首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated the replicative activity of type 2 cells in the lungs of mice at various times from 3 to 22 weeks after 18 Gy of X rays to the thorax. No significant changes were found until 11 weeks after thoracic X irradiation. Thereafter the replicative index of type 2 cells was significantly elevated, rising four to sixfold above that of control, sham-irradiated mice. During the period when the replicative activity of type 2 cells was elevated, the breathing frequency increased and there was histologic evidence of the presence of radiation pneumonitis. The magnitude of each of these indices of pneumonitis correlated significantly with the type 2 cell replicative index, suggesting that type 2 cell replication is related to pneumonitis in extent as well as in chronology. How these changes relate to the pathogenesis of radiation pneumonitis is unclear.  相似文献   

2.
Radiation-induced lung injury (RILI) is a common and unavoidable complication of thoracic radiotherapy. The current study was conducted to evaluate the ability of clarithromycin (CLA) to prevent radiation-induced pneumonitis, oxidative stress, and lung fibrosis in an animal model. C57BL/6J mice were assigned to control, irradiation only, irradiation plus CLA, and CLA only groups. Test mice received single thoracic exposures to radiation and/or oral CLA (100 mg/kg/day). Histopathologic findings and markers of inflammation, fibrosis, and oxidative stress were compared by group. On a microscopic level, CLA inhibited macrophage influx, alveolar fibrosis, parenchymal collapse, consolidation, and epithelial cell changes. The concentration of collagen in lung tissue was lower in irradiation plus CLA mice. Radiation-induced expression of tumor necrosis factor (TNF)-α, TNF receptor 1, acetylated nuclear factor kappa B, cyclooxygenase 2, vascular cell adhesion molecule 1, and matrix metallopeptidase 9 were also attenuated by CLA. Expression levels of nuclear factor erythroid 2-related factor 2 and heme oxygenase 1, transforming growth factor-β1, connective tissue growth factor, and type I collagen in radiation-treated lungs were also attenuated by CLA. These findings indicate that CLA ameliorates the deleterious effects of thoracic irradiation in mice by reducing pulmonary inflammation, oxidative damage, and fibrosis.  相似文献   

3.
We explored the protective effect of corticosteroids on the mortality of mice that received thoracic irradiation. Methylprednisolone, 100 mg/kg/week, given from 11 weeks after gamma irradiation of the thorax resulted in an increase in the LD50 (11-26 weeks) from 14.3 +/- 0.3 (mean +/- SE) Gy to 17.6 +/- 0.4 Gy, P less than 0.001, a protection factor of 1.2. Withdrawal of steroids at various times during the period of radiation pneumonitis resulted in accelerated mortality in the next 2-4 weeks, so that the cumulative mortality "caught up" with that of control animals by 4 weeks after steroid withdrawal. However, after the end of the usual period of pneumonitis withdrawal of steroids did not result in accelerated mortality, suggesting that the time when steroids are protective corresponds to the duration of pneumonitis. A smaller dose of steroids, 25 mg/kg/week, was found to be as protective as the larger dose used in the above experiments. The possibility that corticosteroids reduce mortality, even when given many weeks after radiation, may have important practical and theoretical implications.  相似文献   

4.
Postcanalicular lung development is characterized by a time-specific increase in alveolar epithelial type II cell apoptosis. We have previously demonstrated that, in fetal rabbits, developmental type II cell apoptosis coincides with transient upregulation of the cell death regulator Fas ligand (FasL). The aims of this study were 1) to determine the spatiotemporal patterns of pulmonary apoptosis and Fas/FasL gene expression in the murine model [embryonic day 17 (E17) through postnatal day 5 (P5)], and 2) to investigate the functional involvement of the Fas/FasL system by determining the effect of Fas activation and inhibition on perinatal pulmonary apoptosis. The apoptotic activity of alveolar epithelial type II cells, determined by combined TUNEL labeling and anti-surfactant protein B immunohistochemistry, showed a dramatic increase during the perinatal transition (type II cell apoptotic index <0.1% at E17, 1.5% at P1-P3, and 0.3% at P5). This timing of enhanced type II cell apoptosis coincided with a robust 14-fold increase in Fas mRNA and protein levels and a threefold increase in FasL protein levels; both Fas and FasL immunolocalized to type II and bronchial epithelial cells. In vitro and in vivo exposure of fetal and postnatal murine type II cells to anti-Fas antibody induced a fourfold increase in apoptotic activity that was prevented by administration of a broad-spectrum caspase inhibitor; the pulmonary apoptotic activity of Fas-deficient lpr mice remained unchanged. Conversely, administration of a caspase inhibitor to newborn mice (P1) resulted in marked diminution of pulmonary apoptotic activity. These combined findings strongly implicate the Fas/FasL system as a critical regulator of perinatal type II cell apoptosis. The developmental time dependence of apoptosis-related events in the murine model should facilitate investigations of the regulation of perinatal pulmonary apoptotic gene expression.  相似文献   

5.
Radiation pneumonitis is a life-threatening result of therapeutic thoracic irradiation, yet its mechanisms are poorly understood. We studied the effects of unilateral lung irradiation (3,000 rad) in sheep from the immediate response to the later development of radiation pneumonitis. We defined radiation pneumonitis by its diagnostic clinical feature, radiographic infiltration of the irradiated zone with a straight margin corresponding to the radiation port. The immediate response in the few hours after irradiation was characterized by cough, labored respiration, hypoxemia (arterial PO2 decreased 19 Torr), mild pulmonary hypertension (pulmonary arterial pressure increased 20%), and lymphopenia. Hemodynamics and gas exchange returned to normal by day 2 but became abnormal again before or during radiation pneumonitis at 32 +/- 2 days. Respiratory distress, hypoxemia, and pulmonary hypertension recurred during radiation pneumonitis. Bronchoalveolar lavage during radiation pneumonitis contained increased neutrophils (19 +/- 4%, control = 7%), increased protein (0.27 +/- 0.1 g/dl, control = 0.12 +/- 0.03), and severely impaired ability to lower surface tension. Alveolar macrophages from both lungs during unilateral radiation pneumonitis exhibited impaired generation of superoxide after phorbol myristate (only a 30% increase). Normal control alveolar macrophages increased superoxide production after stimulation greater than 400%. We conclude that unilateral lung irradiation in sheep causes a mild immediate response followed by radiation pneumonitis at 1 mo. Unilateral radiation pneumonitis in this model is associated with ipsilateral neutrophilic alveolitis, increased bronchoalveolar lavage protein, and impaired surfactant function, as well as bilateral functional abnormalities of alveolar macrophages.  相似文献   

6.
Radiotherapy is one of the major treatment regimes for thoracic malignancies, but can lead to severe lung complications including pneumonitis and fibrosis. Recent studies suggest that epithelial-to-mesenchymal transition (EMT) plays an important role in tissue injury leading to organ fibrosis. To investigate whether radiation can induce EMT in lung epithelial cells and also to understand the potential mechanism(s) associated with this change, rat alveolar type II lung epithelial RLE-6TN cells were irradiated with 8 Gy of (137)Cs γ-rays. Western blot and immunofluorescence analyses revealed a time-dependent decrease in E-cadherin with a concomitant increase in α-smooth muscle actin (α-SMA) and vimentin after radiation, suggesting that the epithelial cells acquired a mesenchymal-like morphology. Protein levels and nuclear translocation of Snail, the key inducer of EMT, were significantly elevated in the irradiated cells. Radiation also induced a time-dependent inactivation of glycogen synthase kinase-3β (GSK3β), an endogenous inhibitor of Snail. A marked increase in phosphorylation of ERK1/2, but not JNK or p38, was observed in irradiated RLE-6TN cells. Silencing ERK1/2 using siRNAs and the MEK/ERK inhibitor U0126 attenuated the radiation-induced phosphorylation of GSK3β and altered the protein levels of Snail, α-SMA, and E-cadherin in RLE-6TN cells. Preincubating RLE-6TN cells with N-acetylcysteine, an antioxidant, abolished the radiation-induced phosphorylation of ERK and altered protein levels of Snail, E-cadherin, and α-SMA. These findings reveal, for the first time, that radiation-induced EMT in alveolar type II epithelial cells is mediated by the ERK/GSK3β/Snail pathway.  相似文献   

7.
Although lung injury including fibrosis is a well‐documented side effect of lung irradiation, the mechanisms underlying its pathology are poorly understood. X‐rays are known to cause apoptosis in the alveolar epithelial cells of irradiated lungs, which results in fibrosis due to the proliferation and differentiation of fibroblasts and the deposition of collagen. Apoptosis and BH3‐only pro‐apoptotic proteins have been implicated in the pathogenesis of pulmonary fibrosis. Recently, we have established a clinically analogous experimental model that reflects focal high‐dose irradiation of the ipsilateral lung. The goal of this study was to elucidate the mechanism underlying radiation‐induced lung injury based on this model. A radiation dose of 90 Gy was focally delivered to the left lung of C57BL/6 mice for 14 days. About 9 days after irradiation, the mice began to show increased levels of the pro‐apoptotic protein Noxa in the irradiated lung alongside increased apoptosis and fibrosis. Suppression of Noxa expression by small interfering RNA protected cells from radiation‐induced cell death and decreased expression of fibrogenic markers. Furthermore, we showed that reactive oxygen species participate in Noxa‐mediated, radiation‐induced cell death. Taken together, our results show that Noxa is involved in X‐ray‐induced lung injury.  相似文献   

8.
Proliferation of type II pneumonocytes after X-irradiation   总被引:1,自引:0,他引:1  
This paper reports preliminary data on the proliferative response of type II cells in the mouse lung over a five-month period after external thoracic doses of 2, 5, 10 and 12 Gy of X-rays. The DNA labelling index (LI) of control (0 Gy) mice was at all times exceedingly low (0.3-0.4 per cent). The LI after 2 and 5 Gy showed a slight though transient fall below controls during the first week post-irradiation, and thereafter the LIs were similar to the controls for the 5 months of the experiment. The LI after 10 and 12 Gy again showed a significant depression during the first week, but this was followed by a significant increase (P = 0.01) in LI which peaked at 4 weeks after irradiation. The LI returned to control values at 3-4 months and again rose significantly (P = 0.05) at 5 months. The first wave of proliferation corresponds to data showing an increase in surfactant in alveolar fluids within 2-6 weeks of 10-15 Gy of X-rays; and the second wave coincides with the pneumonitic phase and is consistent with a delay before the alveolar epithelial continuity is sufficiently compromised by the low rates of type I cell loss to trigger a compensatory wave of type II cell divisions. This relatively chronic radiation response is discussed and contrasted with the dramatic and immediate hyperplastic responses which many toxic irritants produce in type II epithelial cells.  相似文献   

9.
We have addressed the question of how the alveolar space stays relatively free of fluid when thoracic irradiation injures the pulmonary capillary endothelium and plasma fluid leaks into the interstitium. A single dose of 15 Gy to the thorax of rats significantly increased the pulmonary capillary filtration coefficient and the lung wet/dry weight ratio 2 h after irradiation. However, there was no significant increase in the release of lactose dehydrogenase or leaking of Evans blue dye into the alveolar space, indicating that alveolar epithelial permeability remained intact. We found no significant difference in the basal alveolar fluid clearance between control and irradiated animals. There was also no significant difference in blockage of alveolar fluid clearance by amiloride. This indicates that the function of the alveolar epithelial Na(+) channels is not impaired and that alveolar epithelium absorbs fluid normally. Examination of lung tissue by light microscopy demonstrated accumulation of fluid in the perivascular region but not in the alveolar space. Our data appear to indicate that the alveolar epithelial barrier function is more resistant to radiation than that of the pulmonary capillary endothelium. We conclude that intact alveolar epithelial permeability and normal transalveolar epithelial fluid absorption ability are of critical importance in keeping the alveolar space relatively free of fluid during acute radiation lung injury.  相似文献   

10.
Corticosteroids have previously been found to be protective against the mortality of radiation pneumonitis in mice, even when given well after lethal lung irradiation. We explored the possibility that this effect was due to their well-known anti-inflammatory actions by giving various nonsteroidal inhibitors of arachidonate metabolism to groups of mice that had received 19 Gy to the thorax (bilaterally). Treatments of four cyclooxygenase inhibitors, one lipoxygenase inhibitor, and one leukotriene receptor antagonist, given by various routes in various doses, were commenced 10 weeks after irradiation or sham irradiation and continued throughout the period when death from radiation pneumonitis occurs, 11-26 weeks after irradiation. Each of the treatments had the appropriate effect on arachidonate metabolism in the lungs as assessed by LTB4 and PGE2 levels in lung lavage fluid. The principal end point was mortality. The 5-lipoxygenase inhibitor diethylcarbamazine and the LTD4/LTE4 receptor antagonist LY 171883 markedly reduced mortality in dose-response fashion. The effects of cyclooxygenase inhibitors were divergent; piroxicam and ibuprofen were marginally protective, indomethacin in all doses accelerated mortality, and aspirin reduced mortality in a dose-response fashion. These results suggest that the protective effect of corticosteroids in radiation pneumonitis can be tentatively attributed to their anti-inflammatory actions, and that nonsteroidal anti-inflammatory agents, particularly those that affect lipoxygenase products, may offer equal or better protection than corticosteroids against mortality due to radiation pneumonitis.  相似文献   

11.
为探讨载氢-纳米氧化铈微泡对小鼠辐射损伤的防护作用。本研究检测载氢-纳米氧化铈微泡的表征,并将60只BALB/c小鼠随机分为正常对照组、照射对照组、载氢-纳米氧化铈微泡组。小鼠经6Gy x射线一次性全身照射(剂量率2 Gy/min)。于照射后3 d和8 d处死小鼠,检测其外周血细胞数、脾脏和胸腺指数、骨髓和脾脏组织病理学变化。结果显示,照射后3 d和8 d,与正常对照组相比,载氢-纳米氧化铈微泡组和照射对照组的白细胞均明显下降,相比照射对照组,载氢-纳米氧化铈微泡组有改善(p<0.05或p<0.01);而载氢-纳米氧化铈微泡组和照射对照组的红细胞数和血红蛋白均略有下降,但差异无统计学意义。与正常对照组相比,微泡组的胸腺指数、脾脏指数均有下降,和照射对照组相比,载氢-纳米氧化铈微泡组的胸腺指数明显改善(p<0.05或p<0.01)。照射后3 d,与正常对照组相比,照射对照组的骨髓细胞较少,存在细胞碎片,载氢-纳米氧化铈微泡组骨髓细胞数量略有减少,存在细胞核松散现象。而照射后8 d,与正常对照组相比,照射对照组的骨髓细胞几乎找不到,载氢-纳米氧化铈微泡组骨髓细胞有一定数量,存在细胞凋亡现象。本研究表明,载氢-纳米氧化铈微泡通过保护造血组织、改善造血功能,对机体起到一定的辐射防护作用。  相似文献   

12.
Apoptosis plays a central role in the cellular remodeling of the developing lung. We determined the spatiotemporal patterns of the cell death regulators Fas and Fas ligand (FasL) during rabbit lung development and correlated their expression with pulmonary and type II cell apoptosis. Fetal rabbit lungs (25-31 days gestation) were assayed for apoptotic activity by terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling (TUNEL) and DNA size analysis. Fas and FasL expression were analyzed by RT-PCR, immunoblot, and immunohistochemistry. Type II cell apoptosis increased significantly on gestational day 28; the type II cell apoptotic index increased from 0.54 +/- 0.34% on gestational day 27 to 3.34 +/- 1.24% on day 28, P < 0.01 (ANOVA). This corresponded with the transition from the canalicular to the terminal sac stage of development. The day 28 rise in epithelial apoptosis was synchronous with a robust if transient 20-fold increase in FasL mRNA and a threefold increase in FasL protein levels. In contrast, Fas mRNA levels remained constant, suggestive of constitutive expression. Fas and FasL proteins were immunolocalized to alveolar type II cells and bronchiolar Clara cells. The correlation of this highly specific pattern of FasL expression with alveolar epithelial apoptosis and remodeling implicates the Fas/FasL system as a potentially important regulatory pathway in the control of postcanalicular alveolar cytodifferentiation.  相似文献   

13.
Pneumonitis and emphysema in sp-C gene targeted mice   总被引:19,自引:0,他引:19  
SP-C-deficient (SP-C -/-) mice developed a severe pulmonary disorder associated with emphysema, monocytic infiltrates, epithelial cell dysplasia, and atypical accumulations of intracellular lipids in type II epithelial cells and alveolar macrophages. Whereas alveolar and tissue surfactant phospholipid pools were increased, levels of other surfactant proteins were not altered (SP-B) or were modestly increased (SP-A and SP-D). Analysis of pressure-volume curves and forced oscillatory dynamics demonstrated abnormal respiratory mechanics typical of emphysema. Lung disease was progressive, causing weight loss and cardiomegaly. Extensive alveolar remodeling was accompanied by type II cell hyperplasia, obliteration of pulmonary capillaries, and widespread expression of alpha-smooth muscle actin, indicating myofibroblast transformation in the lung parenchyma. Dysplastic epithelial cells lining conducting airways stained intensely for the mucin, MUC5A/C. Tissue concentrations of proinflammatory cytokines were not substantially altered in the SP-C (-/-) mice. Production of matrix metalloproteinases (MMP-2 and MMP-9) was increased in alveolar macrophages from SP-C (-/-) mice. Absence of SP-C caused a severe progressive pulmonary disorder with histologic features consistent with interstitial pneumonitis.  相似文献   

14.
CD13/aminopeptidase N is a cell surface glycoprotein that is widely distributed in a variety of mammalian cells. It was recently shown to have chemotactic activity for T lymphocytes. This study examined the role of CD13/aminopeptidase N in lymphocytic alveolitis in radiation-induced lung injury caused by a single-dose thoracic irradiation (15 Gy) in rats. Significantly increased aminopeptidase activity was detected in bronchoalveolar lavage fluid obtained from irradiated rats at 4 weeks after irradiation compared to the activity in unirradiated rats. Significantly higher aminopeptidase activity was detected on alveolar macrophages from irradiated rats at 2 and 4 weeks than on those from unirradiated rats. Western blot analysis showed an increased expression of CD13/aminopeptidase N protein in alveolar macrophages from irradiated rats at 4 weeks. Chemotactic activity for normal rat lymphocytes was detected in bronchoalveolar lavage fluid from irradiated rats at 4 weeks, and approximately 60% of the activity was inhibited by pretreatment of bronchoalveolar lavage fluid with bestatin, a specific aminopeptidase inhibitor. This study suggests that CD13/aminopeptidase N may play an important role as a lymphocyte chemoattractant in lymphocyte-mediated alveolitis in experimental radiation-induced lung injury.  相似文献   

15.
Immunohistochemical and in vitro studies indicate that caveolin-1, which occurs abundantly in alveolar epithelial type I cells and microvascular endothelial cells of the lung, is selectively downregulated in the alveolar epithelium following exposure to bleomycin. Bleomycin is also known to enhance the expression levels of metalloproteinases and of the metalloproteinase inducer CD147/EMMPRIN in lung cells. Experimental in vitro data has showed that MMP-inducing activity of CD147 is under the control of caveolin-1. We studied the effects of bleomycin on the expression of caveolin-1, CD147 and metalloproteinases using an alveolar epithelial rat cell line R3/1 with properties of both alveolar type I and type II cells and explanted rat lung slices. In parallel, retrospective samples of bleomycin-induced fibrosis in rats and mice as well as samples of wild type and caveolin-1 knockout animals were included for immunohistochemical comparison with in vitro data. Here we report that treatment with bleomycin downregulates caveolin-1 and increases CD147 and MMP-2 and -9 expression/activity in R3/1 cells using RT-PCR, Western blot analysis, MMP-2 activity assay and immunocytochemistry. Immunofluorescence double labeling revealed that caveolin-1 and CD147 were not colocalized in vitro. The in vitro findings were confirmed through immunohistochemical studies of the proteins in paraffin embedded precision-cut rat lung slices and in fibrotic rat lung tissues. The caveolin-1-negative hyperplastic ATII cells exhibited enhanced immunoreactivity for CD147 and MMP-2. Caveolin-1-negative ATI cells of fibrotic samples were mostly CD147 negative. There were no differences in the pulmonary expression of CD147 between the normal and caveolin-1 deficient animals. The results demonstrate that bleomycin-induced lung injury is associated with an increase in CD147 expression and MMP activity, particularly in alveolar epithelial cells. In addition, our data exclude any functional interaction between CD147 and alveolar epithelial caveolin-1.  相似文献   

16.
Radiation pneumonitis is a major complication of radiation therapy. However, the detailed cellular mechanisms have not been clearly defined. Based on the recognition that basement membrane disruption occurs in acute lung injury and that matrix metalloproteinase (MMP)-2 can degrade type IV collagen, one of the major components of the basement membrane, we hypothesized that ionizing radiation would modulate MMP-2 production in human lung epithelial cells. To evaluate this, the modulation of MMP-2 with irradiation was investigated in normal human bronchial epithelial cells as well as in A549 cells. We measured the activity of MMP-2 in the conditioned medium with zymography and the MMP-2 mRNA level with RT-PCR. Both of these cells constitutively expressed 72-kDa gelatinolytic activity, corresponding to MMP-2, and exposure to radiation increased this activity. Consistent with the data of zymography, ionizing radiation increased the level of MMP-2 mRNA. This radiation-induced increase in MMP-2 expression was mediated via p53 because the p53 antisense oligonucleotide abolished the increase in MMP-2 activity as well as the accumulation of p53 after irradiation in A549 cells. These results indicate that MMP-2 expression by human lung epithelial cells is involved in radiation-induced lung injury.  相似文献   

17.
Although one of the several chronic effects of ionizing radiation is aging, there are no experimental data on radiation-induced immunological aging. The most interesting change in aging was a helper T (Th) 1/Th2 imbalance. We investigated chronic effect on immune responses after ionizing radiation and its effects in irradiated mice were compared with those of aged mice. The 2-month-old mice received a whole-body irradiation of 5 Gy. At 6 months after irradiation, we compared the immune functions of the irradiated mice with those of normal mice of the same age and with those of older. Interferon (IFN)-γ and antigen-specific immunoglobulin (Ig)G2a level were lower in the irradiated mice than in normal mice of same age, showing similar levels to those of old normal mice. In contrast, interleukin (IL)-4 and IL-5 and antigen-specific IgG1 level were increased in irradiated mice when compared with the same aged-normal mice. Next, we investigated the low expression of IL-12p70, IL-12 receptors and IL-18 receptors in irradiated and old mice. Also, the decrease of natural killer cell activity was intensified in the irradiated mice, showing lower than values to those of old mice. Interestingly, in irradiated mice, the absolute numbers and the percentages of natural killer (NK) cells was extremely decreased. But the absolute numbers of Th cells and cytotoxic T (Tc) cells in old mice were significantly decreased. In conclusion, an immunological imbalance by the whole-body irradiation of 5 Gy induces to persist in the long term, resulting in the similar results with aging. Our results suggest that the downregulation of the Th1-like immune response shown in old mice rapidly occurred through exposure of ionizing radiation.  相似文献   

18.
Treatment for most patients with head and neck cancers includes ionizing radiation. A consequence of this treatment is irreversible damage to salivary glands (SGs), which is accompanied by a loss of fluid-secreting acinar-cells and a considerable decrease of saliva output. While there are currently no adequate conventional treatments for this condition, cell-based therapies are receiving increasing attention to regenerate SGs. In this study, we investigated whether bone marrow-derived cells (BMDCs) can differentiate into salivary epithelial cells and restore SG function in head and neck irradiated mice. BMDCs from male mice were transplanted into the tail-vein of 18Gy-irradiated female mice. Salivary output was increased in mice that received BMDCs transplantation at week 8 and 24 post-irradiation. At 24 weeks after irradiation (IR), harvested SGs (submandibular and parotid glands) of BMDC-treated mice had greater weights than those of non-treated mice. Histological analysis shows that SGs of treated mice demonstrated an increased level of tissue regenerative activity such as blood vessel formation and cell proliferation, while apoptotic activity was increased in non-transplanted mice. The expression of stem cell markers (Sca-1 or c-kit) was detected in BMDC-treated SGs. Finally, we detected an increased ratio of acinar-cell area and approximately 9% of Y-chromosome-positive (donor-derived) salivary epithelial cells in BMDC-treated mice. We propose here that cell therapy using BMDCs can rescue the functional damage of irradiated SGs by direct differentiation of donor BMDCs into salivary epithelial cells.  相似文献   

19.
Image analysis was used to study the repair process of a circular mechanical lesion of confluent human endothelial cells in culture after irradiation (10 Gy) prior to wounding. Coverage of denuded areas 48 and 96 h after injury of endothelial cells was identical in control and irradiated cultures, although the labeling index was lowered by 80 to 95% in irradiated cultures. The cell density of non damaged irradiated areas was decreased by 50%. When cultures were submitted to increasing doses of radiation (5.0-30 Gy), the labeling index of the cells diminished rapidly between 0 and 5.0 Gy and reached a plateau at 10 Gy. The decrease in cell density (50% of control at 96 h) was identical at each dose of radiation. Thus cell migration alone could be sufficient for the repair of the lesion, while cell proliferation would mainly maintain the original cell density. The addition of heparin to the culture medium slowed down cell migration and proliferation, but the speed of repair was identical in irradiated and non-irradiated cultures. Acidic fibroblast growth factor plus heparin accelerated equally the repair process whether the cultures were irradiated or not. In irradiated cultures the presence of acidic fibroblast growth factor and heparin maintained cell density in confluent areas at a level similar to that in non-irradiated damaged control cultures without addition of mitogens. Thus heparin and acidic fibroblast growth factor play a role in cell proliferation, in the maintenance of the cell monolayer integrity and in restoring a continuous layer by rapid cell migration and elongation after irradiation.  相似文献   

20.
Image analysis was used to study the repair process of a circular mechanical lesion of confluent human endothelial cells in culture after irradiation (10 Gy) prior to wounding. Coverage of denuded areas 48 and 96 h after injury of endothelial cells was identical in control and irradiated cultures, although the labeling index was lowered by 80 to 95% in irradiated cultures. The cell density of non damaged irradiated areas was decreased by 50%. When cultures were submitted to increasing doses of radiation (5.0–30 Gy), the labeling index of the cells diminished rapidly between 0 and 5.0 Gy and reached a plateau at 10 Gy. The decrease in cell density (50% of control at 96 h) was identical at each dose of radiation. Thus cell migration alone could be sufficient for the repair of the lesion, while cell proliferation would mainly maintain the original cell density. The addition of heparin to the culture medium slowed down cell migration and proliferation, but the speed of repair was identical in irradiated and non-irradiated cultures. Acidic fibroblast growth factor plus heparin accelerated equally the repair process whether the cultures were irradiated or not. In irradiated cultures the presence of acidic fibroblast growth factor and heparin maintained cell density in confluent areas at a level similar to that in non-irradiated damaged control cultures without addition of mitogens. Thus heparin and acidic fibroblast growth factor play a role in cell proliferation, in the maintenance of the cell monolayer integrity and in restoring a continuous layer by rapid cell migration and elongation after irradiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号