首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Kinetic constants for the glucuronidation of hyodeoxycholic acid in man were determined using microsomal preparations of liver, kidney and small bowel. The affinity of hyodeoxycholic acid for the microsomal hepatic and extrahepatic enzymes was in the same range as previously observed for the monohydroxy bile acid lithocholic acid and about 3-14-times the affinity for the dihydroxy bile acids chenodeoxycholic, deoxycholic and ursodeoxycholic acids. The Vmax values for glucuronidation of hyodeoxycholic acid with hepatic microsomes were 10-30-times higher and with kidney microsomes 50-110-times higher than for the bile acids lacking a 6 alpha-hydroxy group. The site of glucuronidation was determined by gas chromatographic-mass spectrometric analysis of derivatives of products formed after periodate and chromic acid oxidation. Hyodeoxycholic acid glucuronides synthesized with microsomal preparations from the three organs were all found to be conjugated at the 6 alpha position. This has previously been shown to be the site of glucuronidation of endogenous hyodeoxycholic acid glucuronide excreted in urine.  相似文献   

2.
Microsomal preparations from livers of Sprague-Dawley rats catalyze the glucuronidation of 3 alpha-hydroxy-5 beta-H (3 alpha, 5 beta) short-chain bile acids (C20-C23), predominantly at the hydroxyl group, while the glucuronidation of 3 beta, 5 beta short-chain bile acids occurs exclusively at the carboxyl group. A similar pattern of conjugation was also observed in Wistar rats having normal levels of 3-hydroxysteroid UDP-glucuronosyltransferase. Significant reductions of formation rates for hydroxyl-linked, but not carboxyl-linked, short-chain bile acid glucuronides were observed in hepatic microsomes from Wistar rats with low 3-hydroxysteroid UDP-glucuronosyltransferase activity. 3-Hydroxysteroid UDP-glucuronosyltransferase, purified to homogeneity from Sprague-Dawley liver microsomes, catalyzed the 3-O-glucuronidation of 3 alpha, 5 beta C20-23 bile acids, as well as of lithocholic and isolithocholic acids (C24). The apparent Michaelis constants (KM) for short-chain bile acids were similar to the value obtained for androsterone. 3 alpha, 5 beta-C20 and 3 beta, 5 beta-C20 competitively inhibited glucuronidation of androsterone by the purified 3-hydroxysteroid UDP-glucuronosyltransferase. Purified 17 beta-hydroxysteroid and p-nitrophenol UDP-glucuronosyltransferases did not catalyze the glucuronidation of bile acids. In addition, none of the purified transferases catalyzed the formation of carboxyl-linked bile acid glucuronides. The results show that 3-hydroxysteroid UDP-glucuronosyltransferase, an enzyme specific for 3-hydroxyl groups of androgenic steroids and some conventional bile acids, also catalyzes the glucuronidation of 3 alpha-hydroxyl (but not carboxyl) groups of 3 alpha, 5 beta short-chain bile acids.  相似文献   

3.
Biliary excretion and biotransformation of tracer doses of [14C]lithocholic acid and its sulfate and glucuronide intravenously injected into bile-drainaged rats were compared. Biliary excretion efficiency was in the order of unconjugate sulfate glucuronide and all conjugates were completely excreted into bile within 60 min after injection. Only tracer doses of radioactivity were found in the liver and urine. About 90% of radiolabeled bile acids in bile were conjugated with taurine immediately after injection of lithocholic acid, whereas lithocholic acid-glucuronide was only partly conjugated with taurine all the time (less than 6%) and excreted into bile mainly as native compound. In the first 10 min, 66% of lithocholic acid-sulfate was conjugated with taurine and it gradually proceeded up to 87%. Hydroxylation at C-6 and C-7 positions of lithocholic acid proceeded time-dependently up to 45%. No hydroxylation was observed with lithocholic acid-sulfate or glucuronide. Differences of biliary excretion rate of these conjugates may be one of the reasons for the delayed decrease of sulfated and glucuronidated bile acids in serum after bile drainage to patients with obstructive jaundice of during the recovery of acute hepatitis than non-esterified bile acids.  相似文献   

4.
Glucuronide conjugates represent one of the major types of naturally occurring phase 2 metabolites of xenobiotics and endobiotics. The process underlying their formation, glucuronidation, is normally considered detoxifying, because glucuronides usually possess less intrinsic biological or chemical activity than their parent aglycones and they are rapid excreted. However, a number of glucuronide conjugates are known that are active and may contribute to pharmacological activities or toxicities associated with their parent compounds. These include two classes of glucuronides with electrophilic chemical reactivity (N-O-glucuronides of hydroxamic acids and acyl glucuronides of carboxylic acids) and several types of glucuronides that impart biological effects through non-covalent interactions (morphine 6-O-glucuronide, retinoid glucuronides, and D-ring glucuronides of estrogens). Glucuronides may thus contribute to clinically significant effects, including environmental arylamine-induced carcinogenesis, drug hypersensitivity and other toxicities associated with carboxylic acid drugs, morphine analgesia, and cholestasis from estrogens. This review summarizes the rat and human UDP-glucuronosyltransferases that may be involved in the formation of bioactive glucuronides, including their substrate- and tissue-specificity and genetic and environmental influences on their activity. This knowledge may be useful for enhancing the therapeutic efficacy and minimizing the risk of adverse effects associated with xenobiotics that undergo bioactivating glucuronidation reactions.  相似文献   

5.
Biliary secretion of bile acid glucuronides was studied in control rats and in rats with a congenital defect in hepatobiliary transport of organic anions (GY rats). In control animals, hepatobiliary transport of [3H]lithocholic acid 3-O-glucuronide and [3H]cholic acid 3-O-glucuronide was efficient (greater than 95% in 1 h) and comparable to that of [14C]taurocholic acid. Secretion of both glucuronides was impaired in GY rats (24% and 71% at 1 h), whereas that of taurocholate was similar to control values. However, recovery of the glucuronides in bile was nearly complete within 24 h; virtually no radioactivity was found in urine. In control rats, biliary secretion of lithocholic acid 3-O-glucuronide, but not that of cholic acid 3-O-glucuronide or taurocholate, could be delayed by simultaneous infusion of dibromosulphthalein. In mutant rats, dibromosulphthalein infusion was also able to inhibit secretion of cholic acid 3-O-glucuronide. [3H]Hydroxyetianic acid, a C20 short-chain bile acid, was secreted by control rats as a mixture of 20% carboxyl-linked and 80% hydroxyl-linked (3-O-)glucuronide; secretion was very efficient (99% in 1 h). In GY rats, secretion was drastically impaired (16% at 1 h and 74% over a 24-h period). Initially, the mutant secreted more carboxyl- than hydroxyl-linked glucuronide, but the ratio reached that of control animals after 24 h. The rates of formation of both types of hydroxyetianic acid glucuronide by hepatic microsomes from mutant rats were similar or even slightly higher than those of control microsomes. These findings indicate that bile acid 3-O-glucuronides, but probably not carboxyl-linked glucuronides, are secreted into bile by a transport system shared with organic anions such as conjugated bilirubin and dibromosulphthalein, but different from that for amino acid-conjugated bile acids.  相似文献   

6.
The glucuronidation of 6-hydroxylated bile acids by rat liver microsomes was studied in vitro; for comparison, several major bile acids lacking a hydroxyl group in position 6 were also investigated. The highest reaction rates were found for lithocholic and deoxycholic acid (10.2 +/- 0.2 and 7.3 +/- 1.4 nmol/mg.min, respectively); our results for these substrates agree well with published values. Glucuronidation rates for the 6 beta-hydroxylated bile acids 3 alpha, 6 beta-dihydroxy-5 beta-cholanoate (murideoxycholate) and 3 alpha, 6 beta, 7 beta-trihydroxy-5 beta-cholanoate (beta-muricholate) were only slightly lower (3.7 +/- 0.3 and 3.6 +/- 0.3 nmol/mg.min). 6 alpha-Hydroxylated bile acids were glucuronidated at rates that were lower than those for their 6 beta-hydroxy counterparts. Rigorous product identification by high-field proton NMR of methyl/acetyl derivatives revealed that while bile acids lacking a 6-hydroxyl group gave rise exclusively to the typical 3-O-glucuronide, the presence of a hydroxyl group in position 6 led to the formation, in ratios depending on the substrate, of three types of conjugate: the 3-O-, the 6-O-, and the carboxyl-linked (acyl-) glucurnide. The latter is the first example of an acyl glucuronide of a bile acid of conventional (C24) size.  相似文献   

7.
A rapid and sensitive procedure is described for the assay of rat liver microsomal UDP-glucuronosyltransferase activity toward the bile acids chenodeoxycholic acid, deoxycholic acid, ursodeoxycholic acid, and lithocholic acid using the radioactively labeled bile acids as substrates. The unreacted bile acids were separated from the bile acid glucuronides formed as products of the enzymatic reactions by extraction with chloroform, leaving the bile acid glucuronides in the aqueous phases. The bile acid glucuronides were characterized by their mobilities in thin-layer chromatography and identified by their sensitivity to hydrolysis with β-glucuronidase and inhibition of hydrolysis by the specific β-glucuronidase inhibitor d-saccharic acid-1,4-lactone. Enzyme activities were optimal at pH 6.8 and were maximally stimulated about fourfold by the addition of the nonionic detergent Brij 58 at a concentration of 0.3 mg/mg microsomal protein. The kinetic parameters for the various bile acids as substrates were determined.  相似文献   

8.
It has been shown that lithocholic glucuronide is more cholestatic than lithocholic acid (LCA), as well as its taurine and glycine conjugates. Furthermore, LCA hydroxylation is thought to be a major detoxifying mechanism. Therefore, the role of LCA glucuronidation and hydroxylation was investigated during the development of LCA-induced cholestasis and recovery from it. Male rats received a bolus intravenous injection of [14C]LCA (12 mumol/100 g body weight) and bile samples were collected every 30 min for 5 h. Bile flow (BF) was reduced immediately after LCA injection, dropping to 40% of basal BF at 60 min. It then started to increase, reaching normal bile flow values at 3.5 h. Morphologically, canalicular lesions were dominant at 60 min and virtually absent at 2 h. At 60 min (maximal cholestasis), 30% of the LCA injected was secreted in bile, 20% was found in plasma while the other 50% was recovered in the liver and distributed mainly in plasma membranes, microsomes and cytosol. At the end of the experiment (normal BF), 20% of the LCA injected was still in the liver but was present mainly in the cytosol. In bile, within 30 min after injection, 46% of the LCA secreted was lithocholic glucuronide, 24% was conjugated with taurine and glycine, and 21% was in the form of hydroxylated bile acids. During the recovery period, lithocholic glucuronide secretion decreased to 18-25%. Taurine and glycine conjugate secretion increased to a maximum of 43% at 60 min, after which it was reduced to 21-28%. In contrast, hydroxylated metabolites were elevated during the recovery periods, reaching a maximum (45%) at 120 min and remaining constant thereafter. These results suggest that: (i) LCA binding to plasma membranes and microsomes appeared to correlate with the development of cholestasis; (ii) LCA glucuronidation may initiate and/or contribute to LCA-induced cholestasis; and (iii) hydroxylation predominates during recovery from cholestasis.  相似文献   

9.
The glucuronic acid adducts of 1-naphthol, 2-naphthol and 4-methylumbelliferone activate microsomal UDP-glucuronyltransferase (EC 2.4.1.17) when the enzyme is assayed with p-nitrophenol as aglycone. Phenyl glucuronide and oestriol 3beta-glucuronide also activate UDP-glucuronyltransferase. but to a lesser extent. Activation by glucuronides is not dependent on metal ions, but is blocked by prior treatment of microsomal fractions with p-chloromercuribenzoate. The kinetic mechanism of activation is concluded to be an increase in the affinity of the enzyme for UDP-glucuronic acid. Activation by 1-naphthyl glucuronide, at high concentrations of p-nitrophenol, is not affected by 1-naphthol. Apparently 1-naphthyl glucuronide activates the preparation by binding at a site that is separate from the site of glucuronidation of 1-naphthol. Further evidence for the existence of distinct effector sites for the glucuronides was provided by the finding that activation by glucuronides is inhibited competitively by aglycone glucosides. These glucosides do not inhibit the rate of glucuronidation of p-nitrophenol in the absence of glucuronide adducts, nor do they alter the rate of glucuronidation of 1-naphthol. When UDP-glucuronyltransferase is assayed with 1-naphthol as aglycone it is activated by p-nitrophenyl glucuronide, 4-methyl-umbelliferyl glucuronide and under appropriate conditions by its own glucuronide. These activations are similarly inhibited by aglycone glucosides. p-Nitrophenyl glucuronide also stimulates the rate of glucuronidation of o-aminophenol, o-aminobenzoate and bilirubin.  相似文献   

10.
Glucuronidation of a number of carboxyl-containing drugs generates reactive acyl glucuronide metabolites. These electrophilic species alkylate cell proteins and may be implicated in the pathogenesis of a number of toxic syndromes seen in patients receiving the parent aglycones. Whether acyl glucuronides also attack nuclear DNA is unknown, although the acyl glucuronide formed from clofibric acid was recently found to decrease the transfection efficiency of phage DNA and generate strand breaks in plasmid DNA in vitro. To determine if such a DNA damage occurs within a cellular environment, the comet assay (i.e. single-cell gel electrophoresis) was used to detect DNA lesions in the nuclear genome of isolated mouse hepatocytes cultured with clofibric acid. Overnight exposure to 50 microM and higher concentrations of clofibric acid produced concentration-dependent increases in the comet areas of hepatocyte nuclei, with 1 mM clofibrate producing a 3.6-fold elevation over controls. These effects closely coincided with culture medium concentrations of the glucuronide metabolite formed from clofibric acid, 1-O-beta-clofibryl glucuronide. Consistent with a role for glucuronidation in the DNA damage observed, the glucuronidation inhibitor borneol diminished glucuronide formation from 100 microM clofibrate by 98% and returned comet areas to baseline levels. Collectively, these results suggest that the acyl glucuronide formed from clofibric acid is capable of migrating from its site of formation within the endoplasmic reticulum to generate strand nicks in nuclear DNA.  相似文献   

11.
Binding sites of bile acids on human serum albumin were studied using various probes: dansylsarcosine (site I probe), 7-anilinocoumarin-4-acetic acid (ACAA, site II probe), 5-dimethylaminonaphthelene-1-sulfonamide (DNSA, site III probe), cis-parinaric acid (probe for fatty acid binding site) and bilirubin. Bile acids competitively inhibited the binding of dansylsarcosine to human serum album whereas bile acids enhanced the binding of ACAA, DNSA, cis-parinaric acid and bilirubin. Considering the concentrations of bile acids required to inhibit the binding of dansylsarcosine to human serum albumin, the secondary binding site of bile acids may correspond to site I. Dissociation constants (Kd) of the primary binding sites of lithocholic and chenodeoxycholic acid to human serum albumin were approximately 0.2 and 4 μM, respectively, which was measured by equilibrium dialysis at 37° C. All the bile acids and their sulfates and glucuronides inhibited the binding of chenodeoxycholic acid to human serum albumin. Lithocholic and chenodeoxycholic acid and their sulfates and glucuronides exhibited more inhibition than cholic acid and its conjugates. In conclusion, bile acids may bind to a novel binding site on human serum albumin.  相似文献   

12.
Milligram amounts of [3 beta-3H]lithocholic (3 alpha-hydroxy-5 beta-cholanoic) acid were administered by intravenous infusion to rats prepared with a biliary fistula. Analysis of sequential bile samples by thin-layer chromatography (TLC) demonstrated that lithocholic acid glucuronide was present in bile throughout the course of the experiments and that its secretion rate paralleled that of total isotope secretion. Initial confirmation of the identity of this metabolite was obtained by the recovery of labeled lithocholic acid after beta-glucuronidase hydrolysis of bile samples. For detailed analysis of biliary metabolites of [3H]lithocholic acid, pooled bile samples from infused rats were subjected to reversed-phase chromatography and four major labeled peaks were isolated. After complete deconjugation, the two major compounds in the combined first two peaks were identified as murideoxycholic (3 alpha, 6 beta-dihydroxy-5 beta-cholanoic) and beta-muricholic (3 alpha, 6 beta, 7 beta-trihydroxy-5 beta-cholanoic) acids and the third peak was identified as taurolithocholic acid. The major component of the fourth peak, after isolation, derivatization (to the methyl ester acetate), and purification by high pressure liquid chromatography (HPLC), was positively identified by proton nuclear magnetic resonance as lithocholic acid 3 alpha-O-(beta-D-glucuronide). These studies have shown, for the first time, that lithocholic acid glucuronide is a product of in vivo hepatic metabolism of lithocholic acid in the rat.  相似文献   

13.
The ability of rat liver microsomes to catalyze UDP-glucuronic acid-dependent glucuronidation of monohydroxy-bile acids was examined. The following bile acids were used as substrates, each as the 3 alpha and 3 beta epimer: 3-hydroxy-5 beta-cholanoic acid (C24), 3-hydroxy-5 beta-norcholanoic acid (C23), 3-hydroxy-5 beta-bisnorcholanoic acid (C22), 3-hydroxy-5 beta-pregnan-21-oic acid (C21), and 3-hydroxy-5 beta-androstane-17 beta-carboxylic acid (C20). The corresponding glucuronides were chemically synthesized to serve as standards and were characterized by thin-layer and gas-liquid chromatography as well as by nuclear magnetic resonance. Enzymatic glucuronidation reactions were optimized with respect to pH for each product formed and the kinetic parameters for each reaction were measured. Analytical techniques necessary to separate products from unreacted substrates and to identify them included thin-layer chromatography, gas-liquid chromatography, and nuclear magnetic resonance. It was found that the 3 alpha epimers of the five bile acids listed above enzymatically formed 3-O-glucuronides, C24 being the best substrate, followed by C21 and C20; C22 and C23 gave rise to only small amounts of this product. The 3 beta epimers of all bile acids tested were poorer substrates, although by a factor that varied widely. In addition to the expected hydroxyl-linked glucuronide, three of the 3 alpha-bile acids (C23, C22, and C20) and at least one 3 beta-bile acid (C20), gave rise to a novel metabolite in which the 1-OH of glucuronic acid was esterified with the steroidal carboxyl group (carboxyl-linked glucuronide).  相似文献   

14.
The aim of this study was to investigate the effect of various bile acids on hepatic type I 11β-hydroxysteroid dehydrogenase (11β-HSD1) activity in vitro. The rat liver microsome fraction was prepared and 11β-HSD1 activity was assayed using cortisol and corticosterone as substrates for the enzyme reaction. The substrate and various concentrations of bile acids were added to the assay mixture. After incubation, the products were extracted and analyzed using high-performance liquid chromatography. All bile acids tested except deoxycholic acid and 7-keto bile acids inhibited the 11β-HSD1 enzyme reaction to some degree. Ursodeoxycholic acid inhibited the activity less than cholic, chenodeoxycholic, and lithocholic acids. Deoxycholic acid and 7-keto bile acids did not inhibit, but enhanced the enzyme activity. Inhibitions of dehydrogenation by corticosterone were weaker than those by cortisol. Kinetic analysis revealed that the inhibition of 11β-HSD1 was competitive. The inhibition of 11β-HSD1 by bile acids depended on the three-dimensional structural difference in the steroid rings and the presence of the 7α-hydroxy molecule of the bile acids was important for the inhibition of rat hepatic 11β-HSD1 enzyme activity. These results suggest that bile acid administration might modulate 11β-HSD1 enzyme activity.  相似文献   

15.
Many nonsteroidal anti-inflammatory drugs (NSAIDs) which have antiproliferative activity in colon cancer cells are carboxylate compounds forming acyl glucuronide metabolites. Acyl glucuronides are potentially reactive, able to hydrolyse, rearrange into isomers, and covalently modify proteins under physiological conditions. This study investigated whether the acyl glucuronides (and isomers) of the carboxylate NSAIDs diflunisal, zomepirac and diclofenac had antiproliferative activity on human adenocarcinoma HT-29 cells in culture. Included as controls were the carboxylate NSAIDs themselves, the non-carboxylate NSAID piroxicam, and the carboxylate non-NSAID valproate, as well as its acyl glucuronide and isomers. The compounds were incubated at 1-3000 microM with HT-29 cells for 24 hr, with [3H]-thymidine added for an additional 2 hr incubation. IC50 values were calculated from the concentration-inhibition response curves for thymidine uptake. The four NSAIDs inhibited thymidine uptake, with IC50 values about 200-500 microM. All of the NSAID acyl glucuronides (and isomers, tested in the case of diflunisal) showed antiproliferative activity broadly comparable to the parent drugs. This activity may stem from direct uptake of intact glucuronide/isomers followed by covalent modification of proteins critical in the cell replication process. However, hydrolysis during incubation and cellular uptake of liberated parent NSAID will play a role. In HT-29 cells incubated with zomepirac, covalently modified proteins in cytosol were detected by immunoblotting with a zomepirac antibody, suggesting that HT-29 cells do have the capacity to glucuronidate zomepirac. The anti-epileptic drug valproate had no effect on inhibition of thymidine uptake, though, surprisingly, its acyl glucuronide and isomers were active. The reasons for this are unclear at present.  相似文献   

16.
Binding of bile acids by glutathione S-transferases from rat liver   总被引:4,自引:0,他引:4  
Binding of bile acids and their sulfates and glucuronides by purified GSH S-transferases from rat liver was studied by 1-anilino-8-naphthalenesulfonate fluorescence inhibition, flow dialysis, and equilibrium dialysis. In addition, corticosterone and sulfobromophthalein (BSP) binding were studied by equilibrium and flow dialysis. Transferases YaYa and YaYc had comparable affinity for lithocholic (Kd approximately 0.2 microM), glycochenodeoxycholic (Kd approximately to 60 microM), and cholic acid (Kd approximately equal 60 microM), and BSP (Kd approximately 0.09 microM). YaYc had one and YaYa had two high affinity binding sites for these ligands. Transferases containing the Yb subunit had two binding sites for these bile acids, although binding affinity for lithocholic acid (Kd approximately 4 microM) was lower than that of transferases with Ya subunit, and binding affinities for the other bile acids were comparable to the Ya family. Sulfated bile acids were bound with higher affinity and glucuronidated bile acids with lower affinity by YaYa and YaYc than the respective parent bile acids. In the presence of GSH, binding of lithocholate by YaYc was unchanged and binding by YbYb' was inhibited. Conversely, GSH inhibited the binding of cholic acid by YaYc but had less effect on binding by YbYb'. Cholic acid did not inhibit the binding of lithocholic acid by YaYa.  相似文献   

17.
Acyl glucuronides of nonsteroidal anti-inflammatory drugs having a chiral center are known to be chemically very active and form covalently bound adducts with proteins, such as human serum albumin, which may be the cause of hypersensitive reactions. Hepatic acyl glucuronosyltransferase catalyzes the transformation of alpha-aryl propionates into these diastereoisomeric acyl glucuronides, and, hence, its activity needs to be characterized. From this point of view, we developed a rapid, accurate and reproducible analytical method for the separation and determination of diastereoisomeric glucuronides of flurbiprofen, one of the nonsteroidal anti-inflammatory drugs, in the incubation mixture of the hepatic microsomal preparation by high-performance liquid chromatography with a simple column-switching technique for deproteinization. The glucuronides were separated on a TSKgel ODS-80Ts column with 20 mM ammonium acetate buffer (pH 5.6)-ethanol-acetonitrile as the mobile phase and monitored with a UV detector at 246 nm. The detection limit of the proposed method was 600 fmol/injection at a signal-to-noise ratio of 10. The validation results indicated that this method would be very useful for the determination of diastereomeric acyl glucuronides formed from flurbiprofen in an incubation mixture.  相似文献   

18.
Kinetics of sulfation in the rat in vivo and in the perfused rat liver   总被引:1,自引:0,他引:1  
Sulfation of phenols and similar low-molecular-weight substrates in the rat in vivo is a rather complex process. Besides enzyme kinetic parameters, cosubstrate availability (indirectly measured by serum sulfate concentration) and competition with glucuronidation also play a role. For some substrates extensive extrahepatic sulfation occurs, accounting for more than 50% of the total-body sulfation capacity. However, the hepatic contribution may be under-estimated when drugs are administered into the hepatic portal vein, because saturation of hepatic metabolism may occur under those conditions. Inside the liver, sulfation is located primarily in zone 1, the periportal area. This can be shown in the single-pass perfused rat liver by perfusion in either the normal or retrograde flow direction. In the rat sulfate conjugates are eliminated preferentially in urine, whereas glucuronides are excreted to a high extent in bile. Therefore, it is important to collect both bile and urine in the characterization of pharmacokinetics of conjugation in vivo. Selective inhibition of sulfation by pentachlorophenol and 2,6-dichloro-4-nitrophenol facilitates studies of the role of sulfation in elimination of its substrates, and the competition between sulfation and glucuronidation for the same substrate.  相似文献   

19.
Glucuronidation is a crucial pathway of metabolism and excretion of endogenous compounds and xenobiotics. UDP-glucuronyltransferases, UGT, catalyse transformations of bilirubine, steroids and thyroid hormones, bile acids as well as exogenous compounds, including drugs, carcinogens, environmental pollutants and nutrient components. From therapeutic point of view, the participation of UGTs in drug metabolism is of particular significance. Polymorphism of UGT1A and UGT2B genes resulted in various susceptibility of substrates to conjugation with glucuronic acid. Deactivation of xenobiotics and the following excretion of hydrophilic conjugates is a common task of glucuronidation, which should lead to detoxification. However, a lot of glucuronides were known, which expressed the comparable or even higher reactivity than that of the native compound. There are, among others, acyl glucuronides of carboxylic acids, morphine 6-O-glucuronide or retinoid glucuronides. They are able to bind cellular macromolecules with low or high strength and, as a consequence, their toxicity is saved or even increased, respectively.  相似文献   

20.
The glucuronidation of steroids is a major process necessary for their elimination in the bile and urine. In general, steroid glucuronides are biologically less reactive than their parent steroids. However, in some cases often associated with disease and steroid therapy, more reactive or toxic glucuronides may be formed. The concentrations of specific steroid glucuronides in the blood may also indicate hormonal imbalances and may funnction as diagnostic markers of genetic defects in steroid synthesis and metabolism. In this review, the forms of UDP glucuronosyltransferase involved in steroid glucuronidation are described in terms of their specificities, functional domains and regulation. The available evidence suggests that steroid glucuronidation is mainly carried out by members of the UGT2B subfamily which are encoded by genes containing 6 exons. Members of this subfamily exhibit a regioselectively in their glucuronidation of steroids that is mediated by domains in the amino-terminal half on the protein encoded by exons 1 and 2. Although much of this review will describe studies in the rat, preliminary evidence indicates that a similar situation may exist in humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号