首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The imbalance between proliferative and differentiative estrogenic effect, caused by quantitative and qualitative alteration of the estrogen receptor (ER) expression, may play a determinant role in mammary neoplastic transformation. Our studies demonstrate that ER levels are significantly higher in human mammary neoplastic tissues when compared to perineoplastic tissues and that increased ER expression is associated with ER gene hypomethylation. During progressive multifactorial carcinogene, ER overexpression may represent an early step in neoplastic transformation. In fact, high levels of ER represent good markers of differentiation and can predict the likelihood of benefiting from anti-estrogen therapy. Nevertheless, about 35% of ER-positive breast cancers are resistant to endocrine therapy and 10% of ER-negative tumors behave as hormone-sensitive tumors. Recent studies on ER mRNA variants, which naturally occur in human breast tumors, demonstrated mutations, deletions and alternative splicings, yielding deletions of exons 3, 4, 5 and 7. ER variants exhibited altered functions or changed the responsiveness to hormonal therapy. Analysis of these variants could be a useful parameter to better predict tumor responsiveness to anti-estrogen therapy. Recently, a regain of hormonal responsiveness by ER-negative breast cancer cells has been reported following ER gene transfection. However, estradiol treatment inhibits rather than stimulates cell growth as well as the metastatic and invasive potential of the ER gene transduced cells. Transfer of the ER gene may be considered as a new therapeutic approach in the management of hormone-independent breast cancer.  相似文献   

2.
3.
Breast cancer metastasis is a major clinical problem. The molecular basis of breast cancer progression to metastasis remains poorly understood. PELP1 is an estrogen receptor (ER) coregulator that has been implicated as a proto-oncogene whose expression is deregulated in metastatic breast tumors and whose expression is retained in ER-negative tumors. We examined the mechanism and significance of PELP1-mediated signaling in ER-negative breast cancer progression using two ER-negative model cells (MDA-MB-231 and 4T1 cells) that stably express PELP1-shRNA. These model cells had reduced PELP1 expression (75% of endogenous levels) and exhibited less propensity to proliferate in growth assays in vitro. PELP1 downregulation substantially affected migration of ER-negative cells in Boyden chamber and invasion assays. Using mechanistic studies, we found that PELP1 modulated expression of several genes involved in the epithelial mesenchymal transition (EMT), including MMPs, SNAIL, TWIST, and ZEB. In addition, PELP1 knockdown reduced the in vivo metastatic potential of ER-negative breast cancer cells and significantly reduced lung metastatic nodules in a xenograft assay. These results implicate PELP1 as having a role in ER-negative breast cancer metastasis, reveal novel mechanism of coregulator regulation of metastasis via promoting cell motility/EMT by modulating expression of genes, and suggest PELP1 may be a potential therapeutic target for metastatic ER-negative breast cancer.  相似文献   

4.
Interference in growth factor mediated pathways is a new strategy in the treatment of cancer. Somatostatin analogs can inhibit hormone and growth factor secretion, while suramin can block the binding of several growth factors to their receptors. In addition, somatostatin analogs can cause direct growth inhibitory effects after binding to tumoral somatostatin receptors. We tested the efficacy and endocrine effects of chronic treatment with three somatostatin analogs (Sandostatin,® RC-160 and CGP 15–425) or suramin in several tumor models and in patients with various types of cancer. Treatment with somatostatin analogs caused growth inhibition of breast cancer cells (MCF-7) in vitro, and of rat transplantable pancreatic (50–70% inhibition) and prostatic Dunning tumors (12% inhibition). No tumor growth inhibition was observed with respect to DMBA-induced rat mammary tumors, a transplantable color tumor and a rhabdomyosarcoma in rats. In 34 patients with metastatic pancreatic or gastrointestinal adenocarcinomas chronic Sandostatin treatment caused stable disease in 27% of the patients, but no objective remissions. Somatostatin receptors were found in the responding MCF-7 mammary tumor cells, rat pancreatic tumors and in 20–45% of human breast cancer specimens [J. Steroid Biochem. Molec. Biol. 37 (1990) 1073–1077], but not in rat DMBA-mammary tumors or in 10 human pancreatic adenocarcinomas. Suramin caused significant dose-dependent growth inhibition of human breast cancer cells in vitro and of rat pancreatic tumors in vivo in the presence of plasma levels up to 150 μg/ml. In a preliminary clinical study concerning 11 patients with various tumor types we observed significant hematological, biochemical, endocrine and clinical side effects, but no objective remissions in spite of relevant peak plasma suramin concentrations of 270–330 μg/ml. In conclusion: somatostatin analogs and suramin can cause growth inhibition of various experimental tumors in vitro and in vivo, but the clinical values has to be established for several types of cancer, especially with respect to suramin and suramin-like compounds.  相似文献   

5.
It is well known that MCF-7 cells, when incubated with hydroxytamoxifen (OH-Tam) loose their capacity to bind [3H]estradiol. By using Western blotting and [3H]tamoxifen aziridine labeling of KCl extracts from these cells we found that this loss in binding capacity was not associated with a disappearance of the estrogen receptor (ER) protein, an event known to occur after incubation with estradiol. Attempts to label under exchange conditions these ER molecules, which, on the basis of enzyme immunoassays appear to accumulate under OH-Tam treatment, were unsuccessful. Cell fractionation suggested that their origin is nuclear. Assessment of a few triphenylethylenic antiestrogens, as far as their inhibitory potency towards the in vitro MCF-7 cell growth is concerned, indicated a correlation between accumulation of these non-binding ER molecules and the antiestrogen antiproliferative action. However, we were unable to demonstrate absence of such an ER accumulation in two tamoxifen-resistant variants. Impaired folding of the ER protein or impaired phosphorylation of its hormone-binding domain are attractive hypotheses to account for these non-binding ER molecules. Whether these ER molecules have any physiological role, such as competition with the “normal” receptor molecules for the estrogen responsive elements on the DNA is unknown and deserves further study.  相似文献   

6.
There are two steroid 11β-hydroxylase isozymes encoded by the CYP11B1 and CYP11B2 genes on human chromosome 8q. The first is expressed at high levels in the normal adrenal gland, has 11β-hydroxylase activity and is regulated by ACTH. Mutations in the corresponding gene cause congenital adrenal hyperplasia due to 11β-hydroxylase deficiency; thus, this isozyme is required for cortisol biosynthesis. The second isozyme is expressed at low levels in the normal adrenal gland but at higher levels in aldosterone-secreting tumors, and has 11β-hydroxylase, 18-hydroxylase and 18-oxidase activities. The corresponding gene is regulated by angiotensin II, and mutations in this gene are found in persons who are unable to synthesize aldosterone due to corticosterone methyloxidase II deficiency. Thus, this isozyme is required for aldosterone biosynthesis.

Cortisol and aldosterone are both effective ligands of the “mineralocorticoid” receptor in vitro, but only aldosterone is a potent mineralocorticoid in vivo. This apparent specificity occurs because 11β-hydroxysteroid dehydrogenase in the kidney converts cortisol to cortisone, which is not a ligand for the receptor. This enzyme is a “short-chain” dehydrogenase which is encoded by a single gene on human chromosome 1. It is possible that mutations in this gene cause a form of childhood hypertension called apparent mineralocorticoid excess, in which the mineralocorticoid receptor is not protected from high concentrations of cortisol.  相似文献   


7.
8.
9.
10.
11.
12.
Studies on estrogen receptor (ER)-positive human breast cancer cell lines have shown that estrogen treatment positively modulates the expression of the genes encoding transforming growth factor-alpha (TGF alpha), 52-kDa cathepsin-D, and pS2. To determine whether these genes would be similarly regulated by estrogens in normal human mammary epithelial cells, we stably transfected immortal nontumorigenic human mammary epithelial cells with an ER-encoding expression vector. ER-negative tumor cells were also transfected for comparison. Levels of TGF alpha and 52-kDa cathepsin-D mRNA were enhanced by estrogen treatment of both ER-transfected immortal and tumorigenic cells, demonstrating that the ER by itself is sufficient to elicit estrogenic regulation of the expression of these genes. In contrast, expression of the pS2 gene was detected only in the ER-transfected tumor cells. The ER in both cell lines is capable of recognizing the pS2 promoter, however, since estrogen enhanced the activity of an introduced pS2-CAT reporter plasmid in transient expression analyses. These and other experiments with somatic cell hybrids between the immortal cells and ER+/pS2+ MCF-7 tumor cells, where pS2 gene expression is extinguished, support the conclusion that the immortal nontumorigenic cells encode gene products that block endogenous pS2 expression. These results also imply that such repressors are not active in the tumor cells.  相似文献   

13.
14.
15.
16.
17.
Breast cancers can recur after removal of the primary tumor and treatment to eliminate remaining tumor cells. Recurrence may occur after long periods of time during which there are no clinical symptoms. Tumor cell dormancy may explain these prolonged periods of asymptomatic residual disease and treatment resistance. We generated a dormancy gene signature from published experimental models and applied it to both breast cancer cell line expression data as well as four published clinical studies of primary breast cancers. We found that estrogen receptor (ER) positive breast cell lines and primary tumors have significantly higher dormancy signature scores (P<0.0000001) than ER- cell lines and tumors. In addition, a stratified analysis combining all ER+ tumors in four studies indicated 2.1 times higher hazard of recurrence among patients whose tumors had low dormancy scores (LDS) compared to those whose tumors had high dormancy scores (HDS) (p<0.000005). The trend was shown in all four individual studies. Suppression of two dormancy genes, BHLHE41 and NR2F1, resulted in increased in vivo growth of ER positive MCF7 cells. The patient data analysis suggests that disseminated ER positive tumor cells carrying a dormancy signature are more likely to undergo prolonged dormancy before resuming metastatic growth. Furthermore, genes identified with this approach might provide insight into the mechanisms of dormancy onset and maintenance as well as dormancy models using human breast cancer cell lines.  相似文献   

18.
19.
The mechanisms underlying loss of oestrogen responsiveness in breast cancer are not well-defined. Potential mechanisms include loss of receptor expression, alterations in the oestrogen receptor (ER) gene producing proteins with abnormal function, or changes to receptor-dependent or -independent pathways controlling cell proliferation. Examination by Southern analysis of the ER gene in a series of ER-negative and -positive breast tumour biopsies failed to provide evidence of gross rearrangements and in only only one of thirty seven tumour DNA samples was significant gene amplification observed. No restriction fragment length polymorphisms were detected for the restriction enzymes EcoRI, Pst I or Hind III. Methylation of the ER gene as assessed by Hpa II and Msp I restriction enzyme digests varied between tumours but the degree of methylation was not correlated with levels of expression of the receptor protein. Similar findings applied in a series of ER-negative and -positive breast cancer cell lines and clonal lines of MCF-7 cells, which were developed as an in vitro model for the acquisition of oestrogen and antioestrogen resistance. In this model there was no evidence that changes to ER receptor function and/or structure at the level of the ER gene, mRNA, ligand binding, and ability to induce progesterone receptor might account for the development of hormone resistance. However, the ability of ER to interact with a DNA sequence containing the vitellogenin promoter oestrogen response element, as assessed by gel retardation assay, was impaired in the clone showing the greatest degree of oestrogen and antioestrogen resistance.  相似文献   

20.
The genomic organization of the estrogen receptor (ER) gene has been analyzed in 21 primary human breast cancers and 1 axillary metastasis. No evidence of rearrangements of the ER gene was found in the analyzed tumors. In 6/14 ER-positive tumors a certain degree of amplification of the ER gene, ranging from 1.6 to 3-fold, was detected. No correlation was observed between the level of gene amplification and the amount of ER in the tumors. In the 8 ER-negative tumors analyzed no amplification could be detected. It is concluded that ER gene amplification may be one of the mechanisms underlying the increased ER expression in some breast tumors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号