C]oleate incorporation into the cellular cholesteryl esters; and 5) receptor-mediated uptake (receptor number) was lipoprotein cholesterol. An important difference between rat and human fibroblasts was the inability of human LDL to interact with the cell surface receptors of rat fibroblasts. Rat lipoproteins did, however, react with human fibroblasts. Furthermore, the rat VLDL were the most avidly bound of the rat lipoproteins to rat fibroblasts. When the direct binding of 125I-VLDL was subjected to Scatchard analysis, the very high affinity of rat VLDL was apparent (Kd = 1 X 10(-11) M). Moreover, compared with data for rat LDL, the data suggested each VLDL particle bound to four to nine lipoprotein receptors. This multiple receptor binding could explain the enhanced binding affinity of the rat VLDL. The Scatchard plot of rat 125I-VLDL revealed a biphasic binding curve in rat and human fibroblast cells and in rat smooth muscle cells, suggesting two populations of rat VLDL. These results indicate that rat cells have a receptor pathway similar to, but not identical with, the LDL pathway of human cells. Since human LDL bind poorly to rat cell receptors on cultured rat fibroblasts and smooth muscle cells, metabolic studies using human lipoproteins in rats must be interpreted cautiously.  相似文献   

3.
The binding of human 125I-labeled HDL3 (high-density lipoproteins, rho 1.125-1.210 g/cm3) to a crude membrane fraction prepared from bovine liver closely fit the paradigm expected of a ligand binding to a single class of identical and independent sites, as demonstrated by computer-assisted binding analysis. The dissociation constant (Kd), at both 37 and 4 degrees C, was 2.9 micrograms protein/ml (approx. 2.9 X 10(-8) M); the capacity of the binding sites was 490 ng HDL3 (approx. 4.9 pmol) per mg membrane protein at 37 degrees C and 115 at 4 degrees C. Human low-density lipoproteins (LDL) and very-low-density lipoproteins (VLDL) also bound to these sites (Kd = 41 micrograms protein/ml, approx. 6.7 X 10(-8) M for LDL, and Kd = 5.7 micrograms protein/ml, approx. 7.0 X 10(-9) M for VLDL), but this observation must be considered in light of the fact that the normal circulating concentrations of these lipoproteins are much lower than those of HDL. The binding of 125I-labeled HDL3 to these sites was inhibited only slightly by 1 M NaCl, suggesting the presence of primarily hydrophobic interactions at the recognition site. The binding was not dependent on divalent cations and was not displaceable by heparin; the binding sites were sensitive to both trypsin and pronase. Of exceptional note was the finding that various subclasses of human HDL (including subclasses of immunoaffinity-isolated HDL) displaced 125I-labeled HDL3 from the hepatic HDL binding sites with different apparent affinities, indicating that these sites are capable of recognizing highly specific structural features of ligands. In particular, apolipoprotein A-I-containing lipoproteins with prebeta electrophoretic mobility bound to these sites with a strikingly lower affinity (Kd = 130 micrograms protein/ml) than did the other subclasses of HDL.  相似文献   

4.
The interaction of human serum high density lipoproteins (HDL) with mouse peritoneal macrophages and human blood monocytes was studied. Saturation curves for binding of apolipoprotein E-free [125I]HDL3 showed at least two components: non-specific binding and specific binding that saturated at approximately 40 micrograms HDL protein/ml. Scatchard analysis of specific binding of apo E-free [125I]-HDL3 to cultured macrophages yielded linear plots indicative of a single class of specific binding sites. Pretreatment of [125I]HDL3 with various apolipoprotein antibodies (anti apo A-I, anti apo A-II, anti apo C-II, anti apo C-III and anti apo E) and preincubation of the cells with anti-idiotype antibodies against apo A-I and apo A-II prior to the HDL binding studies revealed apolipoprotein A-I as the ligand involved in specific binding of HDL. Cellular cholesterol accumulation via incubation with acetylated LDL led to an increase in HDL binding sites as well as an increase in the activity of the cytoplasmic cholesterol esterifying enzyme acyl-CoA:cholesterol acyltransferase (ACAT). Incubation of the cholesterol-loaded cells in the presence of various ACAT inhibitors (Sandoz 58.035, Octimibate-Nattermann, progesterone) revealed a time- and dose-dependent amplification in HDL binding and HDL-mediated cholesterol efflux. It is concluded that the homeostasis of cellular cholesterol in macrophages is regulated in part by the number of HDL binding sites and that ACAT inhibitors enhance HDL-mediated cholesterol efflux from peripheral cells.  相似文献   

5.
Serum lipoproteins control cell cholesterol content by regulating its uptake, biosynthesis, and excretion. Monolayers of cultured fibroblasts were used to study interactions with human high density (HDL) and low density (LDL) lipoproteins doubly labeled with [(3)H]cholesterol and (125)I in the apoprotein moiety. In the binding assay for LDL, the absence of specific LDL receptors in type II hypercholesterolemic fibroblasts was confirmed, whereas monolayers of virus-transformed human lung fibroblasts (VA-4) exhibited LDL binding characteristics essentially the same as normal lung fibroblasts. In the studies of HDL binding, specific HDL binding sites were demonstrated in normal and virus-transformed fibroblasts. In addition, type II hypercholesterolemic cells, despite the loss of LDL receptors, retained normal HDL binding sites. No significant competition was displayed between the two lipoprotein classes for their respective binding sites over a 5-fold concentration range. In VA-4 cells, the amount of lipoprotein required to saturate half the receptor sites was 3.5 micro g/ml (9 x 10(-9) M) for LDL and 9.1 micro g/ml (9 x 10(-8) M) for HDL. Pronase treatment reduced LDL binding by more than half but had no effect on HDL binding. Chloroquine, a lysomal enzyme inhibitor, stimulated net LDL uptake 3.5-fold by increasing internalized LDL but had essentially no effect on HDL uptake. Further experiments were conducted using doubly labeled lipoproteins to characterize the interaction of LDL and HDL with cells. While the cholesterol and protein moieties of LDL were incorporated into cells at similar rates, the uptake of the cholesterol moiety of HDL was 5 to 10 times more rapid than that of the protein component. Furthermore, the apoprotein component of LDL is extensively degraded following exposure, whereas the apoprotein moiety of HDL retains its macromolecular chromatographic characteristics. These results indicate that HDL and LDL bind to cultured cells at separate sites and that further processing of the two lipoprotein classes appears to take place by fundamentally different mechanisms.-Wu, J-D., J. Butler, and J. M. Bailey. Lipid metabolism in cultured cells XVIII. Comparative uptake of low density and high density lipoproteins by normal, hypercholesterolemic, and tumor virus-transformed human fibroblasts.  相似文献   

6.
The interaction of apolipoprotein (apo) E-free high-density lipoprotein (HDL) with parenchymal, endothelial and Kupffer cells from liver was characterized. At 10 min after injection of radiolabelled HDL into rats, 1.0 +/- 0.1% of the radioactivity was associated with the liver. Subfractionation of the liver into parenchymal, endothelial and Kupffer cells, by a low-temperature cell-isolation procedure, indicated that 77.8 +/- 2.4% of the total liver-associated radioactivity was recovered with parenchymal cells, 10.8 +/- 0.8% with endothelial cells and 11.3 +/- 1.7% with Kupffer cells. It can be concluded that inside the liver a substantial part of HDL becomes associated with endothelial and Kupffer cells in addition to parenchymal cells. With freshly isolated parenchymal, endothelial and Kupffer cells the binding properties for apo E-free HDL were determined. For parenchymal, endothelial and Kupffer cells, evidence was obtained for a saturable, specific, high-affinity binding site with Kd and Bmax. values respectively in the ranges 10-20 micrograms of HDL/ml and 25-50 ng of HDL/mg of cell protein. In all three cell types nitrosylated HDL and low-density lipoproteins did not compete for the binding of native HDL, indicating that lipids and apo B are not involved in specific apo E-free HDL binding. Very-low-density lipoproteins (VLDL), however, did compete for HDL binding. The competition of VLDL with apo E-free HDL could not be explained by label exchange or by transfer of radioactive lipids or apolipoproteins between HDL and VLDL, and it is therefore suggested that competition is exerted by the presence of apo Cs in VLDL. The results presented here provide evidence for a high-affinity recognition site for HDL on parenchymal, liver endothelial and Kupffer cells, with identical recognition properties on the three cell types. HDL is expected to deliver cholesterol from peripheral cells, including endothelial and Kupffer cells, to the liver hepatocytes, where cholesterol can be converted into bile acids and thereby irreversibly removed from the circulation. The observed identical recognition properties of the HDL high-affinity site on liver parenchymal, endothelial and Kupffer cells suggest that one receptor may mediate both cholesterol efflux and cholesterol influx, and that the regulation of this bidirectional cholesterol (ester) flux lies beyond the initial binding of HDL to the receptor.  相似文献   

7.
Human adipose tissue derives its cholesterol primarily from circulating lipoproteins. To study fat cell-lipoprotein interactions, low density lipoprotein (LDL) uptake and metabolism were examined using isolated human adipocytes. The 125I-labelled LDL (d = 1.025-1.045) was bound and incorporated by human fat cells in a dose-dependent manner with an apparent Km of 6.9 + 0.9 microgram LDL protein/mL and a Vmax of 15-80 microgram LDL protein/mg lipid per 2 h. In time-course studies, LDL uptake was characterized by rapid initial binding followed by a linear accumulation for at least 4 h. The 125I-labelled LDL degradation products (trichloroacetic acid soluble iodopeptides) accumulated in the incubation medium in a progressive manner with time. Azide and F- inhibited LDL internalization and degradation, suggesting that these processes are energy dependent. Binding and cellular internalization of 125I-labelled LDL lacked lipoprotein class specificity in that excess (25-fold) unlabelled very low density lipoprotein (VLDL) (d less than 1.006) and high density lipoprotein (HDL) (d = 1.075-1.21) inhibited binding and internalization of 125I-labelled LDL. On an equivalent protein basis HDL was the most potent. The 125I-labelled LDL binding to an adipocyte plasma membrane preparation was a saturable process and almost completely abolished by a three- to four-fold greater concentration of HDL. The binding, internalization, and degradation of LDL by human adipocytes resembled that reported by other mesenchymal cells and could account for a significant proportion of in vivo LDL catabolism. It is further suggested that adipose tissue is an important site of LDL and HDL interactions.  相似文献   

8.
The regulation of the hepatic catabolism of normal human very-low-density lipoproteins (VLDL) was studied in human-derived hepatoma cell line HepG2. Concentration-dependent binding, uptake and degradation of 125I-labeled VLDL demonstrated that the hepatic removal of these particles proceeds through both the saturable and non-saturable processes. In the presence of excess unlabeled VLDL, the specific binding of 125-labeled VLDL accounted for 72% of the total binding. The preincubation of cells with unlabeled VLDL had little effect on the expression of receptors, but reductive methylation of VLDL particles reduced their binding capacity. Chloroquine and colchicine inhibited the degradation of 125I-labeled VLDL and increased their accumulation in the cell, indicating the involvement of lysosomes and microtubuli in this process. Receptor-mediated degradation was associated with a slight (13%) reduction in de novo sterol synthesis and had no significant effect on the cellular cholesterol esterification. Competition studies demonstrated the ability of unlabeled VLDL, low-density lipoproteins (LDL) and high-density lipoproteins (HDL) to effectively compete with 125I-labeled VLDL for binding to cells. No correlation was observed between the concentrations of apolipoproteins A-I, A-II, C-I, C-II and C-III of unlabeled lipoproteins and their inhibitory effect on 125I-labeled VLDL binding. When unlabeled VLDL, LDL and HDL were added at equal contents of either apolipoprotein B or apolipoprotein E, their inhibitory effect on the binding and uptake of 125I-labeled VLDL only correlated with apolipoprotein E. Under similar conditions, the ability of unlabeled VLDL, LDL and HDL to compete with 125I-labeled LDL for binding was a direct function of only their apolipoprotein B. These results demonstrate that in HepG2 cells, apolipoprotein E is the main recognition signal for receptor-mediated binding and degradation of VLDL particles, while apolipoprotein B functions as the sole recognition signal for the catabolism of LDL. Furthermore, the lack of any substantial regulation of beta-hydroxy-beta-methylglutaryl-CoA reductase and acyl-CoA:cholesterol acyltransferase activities subsequent to VLDL degradation, in contrast to that observed for LDL catabolism, suggests that, in HepG2 cells, the receptor-mediated removal of VLDL proceeds through processes independent of those involved in LDL catabolism.  相似文献   

9.
Cholesterol stored in human adipose tissue is derived from circulating lipoproteins. To delineate the cholesterol transport function of LDL and HDL, the movement of radiolabelled esterified cholesterol and free cholesterol from labelled LDL and HDL to human adipocytes was examined in the present study. LDL and HDL were enriched and labelled in esterified cholesterol with [14C]cholesterol by the action of plasma lipid transfer proteins and lecithin-cholesterol acyltransferase. Doubly labelled (3H,14C) LDL and HDL were prepared by exchanging free [3H]cholesterol into the 14C-labelled lipoproteins. 14C-labelled lipoprotein and 3H-labelled lipoprotein were also prepared separately and mixed to yield a mixed doubly labelled lipoprotein. Relative to the total amount added, proportionally more free than esterified cholesterol was transferred to the adipocytes upon incubation with any doubly labelled LDL and HDL. The calculated mass of free and esterified cholesterol transferred, however, varied with different labelled lipoproteins. 3H- and 14C-labelled LDL or HDL transferred 2-3-fold more esterified than free cholesterol while the reverse occurred with the mixed doubly labelled LDL or HDL. Thus, free cholesterol-depleted particles preferentially transferred cholesterol ester to the fat cells. In the presence of the homologous unlabelled native lipoprotein, the transfers of free and esterified cholesterol from labelled LDL or HDL were specifically inhibited. Selective transfer of esterified cholesterol relative to apoprotein was also observed when esterified cholesterol uptake from both LDL and HDL was assayed along with the binding of 125I-labelled lipoprotein. The cellular accumulation of cholesterol ether-labelled HDL (a non-hydrolyzable analogue of cholesterol ester) exceeded that of cholesterol ester consistent with significant hydrolysis of the latter physiological substrate. These results demonstrate preferential transfer of free cholesterol and esterified cholesterol over apoprotein for both LDL and HDL in human adipocytes. Furthermore, the data suggest that the cholesterol ester transport function of LDL and HDL can be enhanced by free cholesterol depletion and cholesterol ester enrichment of the particles, and affirms a role for adipose tissue in the metabolism of lipid-modified lipoproteins.  相似文献   

10.
The receptor-mediated uptake of rat hypercholesterolemic very low density lipoproteins (beta VLDL) and rat chylomicron remnants was studied in monolayer cultures of the J774 and P388D1 macrophage cell lines and in primary cultures of mouse peritoneal macrophages. Uptake of 125I-beta VLDL and 125I-chylomicron remnants was reduced 80-90% in the presence of high concentrations of unlabeled human low density lipoproteins (LDL). Human acetyl-LDL did not significantly compete at any concentration tested. Uptake of 125I-beta VLDL and 125I-chylomicron remnants was also competitively inhibited by specific polyclonal antibodies directed against the estrogen-induced LDL receptor of rat liver. Incubation in the presence of anti-LDL receptor IgG, but not nonimmune IgG, reduced specific uptake greater than 80%. Anti-LDL receptor IgG, 125I-beta VLDL, and 125I-chylomicron remnants bound to two protein components of apparent molecular weights 125,000 and 111,000 on nitrocellulose blots of detergent-solubilized macrophage membranes. Between 70-90% of 125I-lipoprotein binding was confined to the 125,000-Da peptide. Binding of 125I-beta VLDL and 125I-chylomicron remnants to these proteins was competitively inhibited by anti-LDL receptor antibodies. Comparison of anti-LDL receptor IgG immunoblot profiles of detergent-solubilized membranes from mouse macrophages, fibroblasts, and liver, and normal and estrogen-induced rat liver demonstrated that the immunoreactive LDL receptor of mouse cells is of a lower molecular weight than that of rat liver. Incubation of J774 cells with 1.0 micrograms of 25-hydroxycholesterol/ml plus 20 micrograms of cholesterol/ml for 48 h decreased 125I-beta VLDL uptake and immuno- and ligand blotting to the 125,000- and 111,000-Da peptides by only 25%. Taken together, these data demonstrate that uptake of beta VLDL and chylomicron remnants by macrophages is mediated by an LDL receptor that is immunologically related to the LDL receptor of rat liver.  相似文献   

11.
Hepatic catabolism of lipoproteins containing apolipoproteins B or E is enhanced in rats treated with pharmacologic doses of 17 alpha-ethinyl estradiol. Liver membranes prepared from these rats exhibit an increased number of receptor sites that bind 125I-labeled human low density lipoproteins (LDL) in vitro. In the present studies, this estradiol-stimulated hepatic receptor was shown to recognize the following rat lipoproteins: LDL, very low density lipoproteins obtained from liver perfusates (hepatic VLDL), and VLDL-remnants prepared by intravenous injection of hepatic VLDL into functionally eviscerated rats. The receptor also recognized synthetic lamellar complexes of lecithin and rat apoprotein E as well as canine high density lipoproteins containing apoprotein E (apo E-HDLc). It did not recognize human HDL or rat HDL deficient in apoprotein E. Much smaller amounts of this high affinity binding site were also found on liver membranes from untreated rats, the number of such sites increasing more than 10-fold after the animals were treated with estradiol. Each of the rat lipoproteins recognized by this receptor was taken up more rapidly by perfused livers from estrogen-treated rats. In addition, enrichment of hepatic VLDL with C-apoproteins lowered the ability of these lipoproteins to bind to the estradiol-stimulated receptor and diminished their rate of uptake by the perfused liver of estrogen-treated rats, just as it did in normal rats. The current data indicate that under the influence of pharmacologic doses of estradiol the liver of the rat contains increased amounts of a functional lipoprotein receptor that binds lipoproteins containing apoproteins B and E. This hepatic lipoprotein receptor appears to mediate the uptake and degradation of lipoproteins by the normal liver as well as the liver of estradiol-treated rats. The hepatic receptor bears a close functional resemblance to the LDL receptor previously characterized on extrahepatic cells.  相似文献   

12.
Using human and rabbit hepatocyte cultures, the effects of khellin and timefurone on lipoprotein metabolism were studied with special reference to the following parameters: i) binding and degradation of 125I-labeled low density lipoproteins (LDL); ii) apoprotein B (apo-B) secretion measured by immunoenzymatic assay, iii) [35S]methionine labeled apo-B and apo-E within the composition of very low density lipoproteins (VLDL); iiii) total cholesterol synthesis and cholesterol secretion within the composition of VLDL. The therapeutic concentrations (0.1-10 micrograms/ml) of the above drugs had no appreciable effect on the binding and degradation of 125I-LDL but inhibited the secretion of apo-B VLDL, leaving the apo-E VLDL unaffected. This was paralleled with inhibition of cholesterol synthesis (by 30-50%) and VLDL secretion. These results suggest that khellin and timefurone mediate the hypolipidemic effect via the reduction of the intracellular synthesis of cholesterol and secretion of apo-B containing VLDL by hepatocytes.  相似文献   

13.
Rat plasma low- and high-density lipoproteins were labeled with [3H]cholesteryl linoleyl ether and isolated by rate-zonal ultracentrifugation into apolipoprotein B-containing LDL, apolipoprotein E-containing HDL1 and apolipoprotein E-poor HDL2. These fractions were incubated with cultured rat hepatocytes and comparable amounts of all lipoproteins were taken up by the cells. Rat HDL was isolated at d 1.085-1.21 g/ml and apolipoprotein E-free HDL was prepared by heparin Sepharose chromatography. The original HDL and the apolipoprotein E-free HDL were labeled with 125I or with [3H]cholesteryl linoleyl ether and incubated with rat hepatocytes or adrenal cells in culture. The uptake of apolipoprotein E-free [3H]cholesterol linoleyl ether HDL by the cultured hepatocytes was 20-40% more than that of the original HDL. Comparison of uptake of cholesteryl ester moiety (represented by uptake of [3H]cholesteryl linoleyl ether) and of protein moiety (represented by metabolism of 125I-labeled protein) was carried out using both original and apolipoprotein E-free HDL. In experiments in which low concentrations of HDL were used, the ratio of 3H/125I exceeded 1.0. In cultured adrenal cells, the uptake of [3H]cholesteryl linoleyl ether-labeled HDL was stimulated 3-6-fold by 1 X 10(-7) M ACTH, while the uptake of 125I-labeled HDL increased about 2-fold. The ratio of 3H/125I representing cellular uptake was 2-3 and increased to 5 in ACTH-treated cells. The present results indicate that in cultured rat hepatocytes the uptake of homologous HDL does not depend on the presence of apolipoprotein E. Evidence was also presented for an uptake of cholesteryl ester independent of protein uptake in cultured rat adrenal cells and to a lesser extent in rat hepatocytes.  相似文献   

14.
The binding of human 125I-labeled 'anionic polypeptidic fraction' (APF) to purified rat liver plasma membranes was studied. The dissociation constant for this binding was 3.0 micrograms protein/mg membrane protein. Binding was competitively inhibited by unlabeled human APF, but not by human LDL (low density lipoproteins). When unlabeled HDL3 was added, binding of labeled APF was competitively reduced to a level between that of unlabeled APF and unlabeled LDL. Experiments with cultured rat hepatocytes confirmed those obtained with liver membranes and suggested the presence in rat liver of saturable APF-binding sites which seem to be specific for APF. The physiologic significance of these APF binding sites is discussed in relation to the fate of cholesterol in the liver.  相似文献   

15.
The effect of two different levels of dietary cholesterol (0.16 mg/Kcal and 0.79 mg/cal) on the composition of thoracic lymph duct lipoproteins was studied in two species of nonhuman primates, Ceropithecus aethiops (African green monkey) and Macaca fascicularis (cynomolgus monkey). Diet was infused intraduodenally at a constant rate to facilitate comparisons among animals. The higher level of dietary cholesterol resulted in an increase in the amount of cholesteryl ester in lymph chylomicrons and VLDL. Cholesteryl oleate was the predominant cholesteryl ester present in lymph d less than 1.006 g/ml lipoproteins and it was the predominant cholesteryl ester formed from exogenous radiolabeled cholesterol. The percentage of saturated and monounsaturated cholesteryl esters in lymph chylomicrons and VLDL significantly increased with the higher dietary cholesterol level. The apoprotein distribution of chylomicrons and VLDL was qualitatively similar during infusions of both diets. The apoprotein B of intestinal chylomicrons and VLDL, termed apoprotein B2, was qualitatively similar during low and high cholesterol diet infusion and was significantly smaller than that of plasma LDL apoB, termed apoprotein B1, as indicated by its electrophoretic mobility in SDS-polyacrylamide gels. The major phospholipid present in lymph chylomicrons and VLDL was phosphatidylcholine and the phospholipid composition of the particles was not affected by diet. Lymph d greater than 1.006 g/ml lipoproteins were separated and the cholesterol mass distribution among lipoprotein fractions was found to be similar during both diet infusions. With an increase in the level of dietary cholesterol, the percentage esterification of cholesterol mass and of exogenous cholesterol radioactivity increased in LDL and HDL from lymph. Lymph LDL and HDL contained less free and esterified cholesterol when their composition was compared to that for these lipoproteins in plasma. We conclude that the primary effect of increased dietary cholesterol level was to increase the cholesteryl ester content of all lymph lipoproteins; cholesterol distribution among lymph lipoproteins was unaffected.  相似文献   

16.
The mechanism of hepatic catabolism of human low density lipoproteins (LDL) by human-derived hepatoma cell line HepG2 was studied. The binding of 125I-labeled LDL to HepG2 cells at 4 degrees C was time dependent and inhibited by excess unlabeled LDL. The specific binding was predominant at low concentrations of 125I-labeled LDL (less than 50 micrograms protein/ml), whereas the nonsaturable binding prevailed at higher concentrations of substrate. The cellular uptake and degradation of 125I-labeled LDL were curvilinear functions of substrate concentration. Preincubation of HepG2 cells with unlabeled LDL caused a 56% inhibition in the degradation of 125I-labeled LDL. Reductive methylation of unlabeled LDL abolished its ability to compete with 125I-labeled LDL for uptake and degradation. Chloroquine (50 microM) and colchicine (1 microM) inhibited the degradation of 125I-labeled LDL by 64% and 30%, respectively. The LDL catabolism by HepG2 cells suppressed de novo synthesis of cholesterol and enhanced cholesterol esterification; this stimulation was abolished by chloroquine. When tested at a similar content of apolipoprotein B, very low density lipoproteins (VLDL), LDL and high density lipoproteins (HDL) inhibited the catabolism of 125I-labeled LDL to the same degree, indicating that in HepG2 cells normal LDL are most probably recognized by the receptor via apolipoprotein B. The current study thus demonstrates that the catabolism of human LDL by HepG2 cells proceeds in part through a receptor-mediated mechanism.  相似文献   

17.
The catabolism of human and rat 125I-labelled very low density lipoproteins (VLDL) was compared by perfusing the lipoproteins through beating rat hearts. Triacylglycerol was removed from the VLDL to a greater extent than the protein moiety, leaving remnants containing relatively more apo-B and less apo-C. The change in apo-C content of the remnants correlated with the loss of triacylglycerol. The extent of removal of triacylglycerol from the rat and human VLDL was similar and in most cases appeared to saturate the heart lipoprotein lipase. The remnants were slightly smaller in size than the VLDL, and included particles which appeared to be partially emptied. In addition to remnants of d less than 1.019 g/ml, iodinated lipoproteins derived from rat and human VLDL were recovered at d 1.019-1.063 and 1.063-1.21 g/ml. The former contained largely cholesterol and cholesteryl esters, while phospholipids were the dominant lipid in the latter. An average of 40% of the 125I-labelled apoprotein lost from the VLDL was associated with the perfused hearts. Very little d 1.019-1.063 g/ml lipoprotein was produced from low (physiological) concentrations of rat VLDL, most of the lipoprotein being removed by the heart. However, lipoproteins of density 1.019-1.063 g/ml were formed from human VLDL at all concentrations in the perfusate, as well as from higher concentrations of the rat VLDL. Agarose gel filtration of lipoproteins following heart perfusion with human VLDL revealed large aggregates containing particles which resemble low density lipoproteins (LDL) in electron microscopic appearance and apoprotein composition, since they contain largely apo-B. These data suggest that at normal concentrations rat VLDL are almost completely catabolised and taken up by the heart without the formation of LDL, while LDL is produced from human VLDL at all concentrations.  相似文献   

18.
The binding of human intermediate density lipoproteins (IDL) to HepG2 cells was studied. We found that human 125I-IDL interact with a binding site of high-affinity (Kd 0.74 micrograms/ml, Bmax 0.049 micrograms/mg cell protein) and a binding site of lower affinity (Kd 86.8 micrograms/ml; Bmax 0.53 micrograms/mg cell protein). The high-affinity binding sites show characteristics of LDL-receptors since they interact with IDL and low-density lipoproteins (LDL) and are calcium dependent. The low-affinity binding sites are calcium-independent and interact with IDL, LDL, high density lipoproteins-3 (HDL3), apolipoprotein (apo) E-liposomes, apoCs-liposomes, apoA-I-liposomes but not with liposomes containing albumin or erythrocyte membrane proteins. Therefore, HepG2 cells have on their surface a binding site that resembles or is identical to the lipoprotein binding site (LBS) that we found on rat liver membranes (Brissette and No?l (1986) J. Biol. Chem. 261, 6847-6852). Internalization, degradation and cholesterol ester selective uptake were determined in the presence or in the absence of a sufficient amount of human HDL3 to abolish the interaction of IDL to the LBS in order to obtain information on the function of this site. Our results suggest that the LBS participates in the internalization of IDL but not in their degradation and that it is responsible for the selective uptake of cholesterol esters of IDL.  相似文献   

19.
Suckling rat plasma contains (in mg/dl): chylomicrons (85 +/- 12); VLDL (50 +/- 6); LDL (200 +/- 23); HDL1 (125 +/- 20); and HDL2 (220 +/- 10), while lymph contains (in mg/dl): chylomicrons (9650 +/- 850) and VLDL (4570 +/- 435) and smaller amounts of LDL and HDL. The lipid composition of plasma and lymph lipoproteins are similar to those reported for adults, except that LDL and HDL1 have a somewhat higher lipid content. The apoprotein compositions of plasma lipoproteins are similar to those of adult lipoproteins except for the LDL fraction, which contains appreciable quantities of apoproteins other than apoB. Although the LDL fraction was homogeneous by analytical ultracentrifugation and electrophoresis, the apoprotein composition suggests the presence of another class of lipoproteins, perhaps a lipid-rich HDL1. The lipoproteins of lymph showed low levels of apoproteins E and C. The triacylglycerols in chylomicrons and VLDL of both lymph and plasma are rich in medium-chain-length fatty acids, whereas those in LDL and HDL have little or none. Phospholipids in all lipoproteins lack medium-chain-length fatty acids. The cholesteryl esters of the high density lipoproteins are enriched in arachidonic acid, whereas those in chylomicrons, VLDL, and LDL are enriched in linoleic acid, suggesting little or no exchange of cholesteryl esters between these classes of lipoproteins. The fatty acid composition of phosphatidylcholine, sphingomyelin, and lysophosphatidylcholine were relatively constant in all lipoprotein fractions, suggesting ready exchange of these phospholipids. However, the fatty acid composition of phosphatidylethanolamine in plasma chylomicrons and VLDL differed from that in plasma LDL, HDL1, and HDL2. LDL, HDL1, and HDL2 were characterized by analytical ultracentrifugation and shown to have properties similar to that reported for adult lipoproteins. The much higher concentration of triacylglycerol-rich lipoproteins in lymph, compared to plasma, suggests rapid clearance of these lipoproteins from the circulation.  相似文献   

20.
Porcine liver membranes are capable of high affinity binding of homologous low density lipoproteins (LDL). Binding is time and temperature dependant and substrate saturable. High affinity binding sites are half saturated at 11 μg/ml lipoprotein-protein. The binding of 125I-LDL is inhibited by unlabelled homologous LDL, very low density lipoproteins (VLDL) and high density lipoproteins (HDL) and also be human LDL and HDL, but not by unrelated proteins tested. The binding and displacement patterns with membranes from several other porcine tissues are similar to those of liver membranes. These results suggest the presence of “lipoprotein binding sites” in liver membranes which recognize structural features common to the lipoproteins and further indicate that liver membranes are not unique in their ability to bind LDL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号