首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using an affinity matrix coupled with cholic acid, two proteins that recognise bile acids were isolated from rat liver cytosol. One protein of molecular weight 68 000 was immunologically identical to rat albumin. The other protein was of molecular weight 46 000. On discontinuous sodium dodecyl sulphate-polyacrylamide gel electrophoresis the 46 000 molecular weight protein dissociated to a single band with an RF value identical to the Yb subunit of the bromosulphophthalein-binding fraction (Y-fraction) of whole liver cytosol. The monomers of purified ligandin under these conditions resolved into two bands which corresponded to the Ya and Yc subunits of liver cytosol Y-fraction. Anti-serum to the purified ligandin reacted monospecifically with purified ligandin and whole liver cytosol, but did not cross-react with the Yb dimer eluted from the affinity column. The Yb dimer was shown to possess glutathione-S-transferase activity with a substrate specificity distinct from ligandin but similar to glutathione-S-transferase C. Cholic acid inhibited the catalytic activity of the transferase.  相似文献   

2.
D J Morris  R P Davis 《Steroids》1973,21(3):383-396
Low molecular weight polar complexes were shown to be formed in vivo from 3H-aldosterone in both kidney and liver subcellular fractions, the majority being present in the cytosol fractions. Significant differences were observed between the quantities of polar complexes present in kidney subcellular fractions from intact and adrenalectomized male rats and also between the quantities of these kidney polar complexes from spironolactone treated male rats. 3H-aldosterone macro-molecule complexes were shown to exist in appreciable quantities only in the kidney cytosol fractions of adrenalectomized male rats. These gel filtration studies also showed the 3H-aldosterone labeled macromolecule complexes to consist of two protein peaks; one of high molecular weight and the other of lower molecular weight (~50,000 mol. wt.). The amount of 3H-aldosterone labeled protein complexes in kidney cytosol was greatly reduced when adrenalectomized rats were pretreated in vivo with spironolactone.  相似文献   

3.
A number of aminoacyl-tRNA synthetases from rabbit liver during experimental myocardial infarction and from pig myocardium upon 15-min of autolysis were found to increase their activity in aminoacylation. Direct correlations between the activities of high molecular weight complexes and of the total extracts were not observed. It was shown that the specific activity of endogenous inorganic pyrophosphatase increased markedly during the ischemia of myocardium both in total myocardium extracts and in high molecular weight complexes.  相似文献   

4.
Distribution of the aminoacyl-tRNA synthetase activity has been studied in the normal rabbit liver cells and in the model of protein synthesis damage, i.e. under experimental myocardial infarction (EMI). The activity of a number of aminoacyl-tRNA synthetases in postmitochondrial and postribosomal extracts from rabbit liver homogenate has been determined to increase 12 h after EMI. Gel filtration of the postribosomal extract on Sepharose 6B shows that the activity of aminoacyl-tRNA synthetases is distributed among the fractions with Mr 1.82 x 10(6), 0.84 x 10(6) and 0.12 = 0.35 x 10(6). The first two fractions (high-molecular-weight aminoacyl-tRNA synthetase complexes) contain arginyl-, glutamyl-, isoleucyl-, leucyl-, lysyl- and valyl-tRNA synthetases, whereas the low-molecular-weight fraction contains alanyl-, arginyl-, glycyl-, phenylalanyl-, seryl-, threonyl-, tryptophanyl- and tyrosyl-tRNA synthetases. In a case of EMI all the aminoacyl-tRNA synthetases translocate from the complexes with Mr 1.82 x 10(6) into the complexes with Mr 0.84 x 10(6), what provided evidence for the possibility to regulate protein synthesis by changes in compartmentalization of aminoacyl-tRNA synthetases.  相似文献   

5.
Two forms of CTP:phosphocholine cytidylyltransferase were identified in rat liver cytosol by gel filtration chromatography. The low molecular weight form (L form) is the major form in fresh cytosol. The enzyme associates into a high molecular weight form (H form) upon storage of the cytosol at 4 degrees C. Aggregation of the purified L form of cytidylyltransferase is caused by total rat liver lipids, neutral lipids, diacylglycerol, or phosphatidylglycerol. Diacylglycerol was the only lipid isolated from the rat liver that caused aggregation of the purified enzyme. Although the addition of diacylglycerol to the cytosol did not change the amount of aggregation of the enzyme, a 2.5-fold increase in H form was observed in cytosol pretreated with phospholipase C, or in cytosol from rats fed a high cholesterol diet. In both of these cytosolic preparations, the concentration of diacylglycerol was elevated twofold. Phosphatidylglycerol did not seem to affect the association of the enzyme in cytosol since it is present in very low concentrations in the rat liver cytosol, and its degradation in cytosol by a specific phospholipase did not affect the rate of aggregation. The results suggest that diacylglycerol in an appropriate form is required for association of cytidylyltransferase in rat liver cytosol.  相似文献   

6.
Hepatic delta-aminolevulinate (ALA) synthetase was induced in mice by the administration of allylisopropylacetamide (AIA) and 3,5-dicarbethoxy-1,4-dihydrocollidine (DDC). In both cases, a significant amount of ALA synthetase accumulated in the liver cytosol fraction as well as in the mitochondria. The apparent molecular weight of the cytosol ALA synthetase was estimated to be 320,000 by gel filtration, but when the cytosol ALA synthetase was subjected to sucrose density gradient centrifugation, it showed a molecular weight of 110,000. In the mitochondria, there were two different sizes of ALA synthetase with molecular weights of 150,000 and 110,000, respectively; the larger enzyme was predominant in DDC-treated mice, whereas in AIA-treated mice and normal mice the enzyme existed mostly in the smaller form. When hemin was injected into mice pretreated with DDC, the molecular size of the mitochondrial ALA synthetase changed from 150,000 to 110,000. The half-life of ALA synthetase in the liver cytosol fraction was about 30 min in both the AIA-treated and DDC-treated mice. The half-life of the mitochondrial ALA synthetase in AIA-treated mice and normal mice was about 60 min, but in DDC-treated mice the half-life was as long as 150 min. The data suggest that the cytosol ALA synthetase of mouse liver is a protein complex with properties very similar to those of the cytosol ALA synthetase of rat liver, which has been shown to be composed of the enzyme active protein and two catalytically inactive binding proteins, and that ALA synthetase may be transferred from the liver cytosol fraction to the mitochondria with a size of about 150,000 daltons, followed by its conversion to enzyme with a molecular weight of 110,000 within the mitochondria. The process of intramitochondrial enzyme degradation seems to be affected in DDC-treated animals.  相似文献   

7.
The distribution of copper and zinc among soluble proteins in liver from normal slaughter cattle was examined after gel filtration of the proteins. Gopper- and zinc-binding proteins were mainly separated into three fractions. Varying amounts of zinc were eluted in a fourth fraction of molecular weight less than 2,000. A clear relationship was noted between the amount of copper bound to the low molecular weight fraction (m.w. ~ 10,000) and the total liver zinc concentration. The high molecular weight protein fraction (m.w. > 65,000) dominated in liver with zinc concentrations below 40 µg/g wet weight and total copper concentrations from 16 to 240 µg/g, while in liver with zinc concentrations above 40 µg/g and copper concentrations ranging from 20 to 107 µg/g, the low molecular weight metallothionein-like fraction dominated.  相似文献   

8.
1. The rates of hydrolysis of 26 synthetic dipeptides by extracts from highly purified lysosomal fractions from rat liver at pH 5.0 and by whole liver homogenates at pH 7.4 have been determined. Extracts from the lysosomal fractions hydrolysed most peptides at a lower rate per mg protein than the homogenates, and some peptides not at all. 2. Properties of two dipeptidases present in the extracts from the lysosomal fractions, splitting Ile-Glu and Leu-Gly, respectively, were studied in greater detail. The enzyme that hydrolysed Ile-Glu was strongly activated by dithiothreitol, showed optimal activity at pH 4.5 and had a molecular weight of about 120 000. Leu-Gly dipeptidase did apparently not contain an essential thiol group and had a molecular weight of approx. 90 000. It showed maximal activity at pH 6.5. 3. After differential centrifugation of liver homogenates, Ile-Glu and Leu-Gly-splitting activities were determined in the fractions, under the optimal conditions mentioned above. The Ile-Glu-hydrolysing enzyme activity showed about the same distribution as the lysosomal marker enzyme acid phosphatase. Leu-Gly-splitting activity, however, was largely present in the cytosol fraction, with only a small peak in the lysosomal fraction. We obtained evidence that the activities present in the lysosomal fraction and in the cytosol fraction were due to different enzymes, and that one of these enzymes was localized exclusively in lysosomes. 4. It is concluded that some dipeptides originating from intralysosomal proteolysis might be split by lysosomal dipeptidases, whereas others are probably hydrolysed only in the extra-lysosomal compartment of the cell.  相似文献   

9.
Composition of high-molecular-weight aminoacyl-tRNA synthetases complexes from rabbit liver both in norm and after 12 h experimental myocardial ischemia (EMI) has been investigated. Partial redistribution of aminoacyl-tRNA synthetases activity from 1820 kD complex into 840 kD complex was observed in case of EMI which resulted in changes of protein biosynthesis rate in cell-free system.  相似文献   

10.
Incubation of rat liver plasma membrane produced histone phosphorylating activity at 75 mM Mg2+ in the soluble fraction. The release of the kinase activity was inhibited by leupeptin and bovine pancreatic trypsin inhibitor, suggesting the involvement of membrane-bound protease. When partially purified protein kinase C from rat liver cytosol was treated with the trypsin-like protease purified from rat liver plasma membrane, histone phosphorylating kinase which was independent of Ca2+ and phospholipids, produced with a molecular weight of about 5 X 10(4). These results suggest that membrane-bound, trypsin-like protease activates protein kinase C in plasma membrane and the activated kinase is released from the membrane to the soluble fraction.  相似文献   

11.
Protein phosphatase-1 and 2A, accounting for all the hepatic activity regulating phosphorylase, were assayed in streptozotocin-induced (8 weeks) diabetic Wistar rats. Cytosolic protein phosphatase-1 and 2A were distinguished by chromatography on heparin-Sepharose and by inhibition with inhibitor-2. Approx. 25-35% increases in type-1 phosphorylase phosphatase activity measured in cytosols were registered in diabetic rats when compared with control and 24 h fasting animals. The enrichment of protein phosphatase-1 in the cytosol of streptozotocin-treated rat livers could not be attributed to the reduced glycogen content with the onset of diabetes, since this elevated level of type-1 phosphatase was not observed in fasting rats with low glycogen content. The translocation of type-1 phosphatase from the particulate fraction into the cytosol was also recorded in trypsin-treated samples of diabetic rat livers. The apparent molecular weight of type-1 phosphatase in the cytosol of control and fasted rats was 160,000 as judged by gel filtration. The type-1 phosphatase activity that was released from the particulate fraction by streptozotocin-induced diabetes identified a further enzyme species (Mr 110,000) in the cytosol. Our data imply that the higher levels of cytosolic protein phosphatase-1 in diabetic rat liver could be a consequence of the dissociation of the catalytic subunit of protein phosphatase-1 and the glycogen-binding subunit in rat livers.  相似文献   

12.
A fatty acid-binding protein has been identified and isolated from the cytosol fraction of rat brain. The fatty acid-binding protein was purified to homogeneity by gel filtration and preparative isoelectric focusing. The binding protein was different from Z protein from rat liver in its isoelectric point and immunological reactivity, in spite of its similar molecular weight of 12,000. Rabbit antibodies against rat liver Z protein were used to demonstrate that the fatty acid-binding proteins from rat liver and brain are immunologically unrelated, and that no Z protein is present in rat brain cytosol.  相似文献   

13.
The steroid 21-hydroxylase activity present in the microsomes of bovine adrenals is stimulated by components of the cytosol. The nature of these activators has been examined by two procedures. The first consisted of treating cytosol with increasing amounts of acetone. When the concentration of the organic solvent reached 50%, a precipitate, presumably proteinaceous, formed. The portion of the precipitate that was redissolvable in 0.05 m potassium phosphate buffer, pH 7.2, contained 7–15% of the stimulatory activity originally present in the cytosol. When the acetone concentration was raised to 90%, another active material precipitated. It was identified as oxidized glutathione (GSSG) and it accounted for about 5% of the activity in the cytosol. In an attempt to avoid the harmful effects of acetone, the second procedure employed only gel filtration and ion exchange resin chromatography. By these means the cytosol was separated into 11 protein fractions and a small molecular weight material. Forty six percent of the proteins and the same fraction of the stimulatory activity present in the original cytosol were recovered. Because all 11 protein fractions contained some stimulatory activity, the results suggested that the protein constituents of these fractions were relatively nonspecific. Yet, of the several known proteins which were tested for activity (bovine serum albumin, ovalbumin, human γ-globulin, bovine pancreatic ribonuclease, and pig insulin) only bovine serum albumin proved to be active. An additional 8% of the stimulatory activity of the cytosol was present in the fraction containing the low molecular weight components and this was all attributable to its GSSG content.  相似文献   

14.
Orna Halevy  D. Sklan 《Life sciences》1984,34(20):1945-1951
A lipolytic zinc-copper protein has been isolated from the cytosol of chick liver. This material had a molecular weight of 6000 daltons, contained four atoms of zinc and one atom of copper per molecule. The 6000 dalton fraction aggregated at high ionic strength or in the presence of sodium dodecyl sulphate. Lipolytic activity was observed towards triolein, tripalmitin, phosphatidyl choline and retinyl palmitate, and was stimulated by cholate, Ca and high NaCl concentrations, and was inhibited by sulphydryl reagents, inhibitors of serine esterases, alkaline phosphatase and chelating agents. It appears that this copper-zinc protein is distinct from metallothionein which has no lipolytic activity.  相似文献   

15.
Rats injected with aurothioglucose (ATG) for 5 days were subsequently injected with [75Se]selenious acid and killed after 3 days. Kidney and liver cytosols were chromatographed on Sephadex G-150. 75Se in kidney was associated with high molecular weight (HMW), 85,000 Mr, 26,000 Mr, and 10,000 Mr proteins and with a nonprotein fraction. The elution profile of liver cytosol was similar to that of kidney, but without a 26,000 Mr protein. ATG injection increased the association of 75Se with all fractions of kidney cytosol except the 85,000 Mr fractions, which contained Se-glutathione peroxidase (SeGSHPx) activity; 75Se in liver was increased only in HMW fractions. Unfractionated kidney cytosolic SeGSHPx activity was decreased 14% by ATG injection, but liver enzyme activity was not changed. However, Sephadex G-150 chromatography showed that total and specific activities, respectively, were decreased 28 and 23% in kidney and 25 and 16% in liver. Au coeluted with HMW and 10,000 Mr 73Se-containing kidney proteins; the latter contained 50% of the Au eluted from the column. DEAE Sephacel chromatography of the 10,000 Mr kidney protein showed that both Au and 75Se were tightly associated with metallothionein-like proteins. This study demonstrates the interaction of Au with rat liver and kidney 75Se-containing proteins.  相似文献   

16.
Chaudhari P  Roy H 《Plant physiology》1989,89(4):1366-1371
Higher plant ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) cannot reassociate after dissociation, and its subunits do not assemble into active RuBisCO when synthesized in Escherichia coli. Newly synthesized subunits of RuBisCO are associated with a high molecular weight binding protein complex in pea chloroplasts. The immediate donor for large subunits which assemble into RuBisCO is a low molecular weight complex which may be derived from the high molecular weight binding protein complex. When the high molecular weight binding protein complex is diluted, it tends to dissociate, forming low molecular weight complexes. When the large subunit-binding protein complexes were examined after in organello protein synthesis, it was found that the low molecular weight complexes were more abundant when protein synthesis was carried out under hypotonic conditions. This increase in the assembly competent population of low molecular weight large subunit complexes can account for the increased amount of in vitro RuBisCO assembly which occurs under these conditions. The data indicate that the assembly of large subunits into RuBisCO is a function of the aggregation state of the large subunit binding protein complex during protein synthesis. This implies that the binding protein exerts its effects during or shortly after large subunit synthesis.  相似文献   

17.
δ-Aminolevulinic acid (ALA) synthase was partially purified from liver cytosol fraction of rats treated with allylisopropylacetamide (AIA). The cytosol ALA synthase showed an apparent molecular weight of 320,000. The cytosol ALA synthase of this size dissociates into at least three protein components when subjected to sucrose density gradient centrifugation in the presence of 0.25 m NaCl: one is the catalytically active protein with an s value of about 6.4 or a molecular weight of 110,000, and the other two are catalytically inactive binding proteins showing s values of about 4 and 8, respectively. Recombination of the 6.4 S protein and the 4 S protein yielded a protein complex with an apparent molecular weight of 170,000 and recombination of all three protein components resulted in formation of the original cytosol ALA synthase. The cytosol ALA synthase also loses its binding proteins when treated with various proteases; thus, the enzyme-active protein obtained after papain digestion was very similar, if not identical, to mitochondrial ALA synthase. When treated with trypsin, however, the cytosol ALA synthase was converted to an enzyme showing an apparent molecular weight of 170,000, which probably represents the complex of the mitochondria-type enzyme and the 4 S binding protein. The cytosol ALA synthase tends to aggregate to form a dimer with an apparent molecular weight of 650,000–700,000. The aggregated form of the cytosol ALA synthase was less susceptible to trypsin digestion. Hemin strongly stimulated dimer formation of the cytosol ALA synthase and the aggregate produced by contact with hemin was very tight and did not easily dissociate into its respective protein components by sucrose gradient centrifugation or even after treatment with trypsin. The possible mechanisms of the conversion of cytosol ALA synthase to the mitochondrial enzyme and also of the inhibition by hemin of the intracellular translocation of ALA synthase are discussed.  相似文献   

18.
Fractions containing a high molecular weight form (Mr approximately equal to 2 X 10(6] of the activity that replicates in vitro both the 2-micron yeast DNA plasmid and the chromosomal autonomously replicating sequence ars 1 can be prepared from cells of the budding yeast Saccharomyces. Protein complexes from the fractions associate in vitro with the replication origins of these DNA elements, as determined by electron microscopy. In the present study, the high molecular weight replicative fraction has been characterized in further detail. The DNA synthetic activity in the high molecular weight fraction was bound to the DNA and could be isolated with it. This binding of the replicating activity to the DNA was greatly reduced in the absence of the 2-micron origins of replication. Association of the protein complexes with DNA depended on the amount of replicating activity added, was sensitive to 0.2 M KCl, and exhibited a requirement for rATP and deoxyribonucleoside triphosphates. It was not blocked, however, by the DNA polymerase inhibitor aphidicolin or by the RNA polymerase inhibitor alpha-amanitin. The lack of inhibition by aphidicolin suggests that the deoxyribonucleoside triphosphates may function as cofactors in the binding of protein complexes to DNA or as substrates for a polymerizing activity such as a primase. Binding of the protein complexes as well as actual DNA replication were heat sensitive in the high molecular weight fraction prepared from the temperature-sensitive mutant of the cell division cycle cdc 8. This suggests that the cdc 8 gene product is present in a replicative protein complex and strengthens the conclusion that the presence of the protein complexes on the DNA is associated with replication. Using independent enzyme assays, several other possible replication proteins (including DNA polymerase I, DNA ligase, DNA primase, and DNA topoisomerase II) have been identified directly in the high molecular weight replicative fraction. All of these results provide support for the idea that a protein complex (or replisome ) is involved in the replication of both the extrachromosomal 2-micron DNA and chromosomal DNA in yeast.  相似文献   

19.
the occurrence of a soluble fraction from rat liver that inactivates acetyl-CoA carboxylase was previously reported by this laboratory (1). The purification of this fraction is now reported, and we show that it behaves as a cAMP-independent kinase that inactivates acetyl-CoA carboxylase by phosphorylation. The kinase has a molecular weight of 160,000 and it requires ATP and Mg2+ for activity. A partial purification from rat liver cytosol of a Mg2+-requiring phosphoprotein phosphatase of high molecular weight (greater than 200,000) which dephosphorylates phosphorylated acetyl-CoA carboxylase with the regeneration of enzyme activity is also reported. The kinase, phosphatase, and acetyl-CoA carboxylase are separable from each other by a combination of ammonium sulfate precipitation, DEAE-cellulose chromatography, and gel filtration.  相似文献   

20.
Dog kidney cytosol contains a high molecular weight (50 000–70 000) and a low molecular weight (approx. 6000) thyronine-binding protein. Low molecular weight cytosol thyronine-binding protein has not been previously recognized in cytoplasm. Binding of thyroxine (tetraiodothyronine, T4) by the low molecular weight protein has a half-time of association of more than 24 h and accounts for 32% of bound cytoplasmic tetraiodothyronine after 48 h of incubation. Binding of labeled tetraiodothyronine and triiodothyronine by this moiety is non-dissociable in the presence of 1 · 10?5 M unlabeled tetra- or triiodothyronine. The low molecular weight protein exists in a dispersed and apparently aggregated form; the latter elutes in the void volume on Sephadex G-100 and its generation is minimized by 2 mM Ca2+. This binding protein elutes in a fraction which has a high A260nm : A280nm ratio, is pentose enriched (orcinol method) and which, because of these characteristics and low susceptibility to digestion by nuclease, is postulated to be a ribosylated cytoplasmic protein or polypeptide.Binding of tetra- and triiodothyronine by the high molecular weight protein has a half-time of association of 2 h and is saturable. Displacement of labeled triiodothyronine from this cytosol thyronine-binding protein is more readily effected with excess unlabeled tetra- than with triiodothyronine, indicating the absence of a triiodothyronine-specific cytosol thyronine-binding protein site. 3,3′,5′-Triiodothyronine (reverse triiodothyronine) is bound with low avidity. Uptake of high molecular weight protein by isolated kidney cell nuclei cannot be demonstrated.Binding of tetraiodothyronine by cytosol proteins is independent of pH in the pH range 6.8–8.9, but binding of triiodothyronine is minimized at pH 7.4 and enhanced at alkaline pH to the point of equivalency of tetra- and triiodothyronine binding at pH 8.9.At concentrations of tetraiodothyronine calculated to exist intracellularly, essentially all soluble fraction tetraiodothyronine is bound to cytosol thyronine-binding protein, restricting access of this iodothyronine to binding sites in nucleus and mitochondria. Cytosol removes labeled tetra- and triiodothyronine previously reacted in vitro with isolated cell nuclei; such removal is a linear function of cytosol protein concentration and is blocked by saturation of cytosol thyronine-binding protein with unlabeled iodothyronines. Only the high molecular weight protein accounts for unbinding by cytosol of nuclear hormone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号