首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The coupling between depolarization-induced calcium entry and neurotransmitter release was studied in rat brain neurons in culture. The endogenous dopamine content of the cells was determined by high performance liquid chromatography utilizing electrochemical detection. The amount of dopamine in unstimulated cells was found to be about 16 ng/mg of protein. Depolarization of the neurons by elevated K+ caused a Ca2+-dependent release of dopamine from the cells. Following 1 min of depolarization, the cellular dopamine content and the amount of [3H]dopamine in cells preloaded with the radioactive transmitter were reduced by 35%. The release of [3H]dopamine by the neurons was measured at 1.5-6-s intervals by a novel rapid dipping technique. Depolarization in the presence of Ca2+ (1.8 mM) enhanced the rate of neurotransmitter release by 90-fold (0.072 +/- 0.003 s-1) over the basal release in the presence of Ca2+. The evoked release consisted of a major rapidly terminating phase (t1/2 = 9.6 s) which comprised about 40% of the neurotransmitter content of the cells and a subsequent slower efflux (t1/2 = 575 s) which was observed during following prolonged depolarization. Predepolarization of the cells in the absence of extracellular Ca2+ did not affect the kinetics of the evoked release. The fast evoked release could be re-elicited in the cells after 20 min "rest" in reference low K+ buffer. The effects of varying the extracellular Ca2+ concentrations on the kinetic parameters of the evoked release were measured. The amount of neurotransmitter released during the fast kinetic phase was very sensitive to the external Ca2+ (from 0% in the absence of Ca2+ to 40% of the neurotransmitter content at Ca2+ 0.3 mM). The rate constant of the fast release did not depend on the extracellular Ca2+, whereas the rate constant of the slow release increased from 0.0004 +/- 0.0001 s-1 at 0.4 mM Ca2+ to 0.0012 +/- 0.0002 s-1 at 0.8 mM Ca2+. The fast evoked release was inhibited by verapamil in a concentration-dependent manner. By contrast, verapamil enhanced the basal and the slow release independent of the presence of Ca2+. Both fast and slow phases of the evoked release were blocked by Co2+. Addition of Co2+ within the first 6 s after the onset of depolarization inhibited the fast release but failed to do so when added later on.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
Neural cells from fetal rat brain were grown in tissue culture in the absence of serum and maintained for 4–5 weeks without medium renewal. Over 80% of the embryonic cells in the culture had a neuronal appearance and formed intercellular synaptic connections. When mature, a definite population of the neuronal cells accumulated 3H-dopamine in a sodium-dependent, benztropine inhibited process. The mature cells were also able to release 3H-dopamine in a potassium evoked, calcium-dependent process, with half maximal dopamine release achieved at a Ca2+ concentration of 120μM. In the maturing cells the capacity for potassium evoked, calcium-dependent dopamine release increased from an undetectable level in the first three days to a plateau level after 10–11 days in vitro. The fully expressed release capacity (20–30% of the neurotransmitter retained in the cells) was maintained thereafter. These results demonstrate that primary brain neurons develop a functional neurosecretion apparatus in a chemically defined medium in the absence of animal serum. This extends the utility of primary cultures of brain neurons for developmental structural and biochemical studies of neurotransmission.  相似文献   

3.
The ability of the phorbol ester tumor promoter, PDB, to activate contraction and stimulate calcium influx was investigated in rabbit thoracic aorta. PDB caused a strong, slowly-developing sustained contraction in physiological salt solution which was concentration-related (0.01 to 10.0 microM). PDB-induced contractions (0.1 microM) in calcium-free medium were attenuated but not prevented. PDB (1.0 microM) maximally stimulated Ca influx above basal control, vehicle = 39.2 +/- 2.2; PDB 1.0 microM = 70.7 +/- 6.7 mumoles Ca/kg tissue; N = 16, p less than 0.01). These data suggest that PDB activates rabbit thoracic aorta by a combination of intracellular and extracellular calcium dependent mechanisms.  相似文献   

4.
Phorbol ester stimulates calcium sequestration in saponized human platelets   总被引:5,自引:0,他引:5  
When platelets are activated by agonists, calcium (Ca2+) is released from an intracellular storage site. Recent studies using fura-2 show that, after thrombin stimulation, the rise in free calcium is transient and returns to base-line levels in 2-3 min, while the transient following ADP stimulation lasts only 15-20 s. We reported previously that the phorbol ester 12,13-phorbol myristate acetate (PMA), added at nanomolar levels after thrombin, immediately accelerated the rate of return of calcium to the base line severalfold (Yoshida, K., Dubyak, G., and Nachmias, V.T. (1986) FEBS Lett. 206, 273-278). In the present study, we used both intact and saponized platelets to determine whether this is due to stimulation of calcium sequestration. Using fura-2 and intact platelets, we found 1) that PMA stimulated the restoration of free Ca2+ levels after ADP as well as after thrombin, and 2) that H-7, an inhibitor of protein kinase C (Ca2+/phospholipid-dependent enzyme), slowed the return of Ca2+ to baseline levels. Using saponized platelets, we also found 3) that pretreatment of platelets with PMA before saponin treatment increased the ATP-dependent 45Ca2+ uptake 2-fold, with a half-maximal effect at 5 nm; 4) that most of the Ca2+ released by ionomycin or by myoinositol 1,4,5-trisphosphate; and 5) that a GTP-binding protein inhibitor, guanosine 5'-O-(2-thiodiphosphate), decreased basal or PMA-stimulated 45Ca2+ uptake in saponin-treated platelets. Our data suggest that activation of protein kinase C stimulates the sequestration of Ca2+ independently of cAMP or myoinositol 1,4,5-trisphosphate.  相似文献   

5.
The permeability of neuronal membranes to Ca2+ is of great importance for neurotransmitter release. The temporal characteristics of Ca2+ fluxes in intact brain neurons have not been completely defined. In the present study 45Ca2+ was used to examine the kinetics of Ca2+ influx and efflux from unstimulated and depolarized rat brain neurons in culture. Under steady-state conditions three cellular exchangeable Ca2+ pools were identified in unstimulated cells: 1) a rapidly exchanging pool (t1/2 = 7 s) which represented about 10% of the total cellular Ca2+ and was unaffected by the presence of Co2+, verapamil, or tetrodotoxin; 2) a slowly exchanging pool (t1/2 = 360 s) which represented 42% of the total cellular Ca2+ and was inhibited by Co2+, but not by verapamil or tetrodotoxin; 3) a very slowly exchanging pool (t1/2 = 96 min) which represented 48% of the total cell Ca2+ was observed only in the prolonged efflux experiments. The rate of exchange of 45Ca2+ in the unstimulated cells was dependent on the extracellular Ca2+ concentration (half-saturation at 70 microM). Depolarization of the neurons with elevated K+ causes a rapid and sustained 45Ca2+ uptake. The cellular Ca2+ content increased from 56 nmol/mg protein in unstimulated cells to 81 nmol/mg protein during 5 min of depolarization. The kinetics of the net 45Ca2+ uptake by the stimulated neurons was consistent with movement of the ion with a first order rate constant of 0.0096 s-1 (t1/2 = 72 s) into a single additional compartment. The other cellular Ca2+ pools were apparently unaffected by stimulation. The stimulated 45Ca2+ uptake was inhibited by Co2+ and by the Ca2+ channel blocker verapamil but not by the Na+ channel blocker tetrodotoxin. Ca2+ uptake into this compartment was dependent on the extracellular Ca2+ concentration (half-saturation at 0.80 mM Ca2+). Predepolarization of the cells with high K+ for 10-60 s prior to the addition of the radioactive calcium did not alter the rate of 45Ca2+ incorporation into the stimulated cells. It is concluded that the rapidly exchanging, the slowly exchanging, and the depolarization-induced Ca2+ pools observed in intact brain neurons are physically as well as kinetically distinct from each other. In addition, the depolarization-induced component observed in stimulated cells represents movement of the Ca2+ ions through a single class of voltage-sensitive Ca2+ channels. These Ca2+ channels are inhibited by Co2+ ions and by verapamil and are not inactivated during depolarization of the brain neurons.  相似文献   

6.
Cerebellar Purkinje neurons demonstrate a form of synaptic plasticity that, in acutely prepared brain slices, has been shown to require calcium release from the intracellular calcium stores through inositol trisphosphate (InsP(3)) receptors. Similar studies performed in cultured Purkinje cells, however, find little evidence for the involvement of InsP(3) receptors. To address this discrepancy, the properties of InsP(3)- and caffeine-evoked calcium release in cultured Purkinje cells were directly examined. Photorelease of InsP(3) (up to 100 microM) from its photolabile caged analogue produced no change in calcium levels in 70% of cultured Purkinje cells. In the few cells where a calcium increase was detected, the response was very small and slow to peak. In contrast, the same concentration of InsP(3) resulted in large and rapidly rising calcium responses in all acutely dissociated Purkinje cells tested. Similar to InsP(3), caffeine also had little effect on calcium levels in cultured Purkinje cells, yet evoked large calcium transients in all acutely dissociated Purkinje cells tested. The results demonstrate that calcium release from intracellular calcium stores is severely impaired in Purkinje cells when they are maintained in culture. Our findings suggest that cultured Purkinje cells are an unfaithful experimental model for the study of the role of calcium release in the induction of cerebellar long term depression.  相似文献   

7.
In a physiological medium the resting membrane potential of synaptosomes from guinea-pig cerebral cortex, estimated from rhodamine 6G fluorescence measurements, was nearly -50mV. This agreed with calculations using the Goldman-Hodgkin-Katz equation. With external [Ca2+] less than or equal to 3 mM veratridine depolarisation (to -30 mV) was accompanied by increases in intrasynaptosomal free calcium concentrations (monitored by entrapped quin2) and parallel increases in total acetylcholine release. With external [Ca2+] greater than 3 mM both intrasynaptosomal free calcium concentrations and transmitter release were paradoxically reduced, providing further evidence for a close correlation between the two events. To support an explanation of these findings based on divalent cation screening of membrane surface charge (increasing the voltage gradient within the membrane and closing voltage-inactivated channels) surface potential measurements were made on synaptic lipid liposomes by using a fluorescent surface-bound pH indicator. These experiments provided evidence for the presence of screenable surface charge on synaptosomes, and it was further shown in depolarised synaptosomes themselves that total external [Ca2+ + Mg2+], and not [Ca2+] alone, set the observed peak in intrasynaptosomal free calcium.  相似文献   

8.
The effect of calcium ionophore A23187 on the release of nonmetabolizable glutamate analogues [3H]D-aspartate and the exocytosis registered by fluorescent dyes in synaptosomes was investigated. It was shown that A23187 is able to induce neurotransmitter release both in calcium-containing and calcium-free medium, the effect in the latter case being more pronounced. Calcium ionophore is able to induce exocytosis registered by acridine orange and FM 2-10. The influence of A23187 on the fluorescence of acridine orange was mainly calcium-independent, whereas the change in the fluorescence of FM 2-10 was calcium-dependent. It was suggested that the calcium-independent increase in acridine orange fluorescence is related to the dissipation of pH gradient in synaptic vesicles. Probably, the calcium-independent release of D-aspartate is also associated with the dissipation of pH gradient and subsequent leakage of neurotransmitters.  相似文献   

9.
In cultured human 1321N1 astrocytoma cells, muscarinic receptor stimulation leads to phosphoinositide hydrolysis, formation of inositol phosphates, and mobilization of intracellular Ca2+. Treatment of these cells with 1 microM 4 beta-phorbol 12 beta-myristate 13 alpha-acetate (PMA) completely blocks the carbachol-stimulated formation of [3H]inositol mono-, bis-, and trisphosphate ( [3H]InsP, [3H]InsP2, and [3H]InsP3). The concentrations of PMA that give half-maximal and 100% inhibition of carbachol-induced [3H]InsP formation are 3 nM and 0.5 microM, respectively. Inactive phorbol esters (4 alpha-phorbol 12,13-didecanoate and 4 beta-phorbol), at 1 microM, do not inhibit carbachol-stimulated [3H]InsP formation. The KD of the muscarinic receptor for [3H]N-methyl scopolamine is unchanged by PMA treatment, while the IC50 for carbachol is modestly increased. PMA treatment also abolishes carbachol-induced 45Ca2+ efflux from 1321N1 cells. The concomitant loss of InsP3 formation and Ca2+ mobilization is strong evidence in support of a causal relationship between these two responses. In addition, our finding that PMA blocks hormone-stimulated phosphoinositide turnover suggests that there may be feedback regulation of phosphoinositide metabolism through the Ca2+- and phospholipid-dependent protein kinase.  相似文献   

10.
R J Miller 《FASEB journal》1990,4(15):3291-3299
Ca2+ influx into the nerve terminal is normally the trigger for the release of neurotransmitters. Many neurons possess presynaptic receptors whose activation results in changes in the quantity of neurotransmitter released by an action potential. This paper reviews studies that show that presynaptic receptors can regulate the activity of Ca2+ channels in the nerve terminal, resulting in changes in the influx of Ca2+ and in neurotransmitter release. Neurons possess several different types of voltage-sensitive Ca2+ channels. Ca2+ influx through N-type channels appears to trigger transmitter release in many instances. In other cases Ca2+ influx through L channels can influence transmitter release. Neurotransmitters can inhibit N channels through a G protein-mediated transduction mechanism. The G proteins are frequently pertussis toxin substrates. Inhibition of N channels appears to involve changes in their voltage dependence. Neurotransmitters can also regulate neuronal K+ channels. Activation of these K+ channels can lead to a reduction in Ca2+ influx and neurotransmitter release; these effects are also mediated by G proteins. Thus neurotransmitters may often regulate both presynaptic Ca2+ and K+ channels. These two effects may be synergistic mechanisms for the regulation of Ca2+ influx and neurotransmitter release.  相似文献   

11.
12-O-tetradecanoylphorbol 13-acetate (TPA) and cholecystokinin octapeptide stimulate amylase secretion in dispersed pancreatic acini, presumably acting via the activation of protein kinase C. In this study, we examined TPA pretreatment on the subsequent response of rat pancreatic acini to secretagogues. Acini exposed to TPA (3 X 10(-7) M) at 37 degrees C reduced the subsequent amylase secretion as stimulated by cholecystokinin octapeptide and carbachol, but not by A23187 or VIP. The optimal effect was obtained after 5 min of preincubation with TPA. Longer incubation did not result in greater attenuation. The degree of attenuation was dependent on the concentration of TPA used in the pretreatment. Maximal effect was seen at TPA concentrations of 10(-7) M and higher. Preincubation with TPA resulted in alterations of the dose response of pancreatic acini to cholecystokinin octapeptide. A decrease in amylase secretion was obtained at optimal and suboptimal but not at supraoptimal concentrations of cholecystokinin octapeptide. The peak response to cholecystokinin octapeptide, furthermore, was shifted almost 1 log unit to the right, suggesting a decrease in cholecystokinin binding of the acini following TPA treatment. Binding studies demonstrated a reduction in the specific binding of 125I-labelled cholecystokinin octapeptide to acini following TPA treatment. Analysis of binding data revealed a decrease in affinity and binding capacity of the high-affinity component. No significant change in the binding capacity was detected with the low-affinity component, but a great increase in its affinity was observed. This suggests that the attenuation effect by TPA on the cholecystokinin octapeptide response in rat pancreatic acini in vitro is at the receptor level.  相似文献   

12.
Ricardo Miledi has made significant contributions to our basic understanding of how synapses work. Here I discuss aspects of Miledi's research that helped to establish the requirement of presynaptic calcium for neurotransmitter release, from his earliest scientific studies to his classic experiments in the squid giant synapse.  相似文献   

13.
Yoshihara M  Littleton JT 《Neuron》2002,36(5):897-908
To characterize Ca(2+)-mediated synaptic vesicle fusion, we analyzed Drosophila synaptotagmin I mutants deficient in specific interactions mediated by its two Ca(2+) binding C2 domains. In the absence of synaptotagmin I, synchronous release is abolished and a kinetically distinct delayed asynchronous release pathway is uncovered. Synapses containing only the C2A domain of synaptotagmin partially recover synchronous fusion, but have an abolished Ca(2+) cooperativity. Mutants that disrupt Ca(2+) sensing by the C2B domain have synchronous release with normal Ca(2+) cooperativity, but with reduced release probability. Our data suggest the Ca(2+) cooperativity of neurotransmitter release is likely mediated through synaptotagmin-SNARE interactions, while phospholipid binding and oligomerization trigger rapid fusion with increased release probability. These results indicate that synaptotagmin is the major Ca(2+) sensor for evoked release and functions to trigger synchronous fusion in response to Ca(2+), while suppressing asynchronous release.  相似文献   

14.
Hypothalamic cultured neurons and astrocytes were used to investigate the cellular mechanisms underlying the oxytocin receptor-mediated downregulation through a possible involvement of protein kinase C (PKC). For this purpose, the effects of PKC activators, inhibitor and of OT on OT receptor binding activity were compared in both cultures. In neurons, phorbol-myristate-acetate (PMA), a potent PKC activator, increased the binding of an OT receptor antagonist whereas in astrocytes, a decrease was observed. Pre-treatment of the cells with bisindolylmaleimide (10(-4) M), a PKC inhibitor, prevented the PMA-induced up- and downregulation. In contrast, receptor downregulation resulting from treatment of both cells with OT (10(-9) M) was not affected by the PKC inhibitor. On the other hand, when PMA (10(-7) M) was tested along with OT (10(-9) M), a subsequent decrease in ligand binding was observed in astrocytes. In neurons, PMA attenuated the OT-induced downregulation. Structural analysis of neuron and astrocyte OT receptor mRNA by RT-PCR, subcloning and sequencing, demonstrated identical sequence to rat uterine receptor. In conclusion, these data suggest that activation of PKC has opposite effect on OT receptor binding activity in neurons and astrocytes but they do not support the involvement of PKC in the OT-induced downregulation.  相似文献   

15.
Binding of LA350, a lymphoblastoid human B cell line, by phorbol myristate acetate (PMA) plus a calcium ionophore, either ionomycin or A23187, produced unique alterations in the release of arachidonic acid (AA) from cellular phospholipids. After equilibrium labeling of cells with radioactive fatty acids, [14C]AA demonstrated a selective enhanced release from the cells in response to the binding of PMA plus calcium ionophore as compared to the release of [14C]stearic acid (STE), [3H]oleic acid (OLE) and [3H]palmitic acid (PAL). The major phospholipid sources of the released [14C]AA were shown to be phosphatidylcholine, phosphatidylethanolamine, and phosphatidylinositol. The participation of protein kinase C (PKC) in the enhanced synergistic release of [14C]AA was demonstrated by the inhibition of the release by the PKC inhibitor, staurosporine. Approximately 2-6% of the labeled AA liberated was converted to 5-hydroxyeicosatetraenoic acid by an endogenous 5-lipoxygenase. Therefore during cell activation the B cell is capable of liberating AA via a PKC-dependent mechanism, implicating AA and/or its metabolites in signal transduction.  相似文献   

16.
Cholecystokinin and leptin act synergistically to reduce body weight   总被引:1,自引:0,他引:1  
Leptin, the product of the obese gene, reduces food intake and body weight in rats and mice, whereas administration of the gut-peptide CCK reduces meal size but not body weight. In the current experiments, we report that repeated daily combination of intracerebroventricular leptin and intraperitoneal CCK results in significantly greater loss of body weight than does leptin alone. However, leptin plus CCK treatment does not synergistically reduce the size of individual 30-min sucrose meals during this period, and the effect of leptin-CCK combination on daily chow intake, while significant, is small compared with the robust effects on body weight loss. This synergistic effect on body weight loss depends on a peripheral action of CCK and a central action of leptin. These data suggest a previously unsuspected role for CCK in body weight regulation that may not depend entirely on reduction of feeding behavior and suggest a strategy for enhancing the effects of leptin in leptin-resistant obese individuals.  相似文献   

17.
18.
Human alpha-thrombin-induced elevation of cytosolic free calcium ([Ca2+]i) and dense granule release was examined in platelets preincubated with either activators or an inhibitor of protein kinase C. 12-O-Tetradecanoylphorbol 13-acetate (TPA) or two 12-deoxy analogues of TPA, when added alone to platelets, did not elevate [Ca2+]i, as monitored by quin2 fluorescence, though small amounts of dense granule release were detected. Preincubation of the platelets with either TPA or 12-deoxyphorbol 13-phenylacetate, but not the parent, 4-beta-phorbol, produced a dose-dependent inhibition of the elevation of [Ca2+]i and 5-hydroxytryptamine release induced by human alpha-thrombin. Furthermore, this phorbol ester-mediated inhibition of human alpha-thrombin-induced activation could be prevented by H7 (1-[5-isoquinolinesulphonyl]-2-methylpiperazine), the recently described inhibitor of protein kinase C. These results suggest a role for protein kinase C as a modulator of receptor-operated calcium fluxes in human platelets.  相似文献   

19.
Endothelin-stimulated [3H]-inositol phosphate formation and [3H]-arachidonic acid release were measured in cultured vascular smooth muscle cells from rabbit renal artery. Both responses were partially inhibited by pretreatment with pertussis toxin, indicating the involvement of pertussis toxin-sensitive guanine nucleotide binding regulatory proteins in the coupling processes. Pretreatment with the phorbol ester PMA inhibited endothelin-stimulated [3H]-inositol phosphate formation, but potentiated endothelin-stimulated [3H]-arachidonic acid release, suggesting that these two coupling processes occur in a parallel and independent manner in vascular smooth muscle cells.  相似文献   

20.
Calcium dynamics in the endoplasmic reticulum of dorsal root ganglion neurons of rats during Ca2+ release induced by caffeine and subsequent Ca2+ uptake were studied. Calcium release is shown to include two (a short transient and a prolonged slow) phases. We suggest that the transient phase reflects release of free Ca from the calcium store, while the slow phase reflects transition of Ca from a bound form to a free one. The process of Ca2+ uptake is characterized by exponential recovery of the calcium level in the store due to the SERCA activity. Neirofiziologiya/Neurophysiology, Vol. 38, No. 4, pp. 361–363, July–August, 2006.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号