首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The interaction of hydroxylamine (HA) with Arthromyces ramosus peroxidase (ARP) was investigated by kinetic, spectroscopic, and x-ray crystallographic techniques. HA inhibited the reaction of native ARP with H(2)O(2) in a competitive manner. Electron absorption and resonance Raman spectroscopic studies indicated that pentacoordinate high spin species of native ARP are converted to hexacoordinate low spin species upon the addition of HA, strongly suggesting the occurrence of a direct interaction of HA with ARP heme iron. Kinetic analysis exhibited that the apparent dissociation constant is 6.2 mm at pH 7.0 and that only one HA molecule likely binds to the vicinity of the heme. pH dependence of HA binding suggested that the nitrogen atom of HA could be involved in the interaction with the heme iron. X-ray crystallographic analysis of ARP in complex with HA at 2.0 A resolution revealed that the electron density ascribed to HA is located in the distal pocket between the heme iron and the distal His(56). HA seems to directly interact with the heme iron but is too far away to interact with Arg(52). In HA, it is likely that the nitrogen atom is coordinated to the heme iron and that hydroxyl group is hydrogen bonded to the distal His(56).  相似文献   

3.
The X-ray crystal structure of the complex of salicylhydroxamic acid (SHA) with Arthromyces ramosus peroxidase (ARP) has been determined at 1.9 A resolution. The position of SHA in the active site of ARP is similar to that of the complex of benzhydroxamic acid (BHA) with ARP [Itakura, H., et al. (1997) FEBS Lett. 412, 107-110]. The aromatic ring of SHA binds to a hydrophobic region at the opening of the distal pocket, and the hydroxamic acid moiety forms hydrogen bonds with the His56, Arg52, and Pro154 residues but is not asscoiated with the heme iron. X-ray analyses of ARP-resorcinol and ARP-p-cresol complexes failed to identify the aromatic donor molecules, most likely due to the very low affinities of these aromatic donors for ARP. Therefore, we examined the locations of these and other aromatic donors on ARP by the molecular dynamics method and found that the benzene rings are trapped similarly by hydrophobic interactions with the Ala92, Pro156, Leu192, and Phe230 residues at the entrance of the heme pocket, but the dihedral angles between the benzene rings and the heme plane vary from donor to donor. The distances between the heme iron and protons of SHA and resorcinol are similar to those obtained by NMR relaxation. Although SHA and BHA are usually considered potent inhibitors for peroxidase, they were found to reduce compound I and compound II of ARP and horseradish peroxidase C in the same manner as p-cresol and resorcinol. The aforementioned spatial relationships of these aromatic donors to the heme iron in ARP are discussed with respect to the quantum chemical mechanism of electron transfer in peroxidase reactions.  相似文献   

4.
5.
A study was carried out to obtain more insight into the parameters that determine the secretion of heterologous proteins from filamentous fungi. A strategy was chosen in which the mRNA levels and protein levels of a number of heterologous genes of different origins were compared. All genes were under control of the Aspergillus awamori 1,4-beta-endoxylanase A (exlA) expression signals and were integrated in a single copy at the A. awamori pyrG locus. A Northern (RNA) analysis showed that large differences occurred in the steady-state mRNA levels obtained with the various genes; those levels varied from high values for genes of fungal origin (A. awamori 1,4-beta-endoxylanase A, Aspergillus niger glucoamylase, and Thermomyces lanuginosa lipase) to low values for genes of nonfungal origin (human interleukin 6 and Cyamopsis tetragonoloba [guar] alpha-galactosidase). With the C. tetragonoloba alpha-galactosidase wild-type gene full-length mRNA was even undetectable. Surprisingly, small amounts of full-length mRNA could be detected when a C. tetragonoloba alpha-galactosidase gene with an optimized Saccharomyces cerevisiae codon preference was expressed. In all cases except human interleukin 6, the protein levels corresponded to the amounts expected on basis of the mRNA levels. For human interleukin 6, very low protein levels were observed, whereas relatively high steady-state mRNA levels were obtained. Our data suggest that intracellular protein degradation is the most likely explanation for the low levels of secreted human interleukin 6.  相似文献   

6.
The thermodynamics of the one-electron reduction of the ferric heme in free and cyanide-bound Arthromyces ramosus peroxidase (ARP), a class II plant peroxidase, were determined through spectro-electrochemical experiments. The data were compared with those for class III horseradish peroxidase C (HRP) and its cyanide adduct, and were interpreted in terms of ligand binding features, electrostatic effects and solvent accessible surface area of the heme group and of catalytically relevant residues in the heme distal site. The values for free and cyanide-bound ARP (−0.183 and −0.390 V, respectively, at 25 °C and pH 7) are higher than those for HRP and HRP-CN. ARP features an enthalpic stabilization of the ferrous state and a remarkably negative reduction entropy, which are both unprecedented for heme peroxidases. Once the compensatory contributions of solvent reorganization are partitioned from the measured reduction enthalpy, the resulting protein-based value for ARP turns out to be less positive than that for HRP by +10 kJ mol−1. The smaller stabilization of the oxidized heme in ARP most probably results from the less pronounced anionic character of the proximal histidine, and the decreased polarity in the heme distal site as compared with HRP, as indicated by the X-ray structures. The surprisingly negative value for ARP is the result of peculiar reduction-induced solvent reorganization effects.  相似文献   

7.
M Tanaka  K Ishimori  I Morishima 《Biochemistry》1999,38(32):10463-10473
To enhance the oxidation activity for luminol in horseradish peroxidase (HRP), we have prepared three HRP mutants by mimicking a possible binding site for luminol in Arthromyces ramosus peroxidase (ARP) which shows 500-fold higher oxidation activity for luminol than native HRP. Spectroscopic studies by (1)H NMR revealed that the chemical shifts of 7-propionate and 8-methyl protons of the heme in cyanide-ligated ARP were deviated upon addition of luminol (4 mM), suggesting that the charged residues, Lys49 and Glu190, which are located near the 7-propionate and 8-methyl groups of the heme, are involved in the specific binding to luminol. The positively charged Lys and negatively charged Glu were introduced into the corresponding positions of Ser35 (S35K) and Gln176 (Q176E) in HRP, respectively, to build the putative binding site for luminol. A double mutant, S35K/Q176E, in which both Ser35 and Gln176 were replaced, was also prepared. Addition of luminol to the HRP mutants induced more pronounced effects on the resonances from the heme substituents and heme environmental residues in the (1)H NMR spectra than that to the wild-type enzyme, indicating that the mutations in this study induced interactions with luminol in the vicinity of the heme. The catalytic efficiencies (V(max)/K(m)) for luminol oxidation of the S35K and S35K/Q176E mutants were 1.5- and 2-fold improved, whereas that of the Q176E mutant was slightly depressed. The increase in luminol activity of the S35K and S35K/Q176E mutants was rather small but significant, suggesting that the electrostatic interactions between the positive charge of Lys35 and the negative charge of luminol can contribute to the effective binding for the luminol oxidation. On the other hand, the negatively charged residue would not be so crucial for the luminol oxidation. The absence of drastic improvement in the luminol activity suggests that introduction of the charged residues into the heme vicinity is not enough to enhance the oxidation activity for luminol as observed for ARP.  相似文献   

8.
9.
We previously reported that the hemes of horseradish peroxidase (HRP) and Arthromyces ramosus peroxidase (ARP) undergo vinyl and meso-carbon modifications when the enzymes oxidize chloride ion. Here we demonstrate for ARP that, although both modifications exhibit the same pH profile with an optimum at approximately pH 4.0, monochlorodimedone suppresses the vinyl but not meso-carbon modifications. Furthermore, meso-chlorination occurs when ARP reacts with exogenous HOCl, implicating an Fe(III)-O-Cl intermediate in the reaction. These results establish that (a) the chloro species involved in meso-modification differs from that which reacts with the vinyl groups, (b) equilibration of the vinyl modifying species (HOCl) into the medium occurs more rapidly than vinyl group modification, and (c) the oxidation of chloride by ARP produces two reactive species: HOCl, which adds to the heme vinyl but not meso-positions, and a distinct second species that adds to the meso-carbon.  相似文献   

10.
The development of a coimmobilized mixed culture sys tem of aerobic and facultative anaerobic microorganisms in Ca-alginate gel beads and the production of useful metabolites by the system were investigated. A coimmobilized mixed culture system of Aspergillus awamori (obligate aerobe) and Saccharomyces cerevisiae (facultative anaerobe) in Ca-alginate gel beads was used as a model system, and ethanol production from starch by the system was used as a model production. Mold Asp. awamori is an amylolytic microorganism while yeast S. cerevisiae is an ethanol producer. The two microorganisms grew competitively in the oxygen-rich surface area of the gel beads because they had similar oxygen demands in aerobic culture conditions. Neither microorganism exhibited "habitat segregation" in the gel beads and leaked yeast cells grew aerobically without ethanol production in the broth. Ethanol productivity was low under these conditions.A more desirable coimmobilized mixed culture system of Asp. awamori and S. cerevisiae was established by adding Vantocil IB (a biocidal compound) to the production medium. The antimicrobial activity of Vantocil IB was more effective with S. cerevisiae than with Asp. awamori, so that a dense mycelial layer of Asp. awamori formed in the surface of the gel beads While S. cerevisiae grew densely in the more inner areas of the gel beads. Also, yeast cell leakace was repressed and ethanol productivity was improved. The system with Vantocil IB produced ethanol of 4.5 and 12.3 g/L from 16 and 40 g/L starch, respectively. A continuous culture using this system with Vantocil IB was also carried out, and a stable steady state could be maintained for six days without leakage of yeast cells and contamination. The selection of a factor suitable for producing "habitat segregation" enabled the development of a coimmobilized mixed culture system of an aerobe and a facultative anaerobe. In this study, total habitat segregation was used to denote a tendency to exhibit denser growth in different parts of one gel bead.  相似文献   

11.
Arthromyces ramosus, a novel hyphomycete, extracellularly produces a single species of a heme-containing peroxidase. The A. ramosus peroxidase, ARP, shows a broad specificity for hydrogen donors and high catalytic efficiency as does the well-known peroxidase from horseradish roots (HRP). However, it also exhibits unique catalytic properties. These features permit a wide range of applications for ARP, including high-sensitivity chemiluminescent determination of biological materials, protein cross-linking, and dye-transfer inhibition during laundering. The primary and tertiary structures of ARP are very similar to those of the class (II) lignin and manganese peroxidases of the plant peroxidase superfamily. Mechanistic studies of the ARP-catalyzed reaction revealed that it also proceeds with the classical peroxidase cycle; the native ferric ARP undergoes two-electron oxidation by hydrogen peroxide to yield compound (I), followed by two successive one-electron reductions by the hydrogen donor. X-ray crystallography, site-directed mutagenesis, and spectral analyses of ARP have afforded detailed information on the molecular mechanism of the ARP catalysis, and revealed the roles of active site amino acid residues and dynamic features of coordination as well as spin states of heme iron during catalysis.  相似文献   

12.
13.
A heterologous gene expression system was created in a domestic Aspergillus awamori Co-6804 strain, which is a producer of the glucoamylase gene. Vector pGa was prepared using promoter and terminator areas of the glucoamylase gene, and A. niger phytase, Trichoderma reesei endoglucanase, and Penicillium canescens xylanase genes were then cloned into pGa vector. Separation of enzyme samples using FPLC showed the amount of the recombinant proteins to be within the 0.6-14% range of total protein.  相似文献   

14.
15.
Two heterologous phytases from Aspergillus awamori and Aspergillus fumigatus obtained from submerged cultures of genetically modified fungal strains in addition to two commercially available phytase preparations (Allzyme and Natuphos phytases) were purified to homogeneity using a combination of ultrafiltration, gel filtration and ion exchange. The purified preparations were used in subsequent characterisation studies, in which Western Immunoblot analysis, pH and temperature optima, thermal stability and substrate specificity were assessed. A. fumigatus phyA phytase expressed in A. awamori exhibited activity over a broad pH range together with an increased temperature optimum, and slightly enhanced thermal stability compared to the other phytases tested, and is thus a promising candidate for animal feed applications. This particular phytase retains activity over a wide range of pH values characteristic of the digestive tract and could conceivably be more suited to the increasingly higher feed processing temperatures being utilised today, than the corresponding phytases from Aspergillus niger.  相似文献   

16.
The production of exo-polygalacturonase (exo-PG) and endo-PG by Aspergillus awamori grown on wheat in solid-state fermentation was studied. Endo- and exo-PG activities were detected after 24 h of inoculation. Glucose released from starch hydrolysis acted as a catabolite repressor for the exo-PG enzyme. In contrast, endo-PG production was not affected by glucose repression. When milled grains were used, the particle-size distribution and the chemical composition of the medium influenced the rate of micro-organism growth and therefore the trend followed by endo- and exo-PG production. However, these two parameters did not affect the maximum production of exo-PG and endo-PG. For one of the milled samples, three different moisture contents were used (50, 55, 60%). Moisture contents of 60% provide a higher yield of pectinases by A. awamori.  相似文献   

17.
AIMS: Evaluation of the influence of fermentation components on extracellular acid amylase production by an isolated fungal strain Aspergillus awamori. METHODS AND RESULTS: Eight fungal metabolic influential factors, viz. soluble starch, corn steep liquor (CSL), casein, potassium dihydrogen phosphate (KH(2)PO(4)) and magnesium sulfate (MgSO(4) x 7H(2)O), pH, temperature and inoculum level were selected to optimize amylase production by A. awamori using fractional factorial design of Taguchi methodology. Significant improvement in acid amylase enzyme production (48%) was achieved. The optimized medium composition consisted of soluble starch--3%; CSL--0.5%; KH(2)PO(4)--0.125%; MgSO(4) x 7H(2)O--0.125%; casein--1.5% at pH 4.0 and temperature at 31 degrees C. CONCLUSION: Optimization of the components of the fermentation medium was carried out using fractional factorial design of Taguchi's L-18 orthogonal array. Based on the influence of interaction components of fermentation, these could be classified as the least significant and the most significant at individual and interaction levels. Least significant factors of individual level have higher interaction severity index and vice versa at enzyme production in this fungal strain. The pH of the medium and substrate (soluble starch) showed maximum production impact (60%) at optimized environment. Temperature and CSL were the least influential factors for acid amylase production. SIGNIFICANCE AND IMPACT OF THE STUDY: Acid amylase production by isolated A. awamori is influenced by the interaction of fermentation factors with fungal metabolism at individual and interaction levels. The pH of the fermentation medium and substrate concentration regulates maximum enzyme production process in this fungal strain.  相似文献   

18.
A neutral polysaccharide fraction (ARP) prepared from the rhizome of Anemone raddeana was tested for its anticancer activity in H22 tumor-bearing mice by oral administration. ARP could not only significantly inhibit the growth of H22 transplantable tumor, but also remarkably promote splenocytes proliferation, NK cell and CTL activity, as well as serum IL-2 and TNF-α production in tumor-bearing mice. In addition, ARP treatment to tumor bearing mice had no toxicity to body weight, the liver and kidney. Moreover it could reverse the hematological parameters induced by 5-fluorouracil (5-FU) to near normal. The above results suggested that the antitumor activity of ARP might be achieved by improving immune response, and they could act as antitumor agent with immunomodulatory activity.  相似文献   

19.
20.
Aspergillus section Nigri is an important group of species for food and medical mycology, and biotechnology. The Aspergillus niger 'aggregate' represents its most complicated taxonomic subgroup containing eight morphologically indistinguishable taxa: A. niger, Aspergillus tubingensis, Aspergillus acidus, Aspergillus brasiliensis, Aspergillus costaricaensis, Aspergillus lacticoffeatus, Aspergillus piperis, and Aspergillus vadensis. Aspergillus awamori, first described by Nakazawa, has been compared taxonomically with other black aspergilli and recently it has been treated as a synonym of A. niger. Phylogenetic analyses of sequences generated from portions of three genes coding for the proteins β-tubulin (benA), calmodulin (CaM), and the translation elongation factor-1 alpha (TEF-1α) of a population of A. niger strains isolated from grapes in Europe revealed the presence of a cryptic phylogenetic species within this population, A. awamori. Morphological, physiological, ecological and chemical data overlap occurred between A. niger and the cryptic A. awamori, however the splitting of these two species was also supported by AFLP analysis of the full genome. Isolates in both phylospecies can produce the mycotoxins ochratoxin A and fumonisin B?, and they also share the production of pyranonigrin A, tensidol B, funalenone, malformins, and naphtho-γ-pyrones. In addition, sequence analysis of four putative A. awamori strains from Japan, used in the koji industrial fermentation, revealed that none of these strains belong to the A. awamori phylospecies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号