首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
I W Smoak 《Teratology》1999,60(5):260-264
Cromakalim is a K(+) channel opener that causes smooth muscle relaxation by activating ATP-sensitive K(+) (K(ATP)) channels and producing membrane hyperpolarization. Cromakalim counteracts sulfonylurea-induced K(ATP) channel inhibition in adult cells, but little is known regarding its embryonic effects, alone or in combination with sulfonylureas. K(ATP) channels have been demonstrated in the embryo, but their role in normal and abnormal development is unknown. Early-somite mouse embryos were exposed for 24 hr in vitro to cromakalim at concentrations of 0 (Cntl), 1, 10, 100, 200, or 500 microM in 0.125% DMSO. Embryos were also exposed for 24 hr in vitro to a dysmorphogenic tolbutamide concentration (110 microg/ml) combined with a subdysmorphogenic concentration of cromakalim (1 microM). Embryos were evaluated for somite number, heart rate, malformations, and embryonic and yolk sac protein content. Embryos exposed to 1 microM cromakalim were similar to controls. Cromakalim exposure increased malformation rates at concentrations >/=200 microM, decreased heart rates at >/=10 microM, and decreased somite and protein values at 500 microM. Defects involved cranial neural tube, optic vesicle, heart, and somites. A malformation rate of 59% in embryos exposed to 110 microg/ml tolbutamide was reduced to 13% by adding 1 microM cromakalim to the culture medium. Heart rate, somite number, and protein values were also improved by combined exposure to cromakalim and tolbutamide compared with exposure to tolbutamide alone. These results support previous findings with diazoxide (K(+) channel opener) and chlorpropamide (sulfonylurea) and further suggest a potential role for K(ATP) channel effects in sulfonylurea-induced dysmorphogenesis.  相似文献   

2.
Hypoglycemia, the classic inducer of glucose-related protein (GRP) synthesis, is dysmorphogenic in rodent embryos and detrimentally affects the heart. This study compares GRP induction in a target vs non-target tissue by evaluating GRP expression in hearts and fore-limb buds of mouse embryos following exposure to hypoglycemia in vitro. Gestational day 9.5 embryos were exposed to 2, 6, and 24 h of either mild (80 mg/dl glucose) or severe (40 mg/dl glucose) hypoglycemia using the method of whole-embryo culture. GRP78 increased in a dose- and time-dependent fashion in embryonic hearts exposed to either 40 mg/dl or 80 mg/dl glucose, whereas GRP94 levels increased in hearts only after 24 h of hypoglycemia. In contrast to the heart, GRP induction in fore-limb buds occurred only with GRP78 following the most severe level and duration of hypoglycemia. RT-PCR analysis demonstrated an elevation in GRP78 and GRP94 message levels in embryonic hearts following severe hypoglycemia. However, mRNA levels did not increase in response to mild hypoglycemia. Overall, these data demonstrate the preferential induction of GRPs in the heart as compared to fore-limb buds in mouse embryos exposed to hypoglycemia. Increases in GRP protein levels may be a more reliable biomarker of stress than message levels. However, both tissues and methods should be examined for enhanced biomarker sensitivity.  相似文献   

3.
BACKGROUND: Maternal diabetes exposes embryos to periods of hyperglycemia. Glucose is important for normal cardiogenesis, and Glut-1 is the predominant glucose transporter in the embryo. METHODS: Pregnant mice were exposed to 6 or 12 hr hyperglycemia during organogenesis using intraperitoneal (IP) injections of D-glucose on gestational day (GD) 9.5 (plug = GD 0.5). Embryos were examined for morphology and total cardiac protein, and embryonic hearts were evaluated for Glut-1 protein and mRNA expression immediately after treatment (GD 9.75, GD 10.0), as well as on GD 10.5 and GD 12.5. RESULTS: IP glucose injections were effective in producing sustained maternal hyperglycemia. Maternal hyperglycemia for 6 or 12 hr on GD 9.5, followed by normoglycemia, produced a decrease in overall size and total cardiac protein in embryos evaluated on GD 10.5 but no difference on GD 12.5. Cardiac Glut-1 expression was immediately upregulated in embryos exposed to 6 or 12 hr maternal hyperglycemia. On GD 10.5, cardiac Glut-1 expression was not different in embryos exposed to maternal hyperglycemia for 6 hr but was downregulated in embryos exposed for 12 hr. On GD 12.5, cardiac Glut-1 expression in embryos exposed to maternal hyperglycemia on GD 9.5 for 6 or 12 hr, followed by normoglycemia, was not different from controls. The temporal pattern was the same for Glut-1 protein and mRNA expression. CONCLUSIONS: Hyperglycemia-induced alterations in Glut-1 expression likely interfere with balance of glucose available to the embryonic heart that may affect cardiac morphogenesis.  相似文献   

4.
BACKGROUND: Methanol causes axial skeleton and craniofacial defects in both CD-1 and C57BL/6J mice during gastrulation, but C57BL/6J embryos are more severely affected. We evaluated methanol-induced pathogenesis in CD-1 and C57BL/6J embryos exposed during gastrulation in whole embryo culture. METHODS: Conceptuses with five to seven somites were exposed to 0, 1, 2, 3, 4, or 6 mg methanol/ml culture medium for 24 hr and embryonic morphology was assessed. Cell death was evaluated by histology and LysoTracker red staining, and cell-cycle distribution was evaluated by flow cytometry. RESULTS: In C57BL/6J embryos, craniofacial defects were observed at 3 mg methanol/ml and greater. The response for CD-1 embryos was different, with increased dysmorphology only at 6 mg/ml. However, protein content in CD-1 embryos was reduced at 3 mg methanol/ml and above, indicating growth retardation. Yolk sac toxicity occurred only at 6 mg methanol/ml in both strains. Methanol caused only small changes in cell-cycle distribution, while cell death was induced at 4 and 6 mg methanol/ml in both strains after 8 hr. The extent of cell death after 8 hr was greater in C57BL/6J embryos, and increased over time through 18 hr; in contrast, CD-1 embryos showed less cell death at 18 than at 8 hr, suggesting recovery. CONCLUSIONS: Cell death plays a prominent role in methanol-induced dysmorphogenesis, while cell-cycle perturbation may not. Differences in the extent of cell death between CD-1 and C57BL/6J embryos correlated with differences in the severity of dysmorphogenesis.  相似文献   

5.
BACKGROUND: Exposure to a diabetic environment causes excess reactive oxygen species (ROS), decreased prostaglandin E(2) (PGE(2)) concentration, and increased embryonic maldevelopment. The aim of the present work was to study whether embryonic dysmorphogenesis is also dependent on alterations of inositol and associated intracellular metabolites. METHODS: Day 9 rat embryos were cultured for 24 or 48 hr and evaluated for gene expression. Day 10 and day 11 embryos from normal and diabetic rats were also examined. RT-PCR was used to study embryonic gene expression of protein kinase C (PKC) and cytosolic phospholipase A(2) (cPLA(2)). RESULTS: Embryos exposed to 30 mmol/L glucose (30G), 500 or 750 micromol/L of scyllo-inositol (500SI or 750SI) had higher malformation score than control embryos cultured in 10 mmol/L glucose (10G). Adding 1.6 mmol/L inositol to the 30G or 750SI culture medium partly corrected these embryos, and completely normalized 500SI embryonic development. Adding 0.5 mmol/L N-acetylcysteine (NAC) or 280 nmol/L PGE(2) protected, and failed to protect, the SI-exposed embryos, respectively. 10G embryos exposed to the PKC inhibitor GF-109203X displayed dose-dependent dysmorphogenesis. Addition of 1.6 mmol/L inositol or 0.5 mmol/L NAC to the PKC-inhibitor-exposed 10G embryos largely normalized the outcome, whereas PGE(2) again failed to protect embryonic development. 30G culture tended to decrease the expression of cPLA(2) after 24 hr in vitro. We also found decreased mRNA levels of cPLA(2) in offspring of diabetic rats on gestational day 10 and of PKC on day 11, as compared with normal offspring. CONCLUSIONS: High glucose concentration causes dysmorphogenesis in embryos by an interaction of oxidative stress and inositol depletion.  相似文献   

6.
To elucidate the specificity of glucose metabolism in chicken skeletal muscle, changes in mRNA levels of hexokinase I (HKI), hexokinase II (HKII), phosphofructokinase-1 (PFK-1) and glycogen synthase (GS) were characterized in acute and persistent hypoglycemia induced by tolbutamide administration. In acute hypoglycemia, induced by a single dose of tolbutamide (100 mg/kg body mass), HKII, PFK-1 and GS mRNA levels remained unchanged; however, levels of HKI mRNA and glucose transporter 1 (GLUT1) were significantly increased 4 h after administration. In persistent hypoglycemia, induced by sequential administration of tolbutamide (100 mg/kg body mass) 3 times a day for 5 days, GS mRNA was significantly increased at day 5, while HKI, HKII and PFK-1 mRNA levels remained unchanged. These results suggest that HKI is responsible for glucose transport into skeletal muscle in acute hypoglycemia and that glucose preferentially enters the glycogenic pathway before the glycolytic pathway in persistently hypoglycemic chickens.  相似文献   

7.
BACKGROUND: Aconitum is widely used in traditional medicine for its anti-inflammatory, analgesic, and cardiotonic properties. Knowledge is limited, however, on its effects on embryonic development. METHODS: Whole embryo culture was applied to explore the effects of aconitine on rat embryos during their critical period of organogenesis. All embryos isolated on gestational day 9.5 were exposed to 0, 1, 2.5, 5, and 10 microg/ml of aconitine with and without S9 mix, and scored for their growth and differentiation at the end of the 48-hr culture period. RESULTS: The embryonic growth and development were adversely affected at the concentration of 2.5 microg/ml aconitine without S9 mix, represented as reduced crown-rump length and head length, decreased number of somites, and lower morphologic score. When the concentration of aconitine was increased to 5 microg/ml, it induced severe dysmorphogenesis effects, including cardiac defect (undivided cardiac tube and inflated pericardial cavity), irregular somites, and brain malformation (e.g., narrow brain vesicles). In the presence of S9 mix, Aconitine toxicity to rat embryos was reduced to a certain extent. CONCLUSIONS: Our study showed that Aconitine had direct embryotoxic effects during the rat organogenetic period. NOAEL was about 1 microg/ml and metabolism in S9 mix could induce the attenuation of Aconitine toxicity. Until more is known about the effects of Aconitine in pregnant women, we suggest its use should be treated with caution.  相似文献   

8.
Abstract: Astrocytes exposed to hypoxia (H) or hypoxia/reoxygenation (H/R) maintain cell viability and display changes in protein biosynthesis. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of metabolically labeled astrocytes exposed to H showed induction of an ≈78-kDa polypeptide that demonstrated sequence identity with glucose-regulated protein (GRP) 78. Cell lysates from H/R astrocytes displayed induction of neuroprotective interleukin (IL) 6, which was present in a high-molecular-weight complex also containing GRP78, suggesting that GRP78 might be functioning as a chaperone during cellular stress consequent on H/R. Introduction of anti-sense oligonucleotide to GRP78 into astrocytes prevented expression of the protein and suppressed H/R-induced astrocyte release of IL-6 by ≈50%. These data indicate that modulation of astrocyte properties during oxygen deprivation results, in part, from intracellular glucose depletion and subsequent expression of GRP78, which sustains generation of neuroprotective IL-6 under the stress of H/R.  相似文献   

9.
Neuritin is an extracellular glycophosphatidylinositol-linked protein that promotes neuronal survival, differentiation, function, and repair, but the exact mechanism of this neuroprotective effect remains unclear. Meanwhile, endoplasmic reticulum stress (ERS) induced apoptosis is attracting increased attention. In this work, we hypothesized that neuritin inhibited ERS to protect cortical neurons. To check this hypothesis, we exposed primary cultured cortical neurons to oxygen and glucose deprivation (OGD) for 45 min followed by reperfusion (R) to activate ERS. We then performed resuscitation for 6, 12, 24, and 48 h. ERS-related factors such as glucose-regulated protein 78 (GRP78), caspase-12 and CHOP were detected by Western blotting and quantitative real-time polymerase chain reaction assay. Apoptosis was assessed by Annexin V binding and propidium iodide staining. Ultrastructural changes of endoplasmic reticulum were observed under a transmission electron microscope. Results showed that GRP78 expression significantly increased at 12, 24, and 48 h and peaked at 24 h. Caspase-12 and CHOP expression significantly increased in a time-dependent manner at 12, 24, and 48 h. GRP78, caspase-12 and CHOP expression as well as apoptosis rate of primary cultured neurons and the ultrastructural changes of endoplasmic reticulum in the OGD/R?+?neuritin group significantly improved compared with the OGD/R group. In conclusion, the neuroprotection function of neuritin may be involved in ERS pathways.  相似文献   

10.
The effects of tolbutamide on the activities of fructose-6-phosphate,2-kinase and fructose-2,6-bisphosphatase were examined using rat hepatocytes. Tolbutamide stimulated fructose-6-phosphate,2-kinase activity and inhibited fructose-2,6-bisphosphatase activity, resulting in an increase of fructose-2,6-bisphosphate level. Changes in the activities of the enzyme by tolbutamide were due to variation in the Km value, but not dependent on alteration of Vmax. Glucagon inhibition of fructose-2,6-bisphosphate formation resulting from an inactivation of fructose-6-phosphate,2-kinase and an activation of fructose-2,6-bisphosphatase was released by tolbutamide. Tolbutamide stimulation of fructose-2,6-bisphosphate formation through regulation of fructose-6-phosphate,2-kinase/fructose-2,6-bisphosphatase may produce enhancement of glycolysis and inhibition of gluconeogenesis in the liver.  相似文献   

11.
BACKGROUND: Offspring of women with diabetes are at increased risk for congenital malformations and disturbed growth compared with infants from nondiabetic pregnancies. The precise biological process behind these effects is not yet completely clarified. Previous studies have suggested that diabetic embryopathy is associated with increased level of oxidative stress and disturbed arachidonic acid metabolism. The aim of the present study was to investigate whether a diabetes-like environment both in vivo and in vitro increases embryonic levels of isoprostanes and alters embryonic prostaglandin E(2) (PGE(2)) concentration. Furthermore, we studied whether vitamin E and folic acid treatment rectify such alterations. METHODS: Embryos from diabetic and nondiabetic rats at gestational days (GDs) 10 and 11 were used. In the in vitro experiments, we used whole embryo culture, which mimics pregnancy. GD 9 embryos from nondiabetic rats were cultured for either 24 hr (corresponding to GD 10) or 48 hr (corresponding to GD 11) and exposed to 10 or 30 mM glucose concentration with or without folic acid. RESULTS: Embryos from diabetic rats and embryos cultured in a high glucose concentration showed increased malformation rates. Dietary treatment with vitamin E in vivo and supplementation of folic acid in the culture medium with 30 mM glucose in vitro decreased the malformation rate, decreased embryonic isoprostane levels, and increased PGE(2) concentration. CONCLUSIONS: Diabetes-induced oxidative stress and disturbance of PGE(2) production may contribute to the embryonic dysmorphogenesis in the offspring of diabetic rodents and, thereby, may also have a role in human diabetic embryopathy.  相似文献   

12.
Exposure of IEC-6 cells for 24 hr to either gastrin (50-500 ng/ml) or EGF (100-500 ng/ml) significantly stimulated (100-165%) the rate of [3H]thymidine incorporation into DNA (referred to as DNA synthesis) when compared with the corresponding basal levels. Somatostatin (10-500 ng/ml) produced no apparent change in DNA synthesis in IEC cells. On the other hand, somatostatin completely inhibited the EGF-induced rise in DNA synthesis. The gastrin-mediated stimulation in DNA synthesis was not affected by somatostatin. The rate of DNA synthesis in IEC cells in the presence of both gastrin and EGF was found to be greater (additive) than that caused by either of the peptides alone. A similar but less dramatic change in the actual number of cells (assessment of cell replication) was observed when the IEC cells were exposed for 24 hr to gastrin, EGF, and somatostatin, either alone or in combination. Whereas gastrin (250 ng/ml) and EGF (250 ng/ml) by themselves increased the number of cells significantly by 29 and 37%, respectively, together they caused a 72% stimulation, when compared with the basal levels. Somatostatin by itself caused no apparent change in IEC cell population, but it significantly inhibited the EGF- but not the gastrin-induced stimulation in IEC cell replication. It is concluded that both gastrin and EGF exert a direct proliferative effect on IEC cells, and the EGF action is regulated by somatostatin.  相似文献   

13.
目的:通过衣霉素诱导内质网应激建立新生大鼠心肌细胞凋亡模型。方法:不同浓度、不同时间的衣霉素作用于原代培养乳鼠心肌细胞,通过MTT实验和流式细胞术测定心肌细胞的存活率和凋亡率,Western blot检测内质网应激蛋白GRP78,CHOP表达水平。结果:①与阴性对照组相比,衣霉素具有损伤心肌细胞的作用,并呈现剂量与时间依赖关系(P〈0.05,n=12)。②通过流式细胞术判断心肌细胞死亡的性质,当衣霉素浓度为100ng/ml,作用72h时,心肌细胞存活率和凋亡率分别为57.4±3.2%(n=12),25.9±5.8%(n=3)。提示衣霉素损伤细胞的形式主要为凋亡性死亡。③内质网应激蛋白GRP78和CHOP表达于6h开始增加,24h达到峰值,随后呈下降趋势。结论:应用衣霉素成功诱导SD乳鼠心肌细胞内质网应激凋亡模型,衣霉素的最佳诱导浓度为100ng/ml,作用时间为72h。  相似文献   

14.
The objective of this study was to find out whether prostaglandin endoperoxide synthase (PHS) involves the action of betel nut extract (BNE) on the growth of oral cancers. Therefore, growth and PHS activity were examined in two human oral carcinoma cell lines (OEC-M1 and KB) and one normal fibroblast cell line (NF) in the presence of increasing BNE concentration. BNE at concentrations above 50 microg/ml significantly inhibited the cell growth of OEC-M1 after 72 h in culture, of KB and NF after 48 h in culture. The IC50 of BNE in OEC-M1, KB and NF at 24 h in culture was about 406, 37.5 and 140 microg/ml respectively. PHS activity in OEC-M1 was significantly increased by low BNE concentrations (50 microg/ml, 114%; 100 microg/ml, 33%; 150 microg/ml, 30%) but significantly reduced at higher BNE concentrations (300 microg/ml, 33%; 500 microg/ml, 61%). The PHS activity in KB was significantly inhibited by BNE and this effect was intensified as concentrations increased (50 microg/ml, 31%; 100 microg/ml, 24%; 150 microg/ml, 43%; 300 microg/ml, 60%; 500 microg/ml, 92%). Similar to that in OEC-M1, the PHS activity in NF was significantly increased at low BNE concentrations (50 microg/ml, 139%; 100 microg/ml, 87%;150 microg/ml, 77%) but reduced at higher concentrations (300 microg/ml, 55%; 500 microg/ml, 72%). The PHS activity in all cell lines was almost completely blocked by indomethacin (5 x 10(-6) M). We conclude that these findings suggest that PHS may be an important biochemical mediator of the effect of BNE on the growth of two human oral carcinoma cell lines.  相似文献   

15.
Pan YX  Ren AJ  Zheng J  Rong WF  Chen H  Yan XH  Wu C  Yuan WJ  Lin L 《Life sciences》2007,81(13):1042-1049
Hypoxic preconditioning (HPC) has been well demonstrated to have potent protective effects in many cell types; however, the mechanisms responsible for this phenomenon are not fully understood. Recently, glucose-regulated protein 78 (GRP78), an inducible molecular chaperon, was indicated to be associated with ischemic preconditioning. We hypothesized that HPC protects cardiomyocytes against hypoxia by inducing GRP78 in cultured neonatal rat cardiomyocytes. HPC was induced by exposing cardiomyocytes to brief hypoxia (1% O(2), 30 min) followed by reoxygenation. GRP78 was expressed constitutively in cultured cardiomyocytes and its expression was enhanced at 12 h, peaked at 24 h (207.3+/-23.6% of the baseline), and was sustained for up to 72 h after HPC. Twenty-four hours after HPC, the myocytes were subjected to prolonged hypoxia (1% O(2), 12 h). The lactic dehydrogenase (LDH) release and malondialdehyde (MDA) content were reduced, while cell viability and superoxide dismutase (SOD) activity were increased in the preconditioned cells compared with the non-HPC cells. The GRP78 protein level was higher in cells exposed to both HPC and hypoxia than in the cells exposed to HPC alone or hypoxia alone. Heat shock protein 70 (HSP70) was induced in parallel by late HPC. Transfection of GRP78 antisense oligonucleotides blocked GRP78 expression but not HSP70, resulting in attenuated cardioprotection afforded by late HPC. Furthermore, inducing GRP78 by gene transfer protected cardiomyocytes from hypoxic injury. These findings demonstrate that the induction of GRP78 partially mediates the late HPC, suggesting that GRP78 is a novel mechanism responsible for the late cytoprotection of HPC.  相似文献   

16.
Incubation of Swiss 3T3 cells with [2-3H]adenine, as in other cell types, reveals the ADP-ribosylation of GRP78 (the 78-kDa glucose-regulated protein, also known as BiP, the immunoglobulin heavy chain-binding protein), a resident endoplasmic reticulum protein that assists in the processing of proteins destined for secretion or cell surface expression. Here we show that Pasteurella multocida toxin, a potent growth factor for cultured fibroblasts, decreased the ADP-ribosylation of GRP78/BiP to 16 +/- 6% of the control value (n = 23). The action of the toxin occurred after a lag period, was blocked by lysosomotrophic agents, and potentiated by increased incubation time (ED50 4 ng/ml and 1 ng/ml in 4 and 8 h, respectively), thus indicating that the toxin enters the cells to act. Bombesin and platelet-derived growth factor (PDGF) similarly decreased the ADP-ribosylation of GRP78/BiP (ED50 0.5 nM and 2.5 ng/ml, respectively) but acted more rapidly than the toxin. Signaling pathways activated by the toxin, bombesin, and PDGF had effects on the ADP-ribosylation of GRP78/BiP. Thus, activation of protein kinase C alone by phorbol 12,13-dibutyrate was partially effective, and down-regulation of protein kinase C attenuated but did not block the action of the toxin, bombesin, and PDGF. Agents that mobilize Ca2+ from the endoplasmic reticulum (A23187, ionomycin, and thapsigargin) caused a decrease in the ADP-ribosylation of GRP78/BiP that was similar in magnitude to that achieved by the toxin, bombesin, and PDGF, implicating a role for inositol 1,4,5-trisphosphate-mediated Ca2+ mobilization in the action of the mitogenic agents. The growth factor-induced decrease in the ADP-ribosylation of GRP78/BiP may represent its conversion from an inactive to an active state.  相似文献   

17.
INTRODUCTION: Hyperglycemia and hypoxia are well‐known teratogens that may affect many animal species, including man. We hypothesize that a combination of hypoxia and hyperglycemia will increase embryonic damage produced by either factor individually. We investigated the interrelationship between hyperglycemia and hypoxia and their effects on genes involved in the balance of embryonic redox status. METHODS: Rat embryos (10.5‐day‐old) were cultured for 28 hr in culture medium with about 6 mg/ml of glucose and 20% oxygen (hyperglycemia), with 10% oxygen (hypoxia) and 2.4 g/ml glucose (normal) or a combination of both 6 mg/ml glucose and 10% oxygen. Antioxidant capacity was determined by activity and gene expression of antioxidant enzymes: Cu/Zn SOD, Mn‐SOD, CAT, and GSH‐px using real time PCR. RESULTS: Hyperglycemia, hypoxia, or their combination, decreased embryonic growth and induced a high rate (62–78%) of anomalies mainly of the nervous system, heart, and limbs. CAT mRNA and GSH‐px mRNA were decreased in the malformed embryos exposed to hyperglycemia, to hypoxia or their combination. CAT mRNA was also decreased in the nonmalformed embryos subjected to hyperglycemia and hypoxia. Cu/Zn SOD mRNA was increased in all experimental embryos whether malformed or not, whereas Mn‐SOD was drastically decreased. Total SOD and CAT like activity were changed very little in the experimental embryos compared to controls. CONCLUSIONS: Both hyperglycemia, hypoxia, and their combination reduce embryonic growth and development, induce embryonic anomalies, and modify the expression of the principle antioxidant genes. However, hypoxia does not seem to enhance the damaging effects of hyperglycemia except its effects of embryonic growth. Birth Defects Res (Part B) 92:231–239, 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

18.
Present study was conducted to observe the effect of cholesterol and oxidized cholesterol (7beta-hydroxycholesterol,7beta-OH) on the nitric oxide (NO) production and the redox ratio by lipopolysaccharide-stimulated macrophages. Dose-dependent decrease in NO levels was seen with both cholesterol and 7beta-OH at different incubation intervals (6,12,18,24 hr) and concentrations (2.5,5,7.5microg/ml). On comparison, a significant decrease in the NO was observed at 24 hr interval in 7beta-OH exposed cells with all respective concentrations of cholesterol. Incubation with 7beta-OH also resulted in significant increase in levels of oxidized glutathione (GSSG) and decrease in reduced glutathione (GSH), while cholesterol showed no effect on GSSG levels. Moreover, GSH levels were lowered only at highest concentration (7.5microg/ml), and at longer incubation intervals (18,24 hr) with cholesterol exposure. This altered the redox status in both cholesterol/7beta-OH treated macrophages. Increased redox ratio and decreased NO levels indicated increased oxidative stress and decreased vasodilation by 7beta-OH compared to cholesterol.  相似文献   

19.
Chohan KR  Hunter AG 《Theriogenology》2004,61(2-3):373-380
The in vitro developmental competence of oocytes harvested from 3 to 6 mm follicles from ovaries of 7.5 months to term fetuses and adult cows was compared. Cumulus oocyte complexes (COCs) were washed and placed in 200 microl droplets of maturation medium 199, supplemented with 10 microg/ml FSH, 10 microg/ml LH, 1.5 microg/ml estradiol, 75 microg/ml streptomycin, 100 IU/ml penicillin, 10 mM Hepes, and 10% fetal bovine serum (FBS) under oil and incubated for 24 h at 39 degrees C and 5% CO2. Matured oocytes were exposed to frozen-thawed TALP swim-up, heparin-capacitated sperm (20 h, 39 degrees C, 5% CO2). Presumptive zygotes were cultured in medium 199 containing 8 mg/ml BSA-V, 100 IU/ml penicillin G, 75 microg/ml streptomycin, and 10 mM Hepes (48 h, 39 degrees C, 5% CO2). Oocytes/embryos were fixed, stained with DAPI, and evaluated under fluorescent microscopy to assess maturation, fertilization, and subsequent embryonic development. There was a difference (P<0.05) between fetal and adult cow oocytes for in vitro maturation (IVM; 80.1% versus 92.0%), fertilization (69.3% versus 79.9%), and cleavage rates (36.7% versus 49.9%), respectively. Poor IVM, fertilization and embryonic development of fetal oocytes may be due to a higher incidence of blockage at germinal vesicle (GV) and metaphase-I (M-I) stage after IVM (12.0% versus 2.3% for fetal versus adult oocytes, respectively, P<0.05). Although the IVF results with fetal oocytes are poorer than with adult cow oocytes, they were still high enough to be considered for use in research and when death of the dam and/or fetus is pre-mature or sudden.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号