首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We estimated the intensity of selection on preferred codons in Drosophila pseudoobscura and D. miranda at X-linked and autosomal loci, using a published data set on sequence variability at 67 loci, by means of an improved method that takes account of demographic effects. We found evidence for stronger selection at X-linked loci, consistent with their higher levels of codon usage bias. The estimates of the strength of selection and mutational bias in favor of unpreferred codons were similar to those found in other species, after taking into account the fact that D. pseudoobscura showed evidence for a recent expansion in population size. We examined correlates of synonymous and nonsynonymous diversity in these species and found no evidence for effects of recurrent selective sweeps on nonsynonymous mutations, which is probably because this set of genes have much higher than average levels of selective constraints. There was evidence for correlated effects of levels of selective constraints on protein sequences and on codon usage, as expected under models of selection for translational accuracy. Our analysis of a published data set on D. melanogaster provided evidence for the effects of selective sweeps of nonsynonymous mutations on linked synonymous diversity, but only in the subset of loci that experienced the highest rates of nonsynonymous substitutions (about one-quarter of the total) and not at more slowly evolving loci. Our correlational analysis of this data set suggested that both selective constraints on protein sequences and recurrent selective sweeps affect the overall level of codon usage.  相似文献   

2.
Molecular evolution of the period gene in Drosophila athabasca   总被引:1,自引:0,他引:1  
We measured nucleotide variability within and between the three semispecies of the Drosophila athabasca complex, at the period (per) gene by using a polymerase chain reaction-based four-cutter restriction- enzyme analysis. The levels of polymorphism varied considerably between the three semispecies. Our results for per, combined with previous data for X-linked allozymes, suggest that the X chromosome in the western- northern semispecies is less variable than expected under an equilibrium-neutral model. Both the pattern of divergence between the semispecies and a cladistic clustering of per haplotypes support the previously hypothesized grouping of eastern A and eastern B as the two most recently diverged semispecies. A 21-bp in-frame segment in the region of per which shares sequence similarity with the neuronal development gene single minded is deleted in all eastern A and eastern B flies examined but is present in all of the western-northern flies and all other published per sequences. Despite these hints that there may be significant differences at the per gene between the semispecies, especially the western-northern group versus the two eastern groups, there is no compelling evidence that per is involved in the mating song differences between the semispecies.   相似文献   

3.
We analyzed microsatellite variability at 42 X-linked and 39 autosomal loci from African and European populations of Drosophila simulans. The African D. simulans harbored significantly more microsatellite variability than the European flies. In the European population, X-linked polymorphism was more reduced than autosomal variation, whereas there was no significant difference between chromosomes in the African population. Previous studies also observed a similar pattern but failed to distinguish between a demographic event and a selection scenario. We performed extensive computer simulations using a wide range of demographic scenarios to distinguish between the two hypotheses. Approximate summary likelihood estimates differed dramatically among X chromosomes and autosomes. Furthermore, our experimental data showed a surplus of X-linked microsatellites with a significantly reduced variability in non-African D. simulans. We conclude that our data are not compatible with a neutral scenario. Thus, the reduced variability at X-linked loci is most likely caused by selective sweeps associated with the out-of-Africa habitat expansion of D. simulans.  相似文献   

4.
Microsatellites have gained wide application for elucidating population structure in nonmodel organisms. Since they are generally noncoding, neutrality is assumed but rarely tested. In Atlantic cod (Gadus morhua L.), microsatellite studies have revealed highly heterogeneous estimates of genetic differentiation among loci. In particular one locus, Gmo 132, has demonstrated elevated genetic differentiation. We investigated possible hitch-hiking selection at this and other microsatellite loci in Atlantic cod. We employed 11 loci for analysing samples from the Baltic Sea, North Sea, Barents Sea and Newfoundland covering a large part of the species' distributional range. The 'classical' Lewontin-Krakauer test for selection based on variance in estimates of F(ST) and (standardized genetic differentiation) revealed only one significant pairwise test (North Sea-Barents Sea), and the source of the elevated variance could not be ascribed exclusively to Gmo 132. In contrast, different variants of the recently developed ln Rtheta test for selective sweeps at microsatellite loci revealed a high number of significant outcomes of pair-wise tests for Gmo 132. Further, the presence of selection was indicated in at least one other locus. The results suggest that many previous estimates of genetic differentiation in cod based on microsatellites are inflated, and in some cases relationships among populations are obscured by one or more loci being the subject to hitch-hiking selection. Likewise, temporal estimates of effective population sizes in Atlantic cod may be flawed. We recommend, generally, to use a higher number of microsatellite loci to elucidate population structure in marine fishes and other nonmodel species to allow for identification of outlier loci that are subject to selection.  相似文献   

5.
Kane NC  Rieseberg LH 《Genetics》2007,175(4):1823-1834
Here we report the results of an analysis of variation at 128 EST-based microsatellites in wild Helianthus annuus, using populations from the species' typical plains habitat in Kansas and Colorado, as well as two arid desert and two distinct brackish marsh areas in Utah. The test statistics lnRV and lnRH were used to find regions of the genome that were significantly less variable in one population relative to the others and thus are likely to contain genes under selection. A small but detectable percentage (1.5-6%) of genes showed evidence for selection from both statistics in any particular environment, and a total of 17 loci showed evidence of selection in at least one environment. Distance-based measures provided additional evidence of selection for 15 of the 17 loci. Global F(ST)-values were significantly higher for candidate loci, as expected under divergent selection. However, pairwise F(ST)-values were lower for populations that shared a selective sweep. Moreover, while spatially separated populations undergoing similar selective pressures showed evidence of divergence at some loci, they evolved in concert at other loci. Thus, this study illustrates how selective sweeps might contribute both to the integration of conspecific populations and to the differentiation of races or species.  相似文献   

6.
We have obtained sequence polymorphism data from 13 genes belonging to 5 gene families in Drosophila melanogaster where the K(a)/K(s) between copies is greater than 1. Twelve of these 13 loci are X-linked. In general, there is evidence of purifying selection in all families, as inferred both from levels of silent and replacement variation and insertion/deletion variation, suggesting that the loci are likely functional. Shared polymorphisms indicative of gene conversion between paralogs are rare among the X-linked families, in contrast to available data from autosomal duplicates. McDonald-Kreitman tests between duplicates reveal an excess of amino-acid fixations between copies in the X-linked families, suggesting that the divergence between these loci was driven by positive selection. In contrast, available data from autosomal duplicates show a deficit of fixations, consistent with gene conversion being a strong homogenizing force.  相似文献   

7.
Males and females have different optimal values for some traits, such as body size. When the same genes control these traits in both sexes, selection pushes in opposite directions in males and females. Alleles at autosomal loci spend equal amounts of time in males and females, suggesting that the sexually antagonistic selective forces may approximately balance between the opposing optima. Frank and Crespi noted that alleles on the X chromosome spend twice as much time in diploid females as in haploid males. That distinction between the sexes may tend to favor X-linked genes that push more strongly toward the female optimum than the male optimum. The female bias of X-linked genes opposes the intermediate optimum of autosomal genes, potentially creating a difference between the direction of selection on traits favored by X chromosomes and autosomes. Patten has recently argued that explicit genetic assumptions about dominance and the relative magnitude of allelic effects may lead X-linked genes to favor the male rather than the female optimum, contradicting Frank and Crespi. This article combines the insights of those prior analyses into a new, more general theory. We find some parameter combinations for X-linked loci that favor a female bias and other parameter combinations that favor a male bias. We conclude that the X likely contains a mosaic pattern of loci that differ with autosomes over sexually antagonistic traits. The overall tendency for a female or male bias on the X depends on prior assumptions about the distribution of key parameters across X-linked loci. Those parameters include the dominance coefficient and the way in which ploidy influences the magnitude of allelic effects.  相似文献   

8.
The human and chimpanzee X chromosomes are less divergent than expected based on autosomal divergence. We study incomplete lineage sorting patterns between humans, chimpanzees and gorillas to show that this low divergence can be entirely explained by megabase-sized regions comprising one-third of the X chromosome, where polymorphism in the human-chimpanzee ancestral species was severely reduced. We show that background selection can explain at most 10% of this reduction of diversity in the ancestor. Instead, we show that several strong selective sweeps in the ancestral species can explain it. We also report evidence of population specific sweeps in extant humans that overlap the regions of low diversity in the ancestral species. These regions further correspond to chromosomal sections shown to be devoid of Neanderthal introgression into modern humans. This suggests that the same X-linked regions that undergo selective sweeps are among the first to form reproductive barriers between diverging species. We hypothesize that meiotic drive is the underlying mechanism causing these two observations.  相似文献   

9.
A genome-wide survey of R gene polymorphisms in Arabidopsis   总被引:7,自引:0,他引:7       下载免费PDF全文
We used polymorphism analysis to study the evolutionary dynamics of 27 disease resistance (R) genes by resequencing the leucine-rich repeat (LRR) region in 96 Arabidopsis thaliana accessions. We compared single nucleotide polymorphisms (SNPs) in these R genes to an empirical distribution of SNP in the same sample based on 876 fragments selected to sample the entire genome. LRR regions are highly polymorphic for protein variants but not for synonymous changes, suggesting that they generate many alleles maintained for short time periods. Recombination is also relatively common and important for generating protein variants. Although none of the genes is nearly as polymorphic as RPP13, a locus previously shown to have strong signatures of balancing selection, seven genes show weaker indications of balancing selection. Five R genes are relatively invariant, indicating young alleles, but all contain segregating protein variants. Polymorphism analysis in neighboring fragments yielded inconclusive evidence for recent selective sweeps at these loci. In addition, few alleles are candidates for rapid increases in frequency expected under directional selection. Haplotype sharing analysis revealed significant underrepresentation of R gene alleles with extended haplotypes compared with 1102 random genomic fragments. Lack of convincing evidence for directional selection or selective sweeps argues against an arms race driving R gene evolution. Instead, the data support transient or frequency-dependent selection maintaining protein variants at a locus for variable time periods.  相似文献   

10.
A marker locus closely linked to a disease locus is often useful for genetic counseling provided that a counselee is heterozygous at both disease and marker loci. Furthermore, the linkage phase of these genes in the counselee must be known. When the linkage between the disease and marker loci is very close, one often finds linkage disequilibrium between the loci. To evaluate the effect of such nonrandom associations on the utility of linked marker genes for genetic counseling, the proportion of informative families is studied for X-linked recessive and autosomal dominant diseases. This proportion is higher for X-linked genes than for autosomal genes, if other factors are the same. In general, codominant markers are more useful than dominant markers. Also, under appropriate conditions, the proportion of informative families is higher when linkage disequilibrium is present. The results obtained in this paper are useful for evaluating the utility of polymorphic restriction endonuclease cleavage sites as markers in genetic counseling.  相似文献   

11.
Determining the identity and distribution of molecular changes leading to the evolution of modern crop species provides major insights into the timing and nature of historical forces involved in rapid phenotypic evolution. In this study, we employed an integrated candidate gene strategy to identify loci involved in the evolution of flowering time during early domestication and modern improvement of the sunflower (Helianthus annuus). Sunflower homologs of many genes with known functions in flowering time were isolated and cataloged. Then, colocalization with previously mapped quantitative trait loci (QTLs), expression, or protein sequence differences between wild and domesticated sunflower, and molecular evolutionary signatures of selective sweeps were applied as step-wise criteria for narrowing down an original pool of 30 candidates. This process led to the discovery that five paralogs in the flowering locus T/terminal flower 1 gene family experienced selective sweeps during the evolution of cultivated sunflower and may be the causal loci underlying flowering time QTLs. Our findings suggest that gene duplication fosters evolutionary innovation and that natural variation in both coding and regulatory sequences of these paralogs responded to a complex history of artificial selection on flowering time during the evolution of cultivated sunflower.  相似文献   

12.
The effect on gene flow at a neutral locus of a selective cline at a linked locus is investigated. A diffusion approximation for a two-locus island model is derived in which only one locus is subject to selection. The moments of the stationary distribution are obtained and compared to the corresponding moments from a one-locus, neutral island model. This comparison yields an effective migration rate. The effective migration rate is always less than the actual migration rate, but this effect is seen to be small for weak selection and loose linkage in the case of adult migration. The importance of selection at linked loci to the question of genetic differentiation in a subdivided population is discussed.  相似文献   

13.
Borge T  Webster MT  Andersson G  Saetre GP 《Genetics》2005,171(4):1861-1873
In geographic areas where pied and collared flycatchers (Ficedula hypoleuca and F. albicollis) breed in sympatry, hybridization occurs, leading to gene flow (introgression) between the two recently diverged species. Notably, while such introgression is observable at autosomal loci it is apparently absent at the Z chromosome, suggesting an important role for genes on the Z chromosome in creating reproductive isolation during speciation. To further understand the role of Z-linked loci in the formation of new species, we studied genetic variation of the two species from regions where they live in allopatry. We analyzed patterns of polymorphism and divergence in introns from 9 Z-linked and 23 autosomal genes in pied and collared flycatcher males. Average variation on the Z chromosome is greatly reduced compared to neutral expectations based on autosomal diversity in both species. We also observe significant heterogeneity between patterns of polymorphism and divergence at Z-linked loci and a relative absence of polymorphisms that are shared by the two species on the Z chromosome compared to the autosomes. We suggest that these observations may indicate the action of recurrent selective sweeps on the Z chromosome during the evolution of the two species, which may be caused by sexual selection acting on Z-linked genes. Alternatively, reduced variation on the Z chromosome could result from substantially higher levels of introgression at autosomal than at Z-linked loci or from a complex demographic history, such as a population bottleneck.  相似文献   

14.

Background

Population differentiation has proved to be effective for identifying loci under geographically localized positive selection, and has the potential to identify loci subject to balancing selection. We have previously investigated the pattern of genetic differentiation among human populations at 36.8 million genomic variants to identify sites in the genome showing high frequency differences. Here, we extend this dataset to include additional variants, survey sites with low levels of differentiation, and evaluate the extent to which highly differentiated sites are likely to result from selective or other processes.

Results

We demonstrate that while sites with low differentiation represent sampling effects rather than balancing selection, sites showing extremely high population differentiation are enriched for positive selection events and that one half may be the result of classic selective sweeps. Among these, we rediscover known examples, where we actually identify the established functional SNP, and discover novel examples including the genes ABCA12, CALD1 and ZNF804, which we speculate may be linked to adaptations in skin, calcium metabolism and defense, respectively.

Conclusions

We identify known and many novel candidate regions for geographically restricted positive selection, and suggest several directions for further research.  相似文献   

15.
Thornton KR  Jensen JD 《Genetics》2007,175(2):737-750
Rapid typing of genetic variation at many regions of the genome is an efficient way to survey variability in natural populations in an effort to identify segments of the genome that have experienced recent natural selection. Following such a genome scan, individual regions may be chosen for further sequencing and a more detailed analysis of patterns of variability, often to perform a parametric test for selection and to estimate the strength of a recent selective sweep. We show here that not accounting for the ascertainment of loci in such analyses leads to false inference of natural selection when the true model is selective neutrality, because the procedure of choosing unusual loci (in comparison to the rest of the genome-scan data) selects regions of the genome with genealogies similar to those expected under models of recent directional selection. We describe a simple and efficient correction for this ascertainment bias, which restores the false-positive rate to near-nominal levels. For the parameters considered here, we find that obtaining a test with the expected distribution of P-values depends on accurately accounting both for ascertainment of regions and for demography. Finally, we use simulations to explore the utility of relying on outlier loci to detect recent selective sweeps. We find that measures of diversity and of population differentiation are more effective than summaries of the site-frequency spectrum and that sequencing larger regions (2.5 kbp) in genome-scan studies leads to more power to detect recent selective sweeps.  相似文献   

16.
While hundreds of loci have been identified as reflecting strong-positive selection in human populations, connections between candidate loci and specific selective pressures often remain obscure. This study investigates broader patterns of selection in African populations, which are underrepresented despite their potential to offer key insights into human adaptation. We scan for hard selective sweeps using several haplotype and allele-frequency statistics with a data set of nearly 500,000 genome-wide single-nucleotide polymorphisms in 12 highly diverged African populations that span a range of environments and subsistence strategies. We find that positive selection does not appear to be a strong determinant of allele-frequency differentiation among these African populations. Haplotype statistics do identify putatively selected regions that are shared across African populations. However, as assessed by extensive simulations, patterns of haplotype sharing between African populations follow neutral expectations and suggest that tails of the empirical distributions contain false-positive signals. After highlighting several genomic regions where positive selection can be inferred with higher confidence, we use a novel method to identify biological functions enriched among populations’ empirical tail genomic windows, such as immune response in agricultural groups. In general, however, it seems that current methods for selection scans are poorly suited to populations that, like the African populations in this study, are affected by ascertainment bias and have low levels of linkage disequilibrium, possibly old selective sweeps, and potentially reduced phasing accuracy. Additionally, population history can confound the interpretation of selection statistics, suggesting that greater care is needed in attributing broad genetic patterns to human adaptation.  相似文献   

17.
We analyse the evolution of X chromosome-linked imprinting by modifying our previous model of imprinting of autosomal genes that influence the trade-off between maternal fecundity and offspring viability through alterations in maternal investment (Mills and Moore, 2004). Unlike previous genetic models, we analyse X-linked imprinting in the context of populations at equilibrium for either autosomal or X-linked biallelically expressed alleles at loci that influence the fecundity/viability trade-off. We show that selection under parental conflict over maternal investment in offspring can parsimoniously explain the occurrence of sex-specific gene expression patterns, without a requirement to postulate direct selection for sexual dimorphism mediated through imprinting. We note that sex chromosome imprinting causes a small distortion of the post-weaning sex ratio, providing a possible selection pressure against the evolution of X-linked imprints. We discuss our conclusions in the context of recent reports of imprinting of mouse X-linked Xlr genes.  相似文献   

18.
Summary Two single-locus, deterministic models with discrete nonoverlapping generations are formulated for the maintenance of genetic variation in each of two distinct biological situations. The first two models are applicable to an autosomal locus in an hermaphroditic plant population with mixed selfing and random mating. They describe the interaction of migration and viability selection for, respectively, an island migration model and for a subdivided population. Pollen as well as seed may disperse. Sufficient conditions are derived and discussed for the existence of protected polymorphism in the diallelic case. The remaining two models are pertinent to migration and selection at a single X-linked locus. An island model is again considered as well as that of a subdivided population. Mating is at random, selection occurs only through viability differences, and the migration structure for males and females may differ. For a diallelic population, protection conditions are derived and discussed vis-à-vis the autosomal case.M.M. was supported by a U.S. Public Health Service training grant (Grant No. GM780).  相似文献   

19.
One of the principal goals of population genetics is to understand the processes by which genetic variation within species (polymorphism) becomes converted into genetic differences between species (divergence). In this transformation, selective neutrality, near neutrality, and positive selection may each play a role, differing from one gene to the next. Synonymous nucleotide sites are often used as a uniform standard of comparison across genes on the grounds that synonymous sites are subject to relatively weak selective constraints and so may, to a first approximation, be regarded as neutral. Synonymous sites are also interdigitated with nonsynonymous sites and so are affected equally by genomic context and demographic factors. Hence a comparison of levels of polymorphism and divergence between synonymous sites and amino acid replacement sites in a gene is potentially informative about the magnitude of selective forces associated with amino acid replacements. We have analyzed 56 genes in which polymorphism data from D. simulans are compared with divergence from a reference strain of D. melanogaster. The framework of the analysis is Bayesian and assumes that the distribution of selective effects (Malthusian fitnesses) is Gaussian with a mean that differs for each gene. In such a model, the average scaled selection intensity (gamma = N(e)s) of amino acid replacements eligible to become polymorphic or fixed is -7.31, and the standard deviation of selective effects within each locus is 6.79 (assuming homoscedasticity across loci). For newly arising mutations of this type that occur in autosomal or X-linked genes, the average proportion of beneficial mutations is 19.7%. Among the amino acid polymorphisms in the sample, the expected average proportion of beneficial mutations is 47.7%, and among amino acid replacements that become fixed the average proportion of beneficial mutations is 94.3%. The average scaled selection intensity of fixed mutations is +5.1. The presence of positive selection is pervasive with the single exception of kl-5, a Y-linked fertility gene. We find no evidence that a significant fraction of fixed amino acid replacements is neutral or nearly neutral or that positive selection drives amino acid replacements at only a subset of the loci. These results are model dependent and we discuss possible modifications of the model that might allow more neutral and nearly neutral amino acid replacements to be fixed.  相似文献   

20.
Reduced variation on the chicken Z chromosome   总被引:6,自引:0,他引:6  
Understanding the population genetic factors that shape genome variability is pivotal to the design and interpretation of studies using large-scale polymorphism data. We analyzed patterns of polymorphism and divergence at Z-linked and autosomal loci in the domestic chicken (Gallus gallus) to study the influence of mutation, effective population size, selection, and demography on levels of genetic diversity. A total of 14 autosomal introns (8316 bp) and 13 Z-linked introns (6856 bp) were sequenced in 50 chicken chromosomes from 10 highly divergent breeds. Genetic variation was significantly lower at Z-linked than at autosomal loci, with one segregating site every 39 bp at autosomal loci (theta(W) = 5.8 +/- 0.8 x 10(-3)) and one every 156 bp on the Z chromosome (theta(W) = 1.4 +/- 0.4 x 10(-3)). This difference may in part be due to a low male effective population size arising from skewed reproductive success among males, evident both in the wild ancestor-the red jungle fowl-and in poultry breeding. However, this effect cannot entirely explain the observed three- to fourfold reduction in Z chromosome diversity. Selection, in particular selective sweeps, may therefore have had an impact on reducing variation on the Z chromosome, a hypothesis supported by the observation of heterogeneity in diversity levels among loci on the Z chromosome and the lower recombination rate on Z than on autosomes. Selection on sex-linked genes may be particularly important in organisms with female heterogamety since the heritability of sex-linked sexually antagonistic alleles advantageous to males is improved when fathers pass a Z chromosome to their sons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号