首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The most successful treatment strategy for arthritis is intra-articular injections that are costly and have reduced patient compliance. The purpose of the current study was to develop an inflammation-sensitive system for topical drug administration. Multi-macromolecular alginate-hyaluronic acid-chitosan (A-H-C) polyelectrolyte complex nanoparticles, loaded with indomethacin were developed employing pre-gel and post-gel techniques in the presence of dodecyl-l-pyroglutamate (DLP). In addition to in vitro studies, in silico simulations were performed to affirm and associate the molecular interactions inherent to the formulation of core all-natural multi-component biopolymeric architectures composed of an anionic (alginate), a cationic (chitosan), and an amphi-ionic polyelectrolytic (hyaluronic acid) macromolecule. The results demonstrated that DLP significantly influenced the size of the synthesized nanoparticles. Drug-content analysis revealed higher encapsulation efficiency (77.3%) in the presence of DLP, irrespective of the techniques used. Moreover, in vitro drug release studies showed that indomethacin release from the nanosystem was significantly improved (98%) in Fenton’s reagent. Drug permeation across a cellulose membrane using a Franz diffusion cell system showed an initial surge flux (0.125 mg/cm?2/h), followed by sustained release of indomethacin for the post-gel nanoparticles revealing its effective skin permeation efficiency. In conclusion, the study presents novel nanoparticles which could effectively encapsulate and deliver hydrophobic drugs to the target site, particularly for arthritis.  相似文献   

2.
Microemulsions (ME)—nanostructured systems composed of water, oil, and surfactants—have frequently been used in attempts to increase cutaneous drug delivery. The primary objective addressed in this work has been the development of temperature-sensitive microemulsion gel (called gel-like ME), as an effective and safe delivery system suitable for simultaneous topical application of a hydrophilic vitamin C and a lipophilic vitamin E. By changing water content of liquid o/w ME (o/w ME), a gel-like ME with temperature-sensitive rheological properties was formed. The temperature-driven changes in its microstructure were confirmed by rotational rheometry, viscosity measurements, and droplet size determination. The release studies have shown that the vitamins’ release at skin temperature from gel-like ME were comparable to those from o/w ME and were much faster and more complete than from o/w ME conventionally thickened with polymer (o/w ME carbomer). According to effectiveness in skin delivery of both vitamins, o/w ME was found the most appropriate, followed by gel-like ME and by o/w ME carbomer, indicating that no simple correlation between vitamins release and skin absorption could be found. The cytotoxicity studies revealed good cell viability after exposure to ME and confirmed all tested microemulsions as nonirritant. This work was supported by a grant of Slovenian Research Agency.  相似文献   

3.
The goal of the present study was to develop and evaluate microsponge-based topical delivery system of mupirocin for sustained release and enhanced drug deposition in the skin. Microsponges containing mupirocin were prepared by an emulsion solvent diffusion method. The effect of formulation and process variables such as internal phase volume and stirring speed on the physical characteristics of microsponges were examined on optimized drug/polymer ratio by 32 factorial design. The optimized microsponges were incorporated into an emulgel base. In vitro drug release, ex vivo drug deposition, and in vivo antibacterial activity of mupirocin-loaded formulations were studied. Developed microsponges were spherical and porous, and there was no interaction between drug and polymer molecules. Emulgels containing microsponges showed desired physical properties. Drug release through cellulose dialysis membrane showed diffusion-controlled release pattern and drug deposition studies using rat abdominal skin exhibited significant retention of active in skin from microsponge-based formulations by 24 h. The optimized formulations were stable and nonirritant to skin as demonstrated by Draize patch test. Microsponges-based emulgel formulations showed prolonged efficacy in mouse surgical wound model infected with S. aureus. Mupirocin was stable in topical emulgel formulations and showed enhanced retention in the skin indicating better potential of the delivery system for treatment of primary and secondary skin infections, such as impetigo, eczema, and atopic dermatitis.  相似文献   

4.
5.
Chitosan-based carriers have important potential applications for the administration of drugs. In the present study, topical gel formulations of terbinafine hydrochloride (T-HCl) were prepared using different types of chitosan at different molecular weight, and the antifungal inhibitory activity was evaluated to suggest an effective formulation for the treatment of fungal infections. The characteristics of gel formulations were determined with viscosity measurements and texture profile analysis. Stability studies were performed at different temperatures during 3 months. The ex vivo permeation properties were studied through rat skin by using Franz diffusion cells. The antifungal inhibitory activity of formulations on Candida species and filamentous fungi was also examined with agar-cup method. The microbiological assay was found suitable for determination of in vitro antifungal activity of T-HCl. A marketed product was used to compare the results. The antifungal activity of T-HCl significantly increased when it was introduced into the chitosan gels. A higher drug release and the highest zone of inhibition were obtained from gels prepared with the lowest molecular weight chitosan (Protasan UP CL 213) compared to that of other chitosan gels and marketed product. These results indicated the advantages of the suggested formulations for topical antifungal therapy against Candida species and filamentous fungi.  相似文献   

6.
The objective of this study was to develop a clear, aqueous rapamycin-loaded mixed nanomicellar formulations (MNFs) for the back-of-the-eye delivery. MNF of rapamycin (0.2%) was prepared with vitamin E tocopherol polyethylene glycol succinate (TPGS) (Vit E TPGS) and octoxynol-40 (Oc-40) as polymeric matrix. MNF was characterized by various parameters such as size, charge, shape, and viscosity. Proton nuclear magnetic resonance (1H NMR) was used to identify unentrapped rapamycin in MNF. Cytotoxicity was evaluated in human retinal pigment epithelial (D407) and rabbit primary corneal epithelial cells (rPCECs). In vivo posterior ocular rapamycin distribution studies were conducted in male New Zealand white rabbits. The optimized MNF has excellent rapamycin entrapment and loading efficiency. The average size of MNF was 10.98 ± 0.089 and 10.84 ± 0.11 nm for blank and rapamycin-loaded MNF, respectively. TEM analysis revealed that nanomicelles are spherical in shape. Absence of free rapamycin in the MNF was confirmed by 1H NMR studies. Neither placebo nor rapamycin-loaded MNF produced cytotoxicity on D407 and rPCECs indicating formulations are tolerable. In vivo studies demonstrated a very high rapamycin concentration in retina-choroid (362.35 ± 56.17 ng/g tissue). No drug was identified in the vitreous humor indicating the sequestration of rapamycin in lipoidal retinal tissues. In summary, a clear, aqueous MNF comprising of Vit E TPGS and Oc-40 loaded with rapamycin was successfully developed. Back-of-the-eye tissue distribution studies demonstrated a very high rapamycin levels in retina-choroid (place of drug action) with a negligible drug partitioning into vitreous humor.KEY WORDS: back-of-the-eye, drug delivery, formulation, mixed nanomicelles, posterior, rabbits, rapamycin/sirolimus, retina/choroid, sclera, topical eye drops  相似文献   

7.
Abstract

In an earlier report (1) we described the controlled follicular delivery of hydrophobic macromolecules from nonionic lipid-based formulations composed of glyceryl dilaurate (GDL), cholesterol (CH), and polyoxyethylene-10-stearyl ether (POE-10). However, the influence of lipid composition on topical delivery of marginally hydrophobic and hydrophilic drugs from these nonionic lipid-based systems has not been investigated. In this report we describe the effect of variation of GDL to POE-10 ratio in the nonionic lipid-based formulations on the extent and route of delivery of hydrocortisone and mannitol, a marginally hydrophobic and hydrophilic model drug, respectively, into and through hairless mouse skin mounted on Franz diffusion cells. The results indicate that the extent of hydrocortisone uptake increased with increasing GDL to POE-10 weight ratio whereas mannitol uptake was quite the opposite and decreased with increasing GDL to POE-10 weight ratio. The diametrically opposite trends for the two drug markers suggests strongly that hydrocortisone and mannitol are transported into and across skin from the nonionic lipid-based formulations via two distinctly different routes. Further, the finding from microautoradiographic studies that the delivery of hydrocortisone from nonionic lipid-based lipid melt formulations was predominantly across the transfollicular route compared to its transport across both the trans-epidermal and transfollicular pathways from nonionic lipid-based liposomes, suggests that it is possible to tailor formulations for specific and targeted delivery across a certain route.  相似文献   

8.
Propylene glycol (PG)-phospholipid vesicles have been advocated as flexible lipid vesicles for enhanced skin delivery of drugs. To further characterize the performance of these vesicles and to address some relevant pharmaceutical issues, miconazole nitrate(MN)-loaded PG nanoliposomes were prepared and characterized for vesicle size, entrapment efficiency, in vitro release, and vesicle stability. An issue of pharmaceutical importance is the time-dependent, dilution-driven diffusion of propylene glycol out of the vesicles. This was addressed by assessing propylene glycol using gas chromatography in the separated vesicles and monitoring its buildup in the medium after repeated dispersion of separated vesicles in fresh medium. Further, the antifungal activity of liposomal formulations under study was assessed using Candida albicans, and their in vitro skin permeation and retention were studied using human skin. At all instances, blank and drug-loaded conventional liposomes were included for comparison. The results provided evidence of controlled MN delivery, constant percent PG uptake in the vesicles (≈45.5%) in the PG concentration range 2.5 to 10%, improved vesicle stability, and enhanced skin deposition of MN with minimum skin permeation. These are key issues for different formulation and performance aspects of propylene glycol-phospholipid vesicles.  相似文献   

9.
l-ascorbic acid has been widely used in cosmetic and dermatological products because of its ability to scavenge free radicals and destroy oxidizing agents. However, it is chemically unstable and can easily be oxidized. The current cosmetic facial masks available in the market are pre-moistened, which means that the aqueous fluid content of the mask may oxidize some of the unstable active ingredients such as ascorbic acid. This work presents an anti-wrinkle nanofiber face mask containing ascorbic acid, retinoic acid, gold nanoparticles, and collagen. This novel face mask will only be wetted when applied to the skin, thus enhancing product stability. Once moistened, the content of the mask will gradually dissolve and release the active ingredients and ensure maximum skin penetration. The high surface area-to-volume ratio of the nanofiber mask will ensure maximum contact with the skin surface and help to enhance the skin permeation to restore its healthy appearance. Electrospun fiber mats may provide an attractive alternative to the commercial facial cotton masks.  相似文献   

10.
AimThe objective of this study was to formulate and evaluate a unique matrix mixture (nanomiemgel) of nanomicelle and nanoemulsion containing aceclofenac and capsaicin using in vitro and in vivo analyses and to compare it to a marketed formulation (Aceproxyvon).MethodsNanomicelles were prepared using Vitamin E TPGS by solvent evaporation method and nanoemulsion was prepared by high-pressure homogenization method. In vitro drug release and human skin permeation studies were performed and analyzed using HPLC. The efficiency of nanomiemgel as a delivery system was investigated using an imiquimod-induced psoriatic like plaque model developed in C57BL/6 mice.ResultsAtomic Force Microscopy images of the samples exhibited a globular morphology with an average diameter of 200, 250 and 220 nm for NMI, NEM and NMG, respectively. Nanomiemgel demonstrated a controlled release drug pattern and induced 2.02 and 1.97-fold more permeation of aceclofenac and capsaicin, respectively than Aceproxyvon through dermatomed human skin. Nanomiemgel also showed 2.94 and 2.09-fold greater Cmax of aceclofenac and capsaicin, respectively than Aceproxyvon in skin microdialysis study in rats. The PASI score, ear thickness and spleen weight of the imiquimod-induced psoriatic-like plaque model were significantly (p<0.05) reduced in NMG treated mice compared to free drug, NEM, NMI & Aceproxyvon.ConclusionUsing a new combination of two different drug delivery systems (NEM+NMI), the absorption of the combined system (NMG) was found to be better than either of the individual drug delivery systems due to the utilization of the maximum possible paths of absorption available for that particular drug.  相似文献   

11.
Abstract

In a previous report (1), we showed that the rate and extent of uptake of cyclosporin-A (CsA) following topical application of nonionic liposomal formulations composed of glyceryl dilaurate (GDL), cholesterol (CH), and polyoxyethylene-10-stearyl ether (POE-10) into and through hairless mouse skin mounted on Franz diffusion cells could be controlled by varying the ratios of GDL to POE-10 (CH being held constant at 15 wt%). However, the pathways of transport as well as the dominant factors that control drug delivery from these formulations are not well understood. In this report, we describe results from studies similar in design to that reported earlier but using the melted form of the lipid components as a vehicle for transport of CsA into and through hairless mouse skin. The results suggest that the transport of CsA from liposomal formulations into and through the skin occurs as a result of dehydration of the liposomes followed by melting of the lipid components on the skin. Microautoradiographic studies suggest that CsA is predominantly transported via the pilosebaceous pathway.  相似文献   

12.
The purpose of this study was to prepare miconazole nitrate (MN) loaded solid lipid nanoparticles (MN-SLN) effective for topical delivery of miconazole nitrate. Compritol 888 ATO as lipid, propylene glycol (PG) to increase drug solubility in lipid, tween 80, and glyceryl monostearate were used as the surfactants to stabilize SLN dispersion in the SLN preparation using hot homogenization method. SLN dispersions exhibited average size between 244 and 766 nm. All the dispersions had high entrapment efficiency ranging from 80% to 100%. The MN-SLN dispersion which showed good stability for a period of 1 month was selected. This MN-SLN was characterized for particle size, entrapment efficiency, and X-ray diffraction. The penetration of miconazole nitrate from the gel formulated using selected MN-SLN dispersion as into cadaver skins was evaluated ex-vivo using franz diffusion cell. The results of differential scanning calorimetry (DSC) showed that MN was dispersed in SLN in an amorphous state. The MN-SLN formulations could significantly increase the accumulative uptake of MN in skin over the marketed gel and showed a significantly enhanced skin targeting effect. These results indicate that the studied MN-SLN formulation with skin targeting may be a promising carrier for topical delivery of miconazole nitrate.  相似文献   

13.
The aim of the present investigation was to develop and evaluate microemulsion-loaded hydrogels (MEHs) for the topical delivery of fluconazole (FZ). The solubility of FZ in oils, surfactants and cosurfactants was evaluated to identify the components of the microemulsion. The pseudo-ternary phase diagrams were constructed using the novel phase diagram by micro-plate dilution method. Carbopol EDT 2020 was used to convert FZ-loaded microemulsions into gel form without affecting their structure. The selected microemulsions were assessed for globule size, zeta potential and polidispersity index. Besides this, the microemulsion-loaded hydrogel (MEH) formulations were evaluated for drug content, pH, rheological properties and in vitro drug release through synthetic membrane and excised pig ear skin in comparison with a conventional hydrogel. The optimised MEH FZ formulations consisting of FZ 2%, Transcutol P 11.5% and 11%, respectively, as oil phase, Lansurf SML 20-propyleneglycol 52% and 50%, respectively, as surfactant–cosurfactant (2:1), Carbopol EDT 2020 1.5% as gelling agent and water 34.5% and 37%, respectively, showed highest flux values and high release rate values, and furthermore, they had low surfactant content. The in vitro FZ permeation through synthetic membrane and excised pig ear skin from the studied MEHs was best described by the zero-order and first-order models. Finally, the optimised MEH FZ formulations showed similar or slightly higher antifungal activity as compared to that of conventional hydrogel and Nizoral® cream, respectively. The results suggest the potential use of developed MEHs as vehicles for topical delivery of FZ, encouraging further in vitro and in vivo evaluation.KEY WORDS: fluconazole, in vitro skin permeation, microemulsion, microemulsion-loaded hydrogel, topical  相似文献   

14.
Hydroxyzine HCl is used in oral formulations for the treatment of urticaria and atopic dermatitis. Dizziness, blurred vision, and anticholinergic responses, represent the most common side effects. It has been shown that controlled release of the drug from a delivery system to the skin could reduce the side effects while reducing percutaneous absorption. Therefore, the aim of the present study was to produce an effective drug-loaded dosage form that is able to control the release of hydroxyzine hydrochloride into the skin. The Microsponge Delivery System is a unique technology for the controlled release of topical agents, and it consists of porous polymeric microspheres, typically 10–50 μm in diameter, loaded with active agents. Eudragit RS-100 microsponges of the drug were prepared by the oil in an oil emulsion solvent diffusion method using acetone as dispersing solvent and liquid paraffin as the continuous medium. Magnesium stearate was added to the dispersed phase to prevent flocculation of Eudragit RS-100 microsponges. Pore inducers such as sucrose and pregelatinized starch were used to enhance the rate of drug release. Microsponges of nearly 98% encapsulation efficiency and 60–70% porosity were produced. The pharmacodynamic effect of the chosen preparation was tested on the shaved back of histamine-sensitized rabbits. Histopathological studies were driven for the detection of the healing of inflamed tissues.KEYWORDS: hydroxyzine HCl, microsponges, oil in oil emulsion solvent diffusion, skin delivery  相似文献   

15.
In this study, liquid crystalline nanoparticles (LCN) have been proposed as new carrier for topical delivery of finasteride (FNS) in the treatment of androgenetic alopecia. To evaluate the potential of this nanocarrier, FNS-loaded LCN was prepared by ultrasonication method and characterized for size, shape, in vitro release, and skin permeation–retention properties. The particle size ranged from 153.8 to 170.2 nm with a cubical shape and exhibited controlled release profile with less than 20% of the drug released in the first 24 h. The release profile was significantly altered with addition of different additives. Formulation with lower monoolein exhibited higher skin permeation with a flux rate of 0.061 ± 0.005 μg cm−2 h−1 in 24 h. The permeation however, significantly increased with glycerol, propylene glycol, and polyethylene glycol 400, while it declined for the addition of oleic acid. A similar trend was observed with skin retention study. In conclusion, FNS-loaded LCN could be advocated as a viable alternative for oral administration of the drug.Key words: androgenetic alopecia, finasteride, liquid crystalline nanoparticles, release, skin permeation–retention  相似文献   

16.
The present studies were designed to develop a formulation of amphotericin B in a lipid-based preparation as a microemulsion and to compare its toxicity with the commercial formulation Fungizone. The final product developed is a lyophilized amphotericin B, oil and surfactant blend for reconstitution in water to yield a microemulsion containing 5 mg/ml of the drug. Pseudoternary phase diagrams were constructed to identify areas of existence of microemulsion composed of Peceol (glyceryl monooleate) as oil phase and Mys 40 (polyethylene glycol 40 stearate) and Solutol HS 15 (polyethylene glycol 15 hydroxy stearate) as surfactants. Amphotericin B was co-evaporated with oil - surfactant mixture to produce a microemulsion pre-concentrate. The co-evaporate was diluted in water, filtered for sterilization and lyophilized to obtain the final product. The lyophilized as well as the reconstituted products were separately studied for stability and the latter was also characterized for various physicochemical aspects including droplet size of the dispersed phase, osmolarity and aggregation state of drug. The dispersion showed no evidence of precipitation of drug for 48 h, and resisted destabilization due to freeze-thaw cycles or centrifugation. The dispersed phase globules measured a mean size of 84 nm and uv-spectrophotometric studies indicated the presence of self-aggregated amphotericin B. The present formulation showed a 92% decrease in haemolysis of human RBC in vitro when compared with the commercially available Fungizone. The LD(50) in mice was estimated to be 3.4 mg/kg. The results indicate that the formulation holds promise for development as a safer and efficacious alternative for amphotericin B therapy.  相似文献   

17.
We have recently shown that coumestrol, an isoflavonoid-like compound naturally occurring in soybeans, alfafa, and red clover, inhibited Herpes Simplex Virus types 1 (HSV-1) and 2 (HSV-2) replication. In this study, we designed coumestrol formulations in an attempt to enable its topical delivery to mucosa tissues. Physicochemical and microscopic examinations suggested that coumestrol was efficiently incorporated in positively-charged nanoemulsions dispersed in a hydroxyethylcellulose gel. The higher coumestrol flux through excised porcine esophageal mucosa was detected from nanoemulsions composed by a fluid phospholipid (dioleylphosphocholine, DOPC) in comparison with that of a rigid one (distearoylphosphocholine, DSPC) in two mucosa conditions (intact and injured). Such results were supported by confocal fluorescence images. Furthermore, the low IC50 values demonstrated an increasement in the antiviral inhibition against HSV-1 and HSV-2 after incorporation of coumestrol into nanoemulsions containing DOPC. Overall, coumestrol-loaded nanoemulsions proved to be beneficial for herpes simplex treatment.  相似文献   

18.
The objective of the present study was to formulate and evaluate microemulsion systems for topical delivery of clotrimazole (CTM). The solubility of CTM in various oils was determined to select the oil phase of the microemulsion systems. Pseudoternary phase diagrams were constructed to identify the area of microemulsion existence. Five CTM microemulsion formulations (M1–M5) were prepared and evaluated for their thermodynamic stability, pH, refractive index, droplet size, viscosity, and in vitro release across cellulose membrane. Among the prepared microemulsion formulations, M3 (lemon oil/Tween 80/n-butanol/water) and M4 (isopropyl myristate/Tween 80/n-butanol/water) microemulsion systems were found to be promising according to their physical properties and CTM cumulative percentage release. Gel form of M3 and M4 were prepared using 1% Carbopol 940 as the hydrogel matrix. Both formulations were evaluated in the liquid and gel forms for drug retention in the skin in comparison to the marketed CTM topical cream and their stability examined after storage at 40°C for 6 months. Microemulsion formulations achieved significantly higher skin retention for CTM over the CTM cream. Stability studies showed that M4 preparations were more stable than M3. The in vitro anti-fungal activity of M4 against Candida albicans was higher than that of the conventional cream. Moreover, clinical evaluation proved the efficacy and tolerability of this preparation in the treatment of various topical fungal infections.  相似文献   

19.
Lornoxicam is a potent oxicam class of non steroidal anti-inflammatory agent, prescribed for mild to moderate pain and inflammation. Niosomal gel of lornoxicam was developed for topical application. Lornoxicam niosomes (Lor-Nio) were fabricated by thin film hydration technique. Bilayer composition of niosomal vesicles was optimized. Lor-Nio dispersion was characterized by DSC, XRD, and FT-IR. Morphological evaluation was performed by scanning electron microscopy (SEM). Lor-Nio dispersion was incorporated into a gel using 2% w/w Carbopol 980 NF. Rheological and texture properties of Lor-Nio gel formulation showed suitability of the gel for topical application. The developed formulation was evaluated for in vitro skin permeation and skin deposition studies, occlusivity test and skin irritation studies. Pharmacodynamic activity of the Lor-Nio gel was performed by carragenan-induced rat paw model. Optimized Lor-Nio comprised of Span 60 and cholesterol in a molar ratio of 3:1 with 30 μM dicetyl palmitate as a stabilizer. It had particle size of 1.125 ± 0.212 μm (d90), with entrapment efficiency of 52.38 ± 2.1%. DSC, XRD, and IR studies showed inclusion of Lor into niosomal vesicles. SEM studies showed spherical closed vesicular structure with particles in nanometer range. The in vitro skin permeation studies showed significant improvement in skin permeation and skin deposition for Lor-Nio gel (31.41 ± 2.24 μg/cm2, 30.079 ± 1.2 μg/cm2) over plain lornoxicam gel (7.37 ± 1.27 μg/cm2, 6.6 ± 2.52 μg/cm2). The Lor-Nio gel formulation showed enhanced anti-inflammatory activity by exhibiting mean edema inhibition (87.69 ± 1.43%) which was significantly more than the plain lornoxicam gel (53.84 ± 2.21%).KEY WORDS: anti-inflammatory activity, lornoxicam, niosomes, rheology, texture analysis  相似文献   

20.
The current study explains the development of sorbitan monostearate and sesame oil-based organogels for topical drug delivery. The organogels were prepared by dissolving sorbitan monostearate in sesame oil (70°C). Metronidazole was used as a model antimicrobial. The formulations were characterized using phase contrast microscopy, infrared spectroscopy, viscosity, mechanical test, and differential scanning calorimetry. Phase contrast microscopy showed the presence of needle-shaped crystals in the organogel matrix. The length of the crystals increased with the increase in the sorbitan monostearate concentration. XRD studies confirmed the amorphous nature of the organogels. Viscosity study demonstrated shear thinning behavior of the organogels. The viscosity and the mechanical properties of the organogels increased linearly with the increase in the sorbitan monostearate concentration. Stress relaxation study confirmed the viscoelastic nature of the organogels. The organogels were biocompatible. Metronidazole-loaded organogels were examined for their controlled release applications. The release of the drug followed zero-order release kinetics. The drug-loaded organogels showed almost similar antimicrobial activity against Escherichia coli when compared to the commercially available Metrogyl® gel. In gist, it can be proposed that the developed organogels had sufficient properties to be used for controlled delivery of drugs.

Electronic supplementary material

The online version of this article (doi:10.1208/s12249-014-0223-7) contains supplementary material, which is available to authorized users.KEY WORDS: organogel, phase contrast microscopy, sesame oil, sorbitan monostearate  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号