首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
β-Galactosidases with single substitutions for Tyr-503, Glu-461, and Glu-537 and with double substitutions for Tyr-503 and either Glu-461 or Glu-537 were constructed. Control experiments showed that the very low k cat values obtained for the double-substituted enzymes were not a result of contamination, reversion, or nonactive site activity catalyzed on the surface of the proteins. Circular dichroism studies showed that the structures of the enzymes were intact. E461Q/Y503F-β-galactosidase was inactivated in an “additive” manner. This indicated that Glu-461 and Tyr-503 act independently in catalysis. Because these residues are at opposite sides of the active site and act in different steps, this is expected. E537D/Y503F-β-galactosidase was only inactivated a few-fold more than the most inactive of its two single-substituted constituent β-galactosidases. This showed that Glu-537 and Tyr-503 interact cooperatively on the same step. This correlates well with the proposed role of Tyr-503 as an acid catalyst for the breakage of the covalent bond between Glu-537 and galactose.  相似文献   

2.
The Mg2+ concentrations required for half maximal activity, the dissociation constants, and the free energies of binding for Mg2+ bound to wild type beta-galactosidase and several site specific mutants are reported. The mutants have one of the following substitutions: Glu-461 substituted with Asp, Gln, Gly, His, or Lys; or Tyr-503 substituted with Phe, His or Cys. Substitutions for Tyr-503 had little effect on the affinity of the enzyme for Mg2+, implying that Tyr-503 is not involved in Mg2+ binding. Neutrally charged amino acids substituted for the negatively charged Glu-461 significantly decreased the affinity of the enzyme for Mg2+ and substitution of positively charged amino acids at this position further decreased the affinity. On the other hand, substitution by Asp (negative charge) at position 461 had no effect on the binding. Thus, the negatively charged side chain of Glu-461 is important for divalent cation binding to beta-galactosidase.  相似文献   

3.
Substitutions for Tyr-503 of beta-galactosidase caused large decreases of the activity. Both the galactosylation (k2) and degalactosylation (k3) rates were decreased. Substitutions by residues without transferable protons, caused k3 to decrease much more than k2 while substitutions with residues having transferable protons, caused approximately equal decreases of k2 and k3. Several lines of evidence showed this. The Km values of the substituted enzymes were much smaller than those for the wild type if the substituted amino acid residues did not have transferable protons; this was not the case when the substituted residues had transferable protons. Inhibition studies showed that the Km values were not small because of small Ks values but were small because of relatively small k3 values (compared with the k2 values). The conclusion that the k3 values are small relative to k2 upon substitution with residues without transferable protons is also based upon other studies: studies indicating that the reaction rates were similar with different substrates, studies in the presence of alcohol acceptors, studies showing that the rate of inactivation by 2,4-dinitrophenyl-2-deoxy-2-F-beta-D-galactopyranoside decreased much less than the rate of reactivation; studies on burst kinetics, and pH studies. The data suggest that Tyr-503 may be important for the degalactosylation reaction because of its ability to transfer protons and thereby facilitate cleavage of the transient covalent bond between galactose and Glu-537.  相似文献   

4.
Beta-galactosidases with single substitutions for Tyr-503, Glu-461, and Glu-537 and with double substitutions for Tyr-503 and either Glu-461 or Glu-537 were constructed. Control experiments showed that the very low kcat values obtained for the double-substituted enzymes were not a result of contamination, reversion, or nonactive site activity catalyzed on the surface of the proteins. Circular dichroism studies showed that the structures of the enzymes were intact. E461Q/Y503F-beta-galactosidase was inactivated in an "additive" manner. This indicated that Glu-461 and Tyr-503 act independently in catalysis. Because these residues are at opposite sides of the active site and act in different steps, this is expected. E537D/Y503F-beta-galactosidase was only inactivated a few-fold more than the most inactive of its two single-substituted constituent beta-galactosidases. This showed that Glu-537 and Tyr-503 interact cooperatively on the same step. This correlates well with the proposed role of Tyr-503 as an acid catalyst for the breakage of the covalent bond between Glu-537 and galactose.  相似文献   

5.
M Kubo  Y Mitsuda  M Takagi    T Imanaka 《Applied microbiology》1992,58(11):3779-3783
On the basis of three-dimensional information, many amino acid substitutions were introduced in the thermostable neutral protease (NprM) of Bacillus stearothermophilus MK232 by site-directed mutagenesis. When Glu at position 143 (Glu-143), which is one of the proposed active sites, was substituted for by Gln and Asp, the proteolytic activity disappeared. F114A (Phe-114 to Ala), Y110W (Tyr-110 to Trp), and Y211W (Tyr-211 to Trp) mutant enzymes had higher activity (1.3- to 1.6-fold) than the wild-type enzyme. When an autolysis site, Tyr-93, was replaced by Gly and Ser, the remaining activities of those mutant enzymes were higher than that of the wild-type enzyme.  相似文献   

6.
C. G. Cupples  J. H. Miller 《Genetics》1988,120(3):637-644
Forty-nine amino acid substitutions were made at four positions in the Escherichia coli enzyme β-galactosidase; three of the four targeted amino acids are thought to be part of the active site. Many of the substitutions were made by converting the appropriate codon in lacZ to an amber codon, and using one of 12 suppressor strains to introduce the replacement amino acid. Glu-461 and Tyr-503 were replaced, independently, with 13 amino acids. All 26 of the strains containing mutant enzymes are Lac(-). Enzyme activity is reduced to less than 10% of wild type by substitutions at Glu-461 and to less than 1% of wild type by substitutions at Tyr-503. Many of the mutant enzymes have less than 0.1% wild-type activity. His-464 and Met-3 were replaced with 11 and 12 amino acids, respectively. Strains containing any one of these mutant proteins are Lac(+). The results support previous evidence that Glu-461 and Tyr-503 are essential for catalysis, and suggest that His-464 is not part of the active site. Site-directed mutagenesis was facilitated by construction of an f1 bacteriophage containing the complete lacZ gene on a single EcoRI fragment.  相似文献   

7.
Trp-999 is a key residue for the action of beta-galactosidases (Escherichia coli). Several site specific substitutions (Phe, Gly, Tyr, Leu) for Trp-999 were made. Each substitution caused greatly decreased affinities for substrates and inhibitors that bind in the "shallow" mode, while the affinities of inhibitors that bind in the "deep" mode were not decreased nearly as much. This shows that Trp-999 is important for binding in the shallow mode. The residue is also very important for binding glucose to galactosyl-beta-galactosidase (as a transgalactosidic acceptor). Substitution greatly diminished the affinity for glucose. Substitutions also changed the activation thermodynamics and, subsequently, the rates of the catalytic reactions. The enthalpies of activation of the glycolytic bond cleavage step (galactosylation, k(2)) became less favorable while the entropies of activation of that step became more favorable as a result of the substitutions. Differing magnitudes of these enthalpic and entropic effects with ONPG as compared to PNPG caused the k(2) values for ONPG to decrease but to increase for PNPG. The enthalpies of activation for the common hydrolytic step (degalactosylation, k(3)) increased while the entropies of activation for this step did not change much. As a result, k(3) became small and rate determining for each substituted enzyme. The substitutions caused the rate constant (k(4)) of the transgalactosidic acceptor reactions with glucose (for the formation of allolactose) to become much larger and of the same order of magnitude as the normally large rate constants for transgalactosidic acceptor reactions with small alcohols. This is probably because glucose can approach with less restriction in the absence of Trp-999. However, since glucose binds very poorly to the galactosyl-beta-galactosidases with substitutions for Trp-999, the proportion of lactose molecules converted to allolactose is small. Thus, Trp-999 is also important for ensuring that an appropriate proportion of lactose is converted to allolactose.  相似文献   

8.
On the basis of three-dimensional information, many amino acid substitutions were introduced in the thermostable neutral protease (NprM) of Bacillus stearothermophilus MK232 by site-directed mutagenesis. When Glu at position 143 (Glu-143), which is one of the proposed active sites, was substituted for by Gln and Asp, the proteolytic activity disappeared. F114A (Phe-114 to Ala), Y110W (Tyr-110 to Trp), and Y211W (Tyr-211 to Trp) mutant enzymes had higher activity (1.3- to 1.6-fold) than the wild-type enzyme. When an autolysis site, Tyr-93, was replaced by Gly and Ser, the remaining activities of those mutant enzymes were higher than that of the wild-type enzyme.  相似文献   

9.
Mechanisms for the ribonuclease T1 (RNase T1; EC 3.1.27.3) catalyzed transesterification reaction generally include the proposal that Glu58 and His92 provide general base and general acid assistance, respectively [Heinemann, U., & Saenger, W. (1982) Nature (London) 299, 27-31]. This view was recently challenged by the observation that mutants substituted at position 58 retain high residual activity; a revised mechanism was proposed in which His40, and not Glu58, is engaged in catalysis as general base [Nishikawa, S., Morioka, H., Kim, H., Fuchimura, K., Tanaka, T., Uesugi, S., Hakoshima, T., Tomita, K., Ohtsuka, E., & Ikehara, M. (1987) Biochemistry 26, 8620-8624]. To clarify the functional roles of His40, Glu58, and His92, we analyzed the consequences of several amino acid substitutions (His40Ala, His40Lys, His40Asp, Glu58Ala, Glu58Gln, and His92Gln) on the kinetics of GpC transesterification. The dominant effect of all mutations is on Kcat, implicating His40, Glu58, and His92 in catalysis rather than in substrate binding. Plots of log (Kcat/Km) vs pH for wild-type, His40Lys, and Glu58Ala RNase T1, together with the NMR-determined pKa values of the histidines of these enzymes, strongly support the view that Glu58-His92 acts as the base-acid couple. The curves also show that His40 is required in its protonated form for optimal activity of wild-type enzyme. We propose that the charged His40 participates in electrostatic stabilization of the transition state; the magnitude of the catalytic defect (a factor of 2000) from the His40 to Ala replacement suggests that electrostatic catalysis contributes considerably to the overall rate acceleration. For Glu58Ala RNase T1, the pH dependence of the catalytic parameters suggests an altered mechanism in which His40 and His92 act as base and acid catalyst, respectively. The ability of His40 to adopt the function of general base must account for the significant activity remaining in Glu58-mutated enzymes.  相似文献   

10.
A recombinant Rhizobium meliloti beta-galactosidase was purified to homogeneity from an Escherichia coli expression system. The gene for the enzyme was cloned into a pKK223-3 plasmid which was then used to transform E. coli JM109 cells. The enzyme was purified 35-fold with a yield of 34% by a combination of DEAE-cellulose (pH 8.0) and two sequential Mono Q steps (at pH 8.0 and 6.0, respectively). The purified enzyme had an apparent molecular mass of 174 kDa and a subunit molecular weight of 88 kDa, indicating that it is a dimer. It was active with both synthetic substrates p-nitrophenyl beta-D-galactopyranoside (PNPG) and o-nitrophenyl beta-D-galactopyranoside (ONPG) with K(m)(PNPG) and K(m)(ONPG) of 1 mM at 25 degrees C. The k(cat)/K(m) ratios for both substrates were approximately 70 mM(-1) sec(-1), indicating no clear preference for either PNPG or ONPG, unlike E. coli beta-galactosidase. After non-denaturing electrophoresis, active beta-galactosidase bands were identified using 5-bromo-4-chloro-3-indolyl beta-D-galactopyranoside (X-gal) or 6-bromo-2-naphthyl beta-D-galactopyranoside (BNG) and diazo blue B.  相似文献   

11.
ATP-dependent DNA ligases, NAD(+)-dependent DNA ligases, and GTP-dependent RNA capping enzymes are members of a covalent nucleotidyl transferase superfamily defined by a common fold and a set of conserved peptide motifs. Here we examined the role of nucleotidyl transferase motif V ((184)LLKMKQFKDAEAT(196)) in the nick joining reaction of Chlorella virus DNA ligase, an exemplary ATP-dependent enzyme. We found that alanine substitutions at Lys(186), Lys(188), Asp(192), and Glu(194) reduced ligase specific activity by at least an order of magnitude, whereas substitutions at Lys(191) and Thr(196) were benign. The K186A, D192A, and E194A changes had no effect on the rate of single-turnover nick joining by preformed ligase-adenylate but affected subsequent rounds of nick joining at the ligase adenylation step. Conservative substitutions K186R, D192E, and E194D partially restored activity, whereas K186Q, D192N, and E194Q substitutions did not. Alanine mutation of Lys(188) elicited distinctive catalytic defects, whereby single-turnover nick joining by K188A-adenylate was slowed by an order of magnitude, and high levels of the DNA-adenylate intermediate accumulated. The rate of phosphodiester bond formation at a pre-adenylated nick (step 3 of the ligation pathway) was slowed by the K188A change. Replacement of Lys(188) by arginine reversed the step 3 arrest, whereas glutamine substitution was ineffective. Gel-shift analysis showed that the Lys(188) mutants bound stably to DNA-adenylate. We infer that Lys(188) is involved in the chemical step of phosphodiester bond formation.  相似文献   

12.
5-Aminolevulinate synthase (EC 2.3.1.37) is the first enzyme in the heme biosynthesis in nonplant eukaryotes and some prokaryotes. It functions as a homodimer and requires pyridoxal 5'-phosphate as an essential cofactor. Tyr-121 is a conserved residue in all known sequences of 5-aminolevulinate synthases. Further, it corresponds to Tyr-70 of Escherichia coli aspartate aminotransferase, which has been shown to interact with the cofactor and prevent the dissociation of the cofactor from the enzyme. To test whether Tyr-121 is involved in cofactor binding in murine erythroid 5-aminolevulinate synthase, Tyr-121 of murine erythroid 5-aminolevulinate synthase was substituted by Phe and His using site-directed mutagenesis. The Y121F mutant retained 36% of the wild-type activity and the Km value for substrate glycine increased 34-fold, while the activity of the Y121H mutant decreased to 5% of the wild-type activity and the Km value for glycine increased fivefold. The pKa1 values in the pH-activity profiles of the wild-type and mutant enzymes were 6.41, 6.54, and 6.65 for wild-type, Y121F, and Y121H, respectively. The UV-visible and CD spectra of Y121F and Y121H mutants were similar to those of the wild-type with the exception of an absorption maximum shift (420 --> 395 nm) for the Y121F mutant in the visible spectrum region, suggesting that the cofactor binds the Y121F mutant enzyme in a more unrestrained manner. Y121F and Y121H mutant enzymes also exhibited lower affinity than the wild-type for the cofactor, reflected in the Kd values for pyridoxal 5'-phosphate (26.5, 6.75, and 1.78 microM for Y121F, Y121H, and the wild-type, respectively). Further, Y121F and Y121H proved less thermostable than the wild type. Taken together, these findings indicate that Tyr-121 plays a critical role in cofactor binding of murine erythroid 5-aminolevulinate synthase.  相似文献   

13.
Site-directed substitutions (Asp, Gly, Gln, His, and Lys) were made for Glu-461 of beta-galactosidase (Escherichia coli). All substitutions resulted in loss of most activity. Substrates and a substrate analog inhibitor were bound better by the Asp-substituted enzyme than by the normal enzyme, about the same for enzyme substituted with Gly, but only poorly when Gln, His, or Lys was substituted. This shows that Glu-461 is involved in substrate binding. Binding of the positively charged transition state analog 2-aminogalactose was very much reduced with Gly, Gln, His, and Lys, whereas the Asp-substituted enzyme bound this inhibitor even better than did the wild-type enzyme. Since Asp, like Glu, is negatively charged, this strongly supports the proposal that one role of Glu-461 is to electrostatically interact with a positively charged galactosyl transition state intermediate. The substitutions also affected the ability of the enzyme to bind L-ribose, a planar analog of D-galactose that strongly inhibits beta-galactosidase activity. This indicates that the binding of a planar "galactose-like" compound is somehow mediated through Glu-461. The data indicated that the presence of Glu-461 is highly important for the acid catalytic component of kappa 2 (glycosylic bond cleavage or "galactosylation"), and therefore Glu-461 must be involved in a concerted acid catalytic reaction, presumably by stabilizing a developing carbonium ion. The kappa 2 values with o- and p-nitrophenyl-beta-D-galactopyranoside as substrates varied more or less as did the K8 values, indicating that most of the glycolytic bond breaking activity found for the enzymes from the mutants with these substrates was probably a result of strain or other such effects. The kappa 3 values (hydrolysis or "degalactosylation") of the substituted enzymes were also low, indicating that Glu-461 is important for that part of the catalysis. The enzyme with His substituted for Glu-461 had the highest kappa 3 value. This is probably a result of the formation of a covalent bond between His and the galactosyl part of the substrate.  相似文献   

14.
A glucose dehydrogenase gene was isolated from Bacillus megaterium IWG3, and its nucleotide sequence was identified. The amino acid sequence of the enzyme deduced from the nucleotide sequence is very similar to the protein sequence of the enzyme from B. megaterium M1286 reported by Jany et al. (Jany, K.-D., Ulmer, W., Froschle, M., and Pfleiderer, G. (1984) FEBS Lett. 165, 6-10). The isolated gene was mutagenized with hydrazine, formic acid, or sodium nitrite, and 12 clones (H35, H39, F18, F20, F191, F192, N1, N13, N14, N28, N71, and N72) containing mutant genes for thermostable glucose dehydrogenase were obtained. The nucleotide sequences of the 12 genes show that they include 8 kinds of mutants having the following amino acid substitutions: H35 and H39, Glu-96 to Gly; F18 and F191, Glu-96 to Ala; F20, Gln-252 to Leu; F192, Gln-252 to Leu and Ala-258 to Gly; N1, Glu-96 to Lys and Val-183 to Ile; N13 and N14, Glu-96 to Lys, Val-112 to Ala, Glu-133 to Lys, and Tyr-217 to His; N28, Glu-96 to Lys, Asp-108 to Asn, Pro-194 to Gln, and Glu-210 to Lys; and N71 and N72, Tyr-253 to Cys. These mutant enzymes have higher stability at 60 degrees C than the wild-type enzyme. The results of this study indicate that the tetrameric structure of glucose dehydrogenase is stabilized by several kinds of mutation, and at least one of the following amino acid substitutions stabilizes the enzyme: Glu-96 to Gly, Glu-96 to Ala, Gln-252 to Leu, and Tyr-253 to Cys.  相似文献   

15.
His-391 of beta-galactosidase (Escherichia coli) was substituted by Phe, Glu, and Lys. Homogeneous preparations of the substituted enzymes were essentially inactive unless very rapid purifications were performed, and the assays were done immediately. The inactive enzymes were tetrameric, just like wild-type beta-galactosidase and their fluorescence spectra were identical to the fluorescence spectrum of wild-type enzyme. Analyses of two of the substituted enzymes that were very rapidly purified to homogeneity and rapidly assayed while they were still active (at only a few substrate concentrations so that the data could be rapidly obtained), showed that the kinetic values were very similar to the values obtained with the same enzymes that were only partially purified. This showed that the kinetics were not affected by the degree of purity and allowed kinetic analyses with partially purified enzymes so that large numbers of points could be used for accuracy. The data showed that His-391 is a very important residue. It interacts strongly with the transition state and promotes catalysis by stabilizing the transition state. Activation energy differences (deltadelta G(S) double dagger), as determined by differences in the kcat/Km values, indicated that substitutions for His-391 caused very large destabilizations (22.8-35.9 kJ/mol) of the transition state. The importance of His-391 for transition state stabilization was confirmed by studies that showed that transition state analogs are very poor inhibitors of the substituted enzymes, while inhibition by substrate analogs was only affected in a small way by substituting for His-391. The poor stabilities of the transition states caused significant decreases of the rates of the glycolytic cleavage steps (galactosylation, k2). Degalactosylation (k3) was not decreased to the same extent.  相似文献   

16.
Lys-112 and Tyr-113 in pig kidney fructose-1,6-bisphosphatase (FBPase) make direct interactions with AMP in the allosteric binding site. Both residues interact with the phosphate moiety of AMP while Tyr-113 also interacts with the 3'-hydroxyl of the ribose ring. The role of these two residues in AMP binding and allosteric inhibition was investigated. Site-specific mutagenesis was used to convert Lys-112 to glutamine (K112Q) and Tyr-113 to phenylalanine (Y113F). These amino acid substitutions result in small alterations in k(cat) and increases in K(m). However, both the K112Q and Y113F enzymes show alterations in Mg(2+) affinity and dramatic reductions in AMP affinity. For both mutant enzymes, the AMP concentration required to reduced the enzyme activity by one-half, [AMP](0.5), was increased more than a 1000-fold as compared to the wild-type enzyme. The K112Q enzyme also showed a 10-fold reduction in affinity for Mg(2+). Although the allosteric site is approximately 28 A from the metal binding sites, which comprise part of the active site, these site-specific mutations in the AMP site influence metal binding and suggest a direct connection between the allosteric and the active sites.  相似文献   

17.
G Yang  T Lin  J Karam  W H Konigsberg 《Biochemistry》1999,38(25):8094-8101
The function of six highly conserved residues (Arg482, Lys483, Lys486, Lys560, Asn564, and Tyr567) in the fingers domain of bacteriophage RB69 DNA polymerase (RB69 gp43) were analyzed by kinetic studies with mutants in which each of these residues was replaced with Ala. Our results suggest that Arg482, Lys486, Lys560, and Asn564 contact the incoming dNTP during the nucleotidyl transfer reaction as judged by variations in apparent Km and kcat values for dNTP incorporation by these mutants compared to those for the exonuclease deficient parental polymerase under steady-state conditions. On the basis of our studies, as well as on the basis of the crystal structure of RB69 gp43, we propose that a conformational change in the fingers domain, which presumably occurs prior to polymerization, brings the side chains of Arg482, Lys486, Lys560, and Asn564 into the vicinity of the primer-template terminus where they can contact the triphosphate moiety of the incoming dNTP. In particular, on the basis of structural studies reported for the "closed" forms of two other DNA polymerases and from the kinetic studies reported here, we suggest that (i) Lys560 and Asn564 contact the nonbonding oxygens of the alpha and beta phosphates, respectively, and (ii) both Arg482 and Lys486 contact the gamma phosphate oxygens of the incoming dNTP of RB69 gp43 prior to the nucleotidyl transfer reaction. We also found that Ala substitutions at each of these four RB69 gp43 sites could incorporate dGDP as a substrate, although with markedly reduced efficiency compared to that with dGTP. In contrast in the parental exo- background, the K483A and Y567A substituted enzymes could not use dGDP as a substrate for primer extension. These results, taken together, are consistent with the putative roles of the four conserved residues in RB69 gp43 as stated above.  相似文献   

18.
Infections with bacteria that contain hydrolytic beta-lactamase enzymes are becoming a serious problem in the United States. Mutations at Met-69, an amino acid proximal to the active site Ser-70 in the TEM-1 and SHV-1 beta-lactamases, have emerged as a puzzling cause of bacterial resistance to inhibitors of beta-lactamases. Site-saturation mutagenesis of the 69 position in SHV beta-lactamase was performed to determine how mutations of this non-catalytic residue play a role in increasing 50% inhibitory concentrations (IC(50) concentrations) for clinically important beta-lactamase enzyme inhibitors. Two distinct phenotypes are evident in the variant beta-lactamases studied: significantly increased minimum inhibitory concentrations (microg/ml) and IC(50) concentrations to clavulanic acid for the Met69Ile, Leu, and Val substitutions, and unanticipated increased minimum inhibitory concentrations and hydrolytic activity toward ceftazidime, an advanced generation cephalosporin antibiotic, for the Met69Lys, Tyr- and Phe-substituted enzymes. Molecular modeling studies emphasize the conserved structure of these substitutions despite great variation in substrate specificity. This study demonstrates the key role of Met-69 in defining substrate specificity of SHV beta-lactamases and alerts us to new phenotypes that may emerge clinically.  相似文献   

19.
Pathogen-inducible oxygenase (PIOX) oxygenates fatty acids into 2R-hydroperoxides. PIOX belongs to the fatty acid alpha-dioxygenase family, which exhibits homology to cyclooxygenase enzymes (COX-1 and COX-2). Although these enzymes share common catalytic features, including the use of a tyrosine radical during catalysis, little is known about other residues involved in the dioxygenase reaction of PIOX. We generated a model of linoleic acid (LA) bound to PIOX based on computational sequence alignment and secondary structure predictions with COX-1 and experimental observations that governed the placement of carbon-2 of LA below the catalytic Tyr-379. Examination of the model identified His-311, Arg-558, and Arg-559 as potential molecular determinants of the dioxygenase reaction. Substitutions at His-311 and Arg-559 resulted in mutant constructs that retained virtually no oxygenase activity, whereas substitutions of Arg-558 caused only moderate decreases in activity. Arg-559 mutant constructs exhibited increases of greater than 140-fold in K(m), whereas no substantial change in K(m) was observed for His-311 or Arg-558 mutant constructs. Thermal shift assays used to measure ligand binding affinity show that the binding of LA is significantly reduced in a Y379F/R559A mutant construct compared with that observed for Y379F/R558A construct. Although Oryza sativa PIOX exhibited oxygenase activity against a variety of 14-20-carbon fatty acids, the enzyme did not oxygenate substrates containing modifications at the carboxylate, carbon-1, or carbon-2. Taken together, these data suggest that Arg-559 is required for high affinity binding of substrates to PIOX, whereas His-311 is involved in optimally aligning carbon-2 below Tyr-379 for catalysis.  相似文献   

20.
3alpha-hydroxysteroid dehydrogenase/carbonyl reductase (3alpha-HSD/CR) from Comamonas testosteroni, a short chain dehydrogenase/reductase, catalyzes the oxidation of androsterone with NAD+ to form androstanedione and NADH. A catalytic triad of Ser-114, Tyr-155, and Lys-159 in 3alpha-HSD/CR has been proposed based on structural analysis and sequence alignment of the short chain dehydrogenase/reductase family. The 3alpha-HSD/CR-catalyzed reaction has not been kinetically analyzed in detail, however. In this study, we combined steady-state kinetics, site-directed mutagenesis, and pH profile to explore the function of Ser-114, Tyr-155, and Lys-159 in 3alpha-HSD/CR-catalyzed reaction. The catalytic efficiency of wild-type and mutants S114A, Y155F, K159A, and Y155F/K159A is 4.3 x 10(7), 7.3 x 10(4), 1.7 x 10(4), 2.4 x 10(5), and 71 m(-1)s(-1), respectively. The values of pKa on kcat/Km for the wild-type, S114A, Y155F, K159A, and Y155F/K159A are 7.2, 7.4, 8.4, 9.1, and 10.2, respectively. Mutant S114A/Y155F exhibits a pH-independent profile with 10(-5) times of wild-type activity at pH 10.5. The activity decreases as the pH lowers, which indicates that a functional group with an apparent pKa of 7.2 is involved in the general base catalysis for wild-type 3alpha-HSD/CR. The pKa shift to 9.1 for mutant K159A suggests the role of Lys-159 is to lower the pKa of the residues involved in the general base catalysis. Because pH dependence is observed for both S114A and Y155F mutants and pH independence is observed in S114A/Y155F, Tyr-155 may be important as a general base catalysis in the wild-type, whereas Ser-114 may act as a general base on mutant Y155F to catalyze the reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号