首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Wild mouse DNAs were analyzed for two types of endogenous ecotropic murine leukemia viruses (MuLVs), Akv and Fv-4r-associated MuLV. Endogenous Akv viruses were found only in northern Chinese mice, Korean mice, and Japanese (Mus musculus molossinus) mice. The Fv-4r gene, which is a truncated endogenous MuLV with ecotropic interference properties, was carried by Southeast Asian (M. m. castaneus) mice, Korean mice, and M. m. molossinus. Sequences related to Fv-4r MuLV env were found only in M. m. castaneus. These findings suggest that endogenous Akv viruses were acquired by northern Chinese mice and that the Fv-4r gene or its related endogenous MuLVs were acquired independently by M. m. castaneus. The Fv-4r gene appears to have been generated hundreds of thousands of years ago, before the amplification of the Fv-4r-related endogenous MuLVs in M. m. castaneus. The coexistence of Akv viruses and the Fv-4r gene in M. m. molossinus may be explained by the hybrid origin of M. m. molossinus in crosses between northern Chinese mice and M. m. castaneus, as described in other articles. The absence of the Fv-4r-related endogenous MuLVs in M. m. molossinus may indicate that the ancestral mice of this subspecies either were an ancient type of M. m. castaneus that had acquired the Fv-4r gene but had not yet acquired the Fv-4r-related endogenous MuLVs or were a rare fraction of a mixed population of M. m. castaneus and northern Chinese mice.  相似文献   

2.
Two types of endogenous ecotropic murine leukemia viruses (MuLVs), termed AKV- and Cas-E-type MuLVs, differ in nucleotide sequence and distribution in wild mouse subspecies. In contrast to AKV-type MuLV, Cas-E-type MuLV is not carried by common laboratory mice. Wild mice of Mus musculus (M. m.) castaneus carry multiple copies of Cas-E-type endogenous MuLV, including the Fv-4(r) gene that is a truncated form of integrated MuLV and functions as a host's resistance gene against ecotropic MuLV infection. Our genetic cross experiments showed that only the Fv-4(r) gene was associated with resistance to ecotropic F-MuLV infection. Because the spontaneous expression of infectious virus was not detected in M. m. castaneus, we generated mice that did not carry the Fv-4(r) gene but did carry a single or a few endogenous MuLV loci. In mice not carrying the Fv-4(r) gene, infectious MuLVs were isolated in association with three of six Cas-E-type endogenous MuLV loci. The isolated viruses showed a weak syncytium-forming activity for XC cells, an interfering property of ecotropic MuLV, and a slight antigenic variation. Two genomic DNAs containing endogenous Cas-E-type MuLV were cloned and partially sequenced. All of the Cas-E-type endogenous MuLVs were closely related, hybrid-type viruses with an ecotropic env gene and a xenotropic long terminal repeat. Duplications and a deletion were found in a restricted region of the hypervariable proline-rich region of Env glycoprotein.  相似文献   

3.
A dominant restriction allele, Akvr-1r, from California wild mice (Mus musculus domesticus) confers resistance to exogenous ecotropic murine leukemia virus (MuLV) infection. The presence of an ecotropic MuLV envelope-related glycoprotein in uninfected virus-resistant cells suggests that viral interference is a possible mechanism for this resistance. We molecularly cloned the ecotropic MuLV envelope-related sequence from the genomic DNA of a wild mouse homozygous for the Akvr-1r locus. The cloned provirus was defective and contained a C-terminal end of the pol gene, a complete envelope gene, and a 3' long terminal repeat. The presence of this provirus was directly correlated with Akvr-1r-mediated virus resistance in cell cultures and hybrid mice. The Akvr-1r provirus restriction map and partial DNA sequence were identical to those of the Fv-4r allele, an ecotropic MuLV resistance locus from Japanese feral mice (M. musculus molossinus), which was previously shown to be allelic with the Akvr-1r gene. The 3' host flanking sequences of Fv-4r and Akvr-1r also had identical restriction maps. These findings indicate that Akvr-1r and Fv-4r are the same gene. It was probably acquired by interbreeding of these feral species in recent times. Conservation of this locus might be favored by the useful function that it performs in protection against ecotropic MuLV infection endemic in both populations of wild mice.  相似文献   

4.
The Asian mouse Mus castaneus is resistant to infection by the polytropic mink cell focus-inducing (MCF) subgroup of murine leukemia viruses (MuLVs). Genetic crosses showed this recessive resistance to be governed by a single gene that maps at or near the gene encoding the polytropic viral receptor, Rmc1. To investigate this resistance, we mated M. castaneus with mice carrying the wild mouse Sxv variant of the Rmc1 receptor that allows infection by xenotropic as well as polytropic virus. Unlike other F1 hybrids of M. castaneus, these F1 mice were resistant to both xenotropic and polytropic classes of MuLVs. Analysis of backcrossed progeny of the F1 hybrids mated to Sxv mice indicates that resistance is due to inheritance of two M. castaneus genes. Cells from individual backcross mice were also examined for cell surface antigen by fluorescence-activated cell sorter analysis with monoclonal antibodies reactive with xenotropic or MCF virus env glycoproteins. A correlation was observed between virus resistance and antigen, suggesting that virus resistance is due to expression of endogenous viral envelope genes that interfere with infection by exogenous virus. Since the inbred strain Rmc1 receptor remains functional in the presence of these M. castaneus genes, and since M. castaneus contains multiple copies of xenotropic MuLV env genes, we suggest that these resistance genes control expression of xenotropic env glycoprotein that interferes with exogenous virus in cells containing the Sxv variant of Rmc1.  相似文献   

5.
By using seven different restriction endonucleases, the cleavage patterns of the unintegrated provioral DNA from an ecotropic murine leukemia virus isolated from Mus musculus molossinus were found to be identical to those of AKR virus. An AKR [3H]DNA probe can be completely saturated with M. musculus molossinus and M. musculus castaneus DNAs, although the arrangement of viral sequences in M. musculus molossinus DNA differed from that of AKR virus. These studies indicate that an AKR-type ecotropic virus is present in some wild Asiatic mice.  相似文献   

6.
Recombinant phages containing murine leukemia virus (MuLV)-reactive DNA sequences were isolated after screening of a BALB/c mouse embryo DNA library and from shotgun cloning of EcoRI-restricted AKR/J mouse liver DNA. Twelve different clones were isolated which contained incomplete MuLV proviral DNA sequences extending various distances from either the 5' or 3' long terminal repeat (LTR) into the viral genome. Restriction maps indicated that the endogenous MuLV DNAs were related to xenotropic MuLVs, but they shared several unique restriction sites among themselves which were not present in known MuLV proviral DNAs. Analyses of internal restriction fragments of the endogenous LTRs suggested the existence of at least two size classes, both of which were larger than the LTRs of known ecotropic, xenotropic, or mink cell focus-forming (MCF) MuLV proviruses. Five of the six cloned endogenous MuLV proviral DNAs which contained envelope (env) DNA sequences annealed to a xenotropic MuLV env-specific DNA probe; in addition, four of these five also hybridized to an ecotropic MuLV-specific env DNA probe. Cloned MCF 247 proviral DNA also contained such dual-reactive env sequences. One of the dual-reactive cloned endogenous MuLV DNAs contained an env region that was indistinguishable by AluI and HpaII digestion from the analogous segment in MCF 247 proviral DNA and may therefore represent a progenitor for the env gene of this recombinant MuLV. In addition, the endogenous MuLV DNAs were highly related by AluI cleavage to the Moloney MuLV provirus in the gag and pol regions.  相似文献   

7.
The murine leukemia virus (MuLV) sequence associated with the resistance allele of the Fv-4 gene (Fv-4r) was molecularly cloned from genomic DNA of uninfected mice carrying this allele. The 5.2-kilobase cloned EcoRI DNA fragment (pFv4) was shown by nucleotide sequencing to contain 3.4 kilobases of a colinear MuLV-related proviral sequence which began in the C-terminal end of the pol region and extended through the env region and the 3' long terminal repeat. Cellular sequences flanked the 3' as well as the 5' ends of the truncated MuLV sequence. Alignment of the N-terminal half of the pFv4 env sequence with ecotropic, mink cell focus-forming, and xenotropic MuLV env sequences established the relatedness of pFv4 and ecotropic MuLV env sequences. A subcloned 700-base pair segment (pFv4env) from the 5' env region of pFv4 was used as an Fv-4-specific probe; it hybridized specifically to the Fv-4r-associated proviral sequence but not to endogenous ecotropic MuLV proviral DNA under high stringency. All Fv-4-resistant mice contained the same retroviral segment associated with the same flanking cellular DNA. Expression of Fv-4r-specific mRNA was demonstrated in the spleens of Fv-4r mice but not Fv-4s mice, supporting the previously proposed resistance model based on interference.  相似文献   

8.
Murine leukemia virus (MuLV) M813 was originally isolated from the Southeast Asian rodent Mus cervicolor. As with the ecotropic MuLVs derived from Mus musculus, its host range is limited to rodent cells. Earlier studies have mapped its receptor to chromosome 2, but it has not been established whether M813 shares a common receptor with any other MuLVs. In this study, we have performed interference assays with M813 and viruses from four interference groups of MuLV. The infection efficiency of M813 was not compromised in cells expressing any one of the other MuLVs, demonstrating that M813 must use a distinct receptor for cell entry. The entire M813 env coding region was molecularly cloned. Sequence analysis revealed high similarity with other MuLVs but with a unique receptor-binding domain. Substitution of M813 env sequences in Moloney MuLV resulted in a replication-competent virus with a host range and interference profile similar to those of the biological clone M813. M813 thus defines a novel receptor interference group of type C MuLVs.  相似文献   

9.
10.
Cultured cells derived from the wild mouse species Mus castaneus were found to be uniquely resistant to exogenous infection by polytropic mink cell focus-forming (MCF) murine leukemia viruses (MuLVs). This MCF MuLV resistance is inherited as a genetically recessive trait in the progeny of F1 crosses between M. castaneus and MCF MuLV-susceptible laboratory mice. Examination of the progeny of backcrosses demonstrated that susceptibility is inherited as a single gene which maps to chromosome 1. The map location of this gene places it at or near the locus Rmc1, the gene encoding the receptor for MCF/xenotropic MuLVs, suggesting that resistance is mediated by the M. castaneus allele of this receptor.  相似文献   

11.
Oligonucleotide probes specific for the Fv-1 N- and B-tropic host range determinants of the gag p30-coding sequence were used to analyze DNA clones of various murine leukemia virus (MuLV) and endogenous MuLV-related proviral genomes and chromosomal DNA from four mouse strains. The group of DNA clones consisted of ecotropic MuLVs of known Fv-1 host range, somatically acquired ecotropic MuLV proviruses, xenotropic MuLV isolates, and endogenous nonecotropic MuLV-related proviral sequences from mouse chromosomal DNA. As expected, the prototype N-tropism determinant is carried by N-tropic viruses of several different origins. All seven endogenous nonecotropic MuLV-related proviral sequence clones derived from RFM/Un mouse chromosomal DNA, although not recognized by the N probe, showed positive hybridization with the prototype B-tropism-specific probe. The two xenotropic MuLV clones derived from infectious virus (one of BALB:virus-2 and one of AKR xenotropic virus) failed to hybridize with the N- and B-tropic oligonucleotide probes tested and with one probe specific for NB-tropic Moloney MuLV. One of two endogenous xenotropic class proviruses derived from HRS/J mouse chromosomal DNA (J. P. Stoye and J. M. Coffin, J. Virol. 61:2659-2669, 1987) also failed to hybridize to the N- and B-tropic probes, whereas the other hybridized to the B-tropic probe. In addition, analysis of mouse chromosomal DNA from four strains indicates that hybridization with the N-tropic probe correlates with the presence or absence of endogenous ecotropic MuLV provirus, whereas the B-tropic probe detects abundant copies of endogenous nonecotropic MuLV-related proviral sequences. These results suggest that the B-tropism determinant in B-tropic ecotropic MuLV may arise from recombination between N-tropic ecotropic MuLV and members of the abundant endogenous nonecotropic MuLV-related classes including a subset of endogenous xenotropic proviruses.  相似文献   

12.
The sequence of 363 nucleotides near the 3' end of the pol gene and 564 nucleotides from the 5' terminus of the env gene in an endogenous murine leukemia viral (MuLV) DNA segment, cloned from AKR/J mouse DNA and designated as A-12, was obtained. For comparison, the nucleotide sequence in an analogous portion of AKR mink cell focus-forming (MCF) 247 MuLV provirus was also determined. Sequence features unique to MCF247 MuLV DNA in the 3' pol and 5' env regions were identified by comparison with nucleotide sequences in analogous regions of NFS -Th-1 xenotropic and AKR ecotropic MuLV proviruses. These included (i) an insertion of 12 base pairs encoding four amino acids located 60 base pairs from the 3' terminus of the pol gene and immediately preceding the env gene, (ii) the deletion of 12 base pairs (encoding four amino acids) and the insertion of 3 base pairs (encoding one amino acid) in the 5' portion of the env gene, and (iii) single base substitutions resulting in 2 MCF247 -specific amino acids in the 3' pol and 23 in the 5' env regions. Nucleotide sequence comparison involving the 3' pol and 5' env regions of AKR MCF247 , NFS xenotropic, and AKR ecotropic MuLV proviruses with the cloned endogenous MuLV DNA indicated that MCF247 proviral DNA sequences were conserved in the cloned endogenous MuLV proviral segment. In fact, total nucleotide sequence identity existed between the endogenous MuLV DNA and the MCF247 MuLV provirus in the 3' portion of the pol gene. In the 5' env region, only 4 of 564 nucleotides were different, resulting in three amino acid changes between AKR MCF247 MuLV DNA and the endogenous MuLV DNA present in clone A-12. In addition, nucleotide sequence comparison indicated that Moloney-and Friend-MCF MuLVs were also highly related in the 3' pol and 5' env regions to the cloned endogenous MuLV DNA. These results establish the role of endogenous MuLV DNA segments in generation of recombinant MCF viruses.  相似文献   

13.
The Japanese mouse, Mus musculus molossinus, has long been considered an independent subspecies of the house mouse. A survey of restriction- site haplotypes of mitochondrial DNA (mtDNA) showed that Japanese mice have two main maternal lineages. The most common haplotype is closely related to the mtDNA of the European subspecies M. m. musculus. The other common haplotype and two minor ones are closely related to each other and to the mtDNA of an Asiatic subspecies, M. m. castaneus. Two other rare variants are probably the result of recent contamination by European M. m. domesticus. The musculus type of mtDNA is found in the southern two-thirds of Japan, whereas the common castaneus type is found in the northern third and the minor variants are found sporadically throughout Japan. The castaneus mtDNA lineage had a few minor variants, whereas the musculus lineage was completely monomorphic. By contrast, the native population of M. m. castaneus and the Chinese and Korean musculus populations were highly polymorphic. These results suggest that M. m. molossinus is a hybrid between ancestral colonies, possibly very small, of M. m. musculus and M. m. castaneus, rather than an independent subspecies.   相似文献   

14.
Endogenous murine leukemia virus (MuLV) was induced with 5-iododeoxyuridine (IdUrd) from the high-leukemia mouse strain AKR and from two low-leukemia strains, C3H/He and BALB/c. A virus-free cell line from strain AKR readily gave rise to infectious, XC-positive MuLV upon treatment with IdUrd, whereas cells from strains C3H/He and BALB/c produced replication-deficient, XC-negative MuLV. IdUrd-induced cells also produced xenotropic and mink cell focus-forming MuLV. Xenotropic virus emerged at a higher titer from both AKR and BALB/c cells during two discrete time intervals, first at day 3 after induction and a second time during spread of the induced ecotropic MuLV. Xenotropic and mink cell focus-forming MuLVs were also produced by IdUrd-induced C3H/He cells but required another round of infection in Sc-1 cells for detection. The in vitro infectivity of endogenous ecotropic MuLV isolated by IdUrd induction from C3H/He cells correlated with pathogenicity in the Fv-1-compatible, leukemia-negative mouse strain NFS/N. Thus, the virulence of endogenous ecotropic MuLV may be an important factor in determining the leukemia incidence in these inbred strains of mice.  相似文献   

15.
An infectious NZB xenotropic murine leukemia virus (MuLV) provirus (NZB was molecularly cloned from the Hirt supernatant of NZB-IU-6-infected mink cells, and the nucleotide sequence of its env gene and long terminal repeat (LTR) was determined. The partial nucleotide sequence previously reported for the env gene of NFS-Th-1 xenotropic proviral DNA (Repaske, et al., J. Virol. 46:204-211, 1983) is identical to that of the infectious NZB xenotropic MuLV DNA reported here. Alignment of nucleotide or deduced amino acid sequences, or both, of xenotropic, mink cell focus-forming, and ecotropic MuLV proviral DNAs in the env region identified sequence differences among the three host range classes of C-type MuLVs. Major differences were confined to the 5' half of env; a high degree of homology was found among the three classes of MuLVs in the 3' half of env. Alignment of the nucleotide sequence of the LTR of NZB xenotropic MuLV with those of the LTRs of NFS-Th-1 xenotropic, mink cell focus-forming, and ecotropic MuLVs revealed extensive homology between the LTRs of xenotropic and MCF247 MuLVs. An inserted 6-base-pair repeat 5' to the TATA box was a unique feature of both NZB and NFS-Th-1 xenotropic LTRs.  相似文献   

16.
Polytropic murine leukemia viruses (MuLVs) are generated by recombination of ecotropic MuLVs with env genes of a family of endogenous proviruses in mice, resulting in viruses with an expanded host range and greater virulence. Inbred mouse strains contain numerous endogenous proviruses that are potential donors of the env gene sequences of polytropic MuLVs; however, the precise identification of those proviruses that participate in recombination has been elusive. Three different structural groups of proviruses in NFS/N mice have been described and different ecotropic MuLVs preferentially recombine with different groups of proviruses. In contrast to other ecotropic MuLVs such as Friend MuLV or Akv that recombine predominantly with a single group of proviruses, Moloney MuLV (M-MuLV) recombines with at least two distinct groups. In this study, we determined that only three endogenous proviruses, two of one group and one of another group, are major participants in recombination with M-MuLV. Furthermore, the distinction between the polytropic MuLVs generated by M-MuLV and other ecotropic MuLVs is the result of recombination with a single endogenous provirus. This provirus exhibits a frameshift mutation in the 3' region of the surface glycoprotein-encoding sequences that is excluded in recombinants with M-MuLV. The sites of recombination between the env genes of M-MuLV and endogenous proviruses were confined to a short region exhibiting maximum homology between the ecotropic and polytropic env sequences and maximum stability of predicted RNA secondary structure. These observations suggest a possible mechanism for the specificity of recombination observed for different ecotropic MuLVs.  相似文献   

17.
Genomes of murine leukemia viruses isolated from wild mice.   总被引:41,自引:29,他引:12       下载免费PDF全文
The genomes of murine leukemia viruses (MuLV) isolated from wild mice have been studied. Detailed restriction endonuclease maps of the 8.8-kilobase (kb) unintegrated linear viral DNAs were derived for five ecotropic and five amphotropic MuLV's from California field mice, for Friend MuLV, and for one ecotropic and one xenotropic MuLV from Mus musculus castaneus. In general, the California MuLV's were similar in their leftward 6 kb (corresponding to the leftward long terminal repeat [LTR], gag, and pol) and rightward 1 kb (7.8 to 8.8 kb, corresponding to p15E and the rightward LTR). For the region spanning 6.0 to 7.7 kb (which includes the sequences that encode gp70) the amphotropic MuLV's shared few enzyme sites with the ecotropic MuLV's, although the California ecotropic MuLV's were highly related to each other in this region, as were the amphotropic MuLV's. Cross-hybridization studies between amphotropic and California ecotropic MuLV DNAs indicated that they were not homologous in the region 6.3 to 7.6 kb; the California ecotropic viral DNAs cross-hybridized in this region to AKR ecotropic MuLV. When the California viral DNAs were compared with AKR ecotropic viral DNA, many differences in enzyme sites were noted throughout the genome. The U3 regions of the wild mouse LTRs showed partial homology to this region in AKR MuLV. The LTR of Moloney MuLV was highly related to that of the California MuLV's, whereas the LTR of Friend MuLV appeared to be a recombinant between the two types of LTRs. The M. musculus castaneus isolates were most closely related to ecotropic and xenotropic MuLV's isolated from inbred mice. One amphotropic MuLV DNA was cloned from supercoiled viral DNA at its unique EcoRI site in pBR322. Viral DNAs with one and two LTRs were isolated. After digestion with EcoRI, DNAs of both types were infectious. It is concluded that ecotropic and amphotropic MuLV's differ primarily in the region which encodes gp70.  相似文献   

18.
19.
An NFS/N mouse inoculated at birth with an ecotropic murine leukemia virus (MuLV) obtained from wild mice (Cas-Br-M MuLV) developed a lymphoma after 18 weeks. An extract prepared from the lymphomatous spleen was inoculated into newborn NFS/N mice, and these mice developed erythroleukemia within 9 weeks. Spleens from the erythroleukemic mice contained ecotropic and mink cell focus-inducing (MCF) MuLVs; however, when these viruses were biologically cloned and reinoculated into newborn NFS/N mice, no erythroleukemia was induced. In contrast, cell-free extracts prepared from the erythroleukemic spleens induced erythroleukemia within 5 weeks. Analysis of cell-free extracts prepared from the erythroleukemic spleens showed that they contained a viral species that induced splenomegaly and spleen focus formation in adult mice, with susceptibility controlled by alleles at the Fv-2 locus. The spleen focus-forming virus coded for a 50,000-dalton protein precipitated by antibodies specific to MCF virus gp70. RNA blot hybridization studies showed the genomic viral RNA to be 7.5 kilobases and to hybridize strongly to a xenotropic or MCF envelope-specific probe but not to hybridize with an ecotropic virus envelope-specific probe. The virus described here appears to be the fourth independent isolate of a MuLV with spleen focus-forming activity.  相似文献   

20.
We have previously shown that mice expressing Hprt a allele(s) have erythrocyte hypoxanthine phosphoribosyltransferase (HPRT) levels that are approximately 25-fold (Mus musculus castaneus) and 70-fold (Mus spretus) higher than in mice that express the Hprt b allele (Mus musculus domesticus; C57BI/6J; C3H/HeHa), and that these differences in erythrocyte HPRT levels are due to differences in the turnover rates of the HPRT A and B proteins as reticulocytes mature to erythrocytes. We show here that: the taxonomic subgroups of the genus Mus are essentially monomorphic for the occurrence of either the Hprt a or the Hprt b allele, with Hprt a being common in the aboriginal species (M. spretus, Mus hortulanus and Mus abbotti) and in several commensal species (Mus musculus musculus, M. m. castaneus, Mus musculus molossinus), while Hprt b is common in feral M. m. domesticus populations as well as in all inbred strains of mice tested; in all these diverse Mus subgroups there is a strict association of Hprt a with high and Hprt b with low levels of erythrocyte HPRT; and, the association between the occurrence of the Hprt a allele and elevated erythrocyte HPRT levels is retained following repeated backcrosses of wild-derived Hprt a allele(s) into the genetic background of inbred strains of mice with the Hprt b allele. Collectively, these observations indicate that the elevated and low levels of erythrocyte HPRT are specified by differences in the Hprt a and b structural genes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号