首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
Cse4p is an evolutionarily conserved histone H3-like protein that is thought to replace H3 in a specialized nucleosome at the yeast (Saccharomyces cerevisiae) centromere. All known yeast, worm, fly, and human centromere H3-like proteins have highly conserved C-terminal histone fold domains (HFD) but very different N termini. We have carried out a comprehensive and systematic mutagenesis of the Cse4p N terminus to analyze its function. Surprisingly, only a 33-amino-acid domain within the 130-amino-acid-long N terminus is required for Cse4p N-terminal function. The spacing of the essential N-terminal domain (END) relative to the HFD can be changed significantly without an apparent effect on Cse4p function. The END appears to be important for interactions between Cse4p and known kinetochore components, including the Ctf19p/Mcm21p/Okp1p complex. Genetic and biochemical evidence shows that Cse4p proteins interact with each other in vivo and that nonfunctional cse4 END and HFD mutant proteins can form functional mixed complexes. These results support different roles for the Cse4p N terminus and the HFD in centromere function and are consistent with the proposed Cse4p nucleosome model. The structure-function characteristics of the Cse4p N terminus are relevant to understanding how other H3-like proteins, such as the human homolog CENP-A, function in kinetochore assembly and chromosome segregation.  相似文献   

2.
Baker RE  Rogers K 《Genetics》2006,174(3):1481-1492
Centromere H3 proteins (CenH3's) are variants of histone H3 specialized for packaging centromere DNA. Unlike canonical H3, which is among the most conserved of eukaryotic proteins, CenH3's are rapidly evolving, raising questions about orthology and conservation of function across species. To gain insight on CenH3 evolution and function, a phylogenetic analysis was undertaken on CenH3 proteins drawn from a single, ancient lineage, the Fungi. Using maximum-likelihood methods, a credible phylogeny was derived for the conserved histone fold domain (HFD) of 25 fungal CenH3's. The collection consisted mostly of hemiascomycetous yeasts, but also included basidiomycetes, euascomycetes, and an archaeascomycete. The HFD phylogeny closely recapitulated known evolutionary relationships between the species, supporting CenH3 orthology. The fungal CenH3's lacked significant homology in their N termini except for those of the Saccharomyces/Kluyveromyces clade that all contained a region homologous to the essential N-terminal domain found in Saccharomyces cerevisiae Cse4. The ability of several heterologous CenH3's to function in S. cerevisiae was tested and found to correlate with evolutionary distance. Domain swapping between S. cerevisiae Cse4 and the noncomplementing Pichia angusta ortholog showed that species specificity could not be explained by the presence or absence of any recognized secondary structural element of the HFD.  相似文献   

3.
At the core of chromosome segregation is the centromere, which nucleates the assembly of a macromolecular kinetochore (centromere DNA and associated proteins) complex responsible for mediating spindle attachment. Recent advances in centromere research have led to identification of many kinetochore components, such as the centromeric-specific histone H3 variant, CenH3, and its interacting partner, Scm3. Both are essential for chromosome segregation and are evolutionarily conserved from yeast to humans. CenH3 is proposed to be the epigenetic mark that specifies centromeric identity. Molecular mechanisms that regulate the assembly of kinetochores at specific chromosomal sites to mediate chromosome segregation are not fully understood. In this review, we summarize the current literature and discuss results from our laboratory, which show that restricting the localization of budding yeast CenH3, Cse4, to centromeres and balanced stoichiometry between Scm3 and Cse4, contribute to faithful chromosome transmission. We highlight our findings that, similar to other eukaryotic centromeres, budding yeast centromeric histone H4 is hypoacetylated, and we discuss how altered histone acetylation affects chromosome segregation. This article is part of a Special Issue entitled: Chromatin in time and space.  相似文献   

4.
At the core of chromosome segregation is the centromere, which nucleates the assembly of a macromolecular kinetochore (centromere DNA and associated proteins) complex responsible for mediating spindle attachment. Recent advances in centromere research have led to identification of many kinetochore components, such as the centromeric-specific histone H3 variant, CenH3, and its interacting partner, Scm3. Both are essential for chromosome segregation and are evolutionarily conserved from yeast to humans. CenH3 is proposed to be the epigenetic mark that specifies centromeric identity. Molecular mechanisms that regulate the assembly of kinetochores at specific chromosomal sites to mediate chromosome segregation are not fully understood. In this review, we summarize the current literature and discuss results from our laboratory, which show that restricting the localization of budding yeast CenH3, Cse4, to centromeres and balanced stoichiometry between Scm3 and Cse4, contribute to faithful chromosome transmission. We highlight our findings that, similar to other eukaryotic centromeres, budding yeast centromeric histone H4 is hypoacetylated, and we discuss how altered histone acetylation affects chromosome segregation. This article is part of a Special Issue entitled: Chromatin in time and space.  相似文献   

5.
Kinetochores are the specialized protein structures that form on centromeric DNA and direct chromosome segregation. It is critical that all chromosomes assemble a single kinetochore every cell cycle. One hallmark of all eukaryotic kinetochores is CENP-A, an essential centromeric histone H3 (CenH3) variant. Overexpression of CENP-A causes mislocalization to euchromatin, which could lead to deleterious consequences because CENP-A overexpression is associated with colorectal cancer . Although CENP-A protein levels are important for genomic stability, little is known about the mechanisms of CenH3 regulation. Here, we show that the levels of the budding yeast CenH3, Cse4, are regulated by ubiquitin-proteasome-mediated proteolysis. Because mutation of all Cse4 lysine residues did not completely stabilize the protein, we isolated a dominant lethal mutant, CSE4-351, that was stable. The Cse4-351 protein localized to euchromatin, suggesting that proteolysis prevents CenH3 euchromatic localization. When wild-type Cse4 was fused to a degron signal, the soluble Cse4 protein was rapidly degraded, but the centromere bound Cse4 was stable, indicating that centromere localization protects Cse4 from degradation. Taken together, these data identify proteolysis as one mechanism that contributes to the restricted centromere localization of the yeast CenH3.  相似文献   

6.
Au WC  Crisp MJ  DeLuca SZ  Rando OJ  Basrai MA 《Genetics》2008,179(1):263-275
Cse4p is an essential histone H3 variant in Saccharomyces cerevisiae that defines centromere identity and is required for proper segregation of chromosomes. In this study, we investigated phenotypic consequences of Cse4p mislocalization and increased dosage of histone H3 and Cse4p, and established a direct link between histone stoichiometry, mislocalization of Cse4p, and chromosome segregation. Overexpression of the stable Cse4p mutant, cse4(K16R), resulted in its mislocalization, increased association with chromatin, and a high rate of chromosome loss, all of which were suppressed by constitutive expression of histone H3 (delta 16H3). We determined that delta 16H3 did not lead to increased chromosome loss; however, increasing the dosage of histone H3 (GALH3) resulted in significant chromosome loss due to reduced levels of centromere (CEN)-associated Cse4p and synthetic dosage lethality (SDL) in kinetochore mutants. These phenotypes were suppressed by GALCSE4. We conclude that the chromosome missegregation of GALcse4(K16R) and GALH3 strains is due to mislocalization and a functionally compromised kinetochore, respectively. Suppression of these phenotypes by histone delta 16H3 and GALCSE4 supports the conclusion that proper stoichiometry affects the localization of histone H3 and Cse4p and is thus essential for accurate chromosome segregation.  相似文献   

7.
The molecular architecture of centromere-specific nucleosomes containing histone variant CenH3 is controversial. We have biochemically reconstituted two distinct populations of nucleosomes containing Saccharomyces cerevisiae CenH3 (Cse4). Reconstitution of octameric nucleosomes containing histones Cse4/H4/H2A/H2B is robust on noncentromere DNA, but inefficient on AT-rich centromere DNA. However, nonhistone Scm3, which is required for Cse4 deposition in?vivo, facilitates in?vitro reconstitution of Cse4/H4/Scm3 complexes on AT-rich centromere sequences. Scm3 has a nonspecific DNA binding domain that shows preference for AT-rich DNA and a histone chaperone domain that promotes specific loading of Cse4/H4. In live cells, Scm3-GFP is enriched at centromeres in all cell cycle phases. Chromatin immunoprecipitation confirms that Scm3 occupies centromere DNA throughout the cell cycle, even when Cse4 and H4 are temporarily dislodged in S phase. These findings suggest a model in which centromere-bound Scm3 aids recruitment of Cse4/H4 to assemble and maintain an H2A/H2B-deficient centromeric nucleosome.  相似文献   

8.
Each Saccharomyces cerevisiae chromosome contains a single centromere composed of three conserved DNA elements, CDE I, II, and III. The histone H3 variant, Cse4p, is an essential component of the S. cerevisiae centromere and is thought to replace H3 in specialized nucleosomes at the yeast centromere. To investigate the genetic interactions between Cse4p and centromere DNA, we measured the chromosome loss rates exhibited by cse4 cen3 double-mutant cells that express mutant Cse4 proteins and carry chromosomes containing mutant centromere DNA (cen3). When compared to loss rates for cells carrying the same cen3 DNA mutants but expressing wild-type Cse4p, we found that mutations throughout the Cse4p histone-fold domain caused surprisingly large increases in the loss of chromosomes carrying CDE I or CDE II mutant centromeres, but had no effect on chromosomes with CDE III mutant centromeres. Our genetic evidence is consistent with direct interactions between Cse4p and the CDE I-CDE II region of the centromere DNA. On the basis of these and other results from genetic, biochemical, and structural studies, we propose a model that best describes the path of the centromere DNA around a specialized Cse4p-nucleosome.  相似文献   

9.
Cse4p is a structural component of the core centromere of Saccharomyces cerevisiae and is a member of the conserved CENP-A family of specialized histone H3 variants. The histone H4 allele hhf1-20 confers defects in core centromere chromatin structure and mitotic chromosome transmission. We have proposed that Cse4p and histone H4 interact through their respective histone fold domains to assemble a nucleosome-like structure at centromeric DNA. To test this model, we targeted random mutations to the Cse4p histone fold domain and isolated three temperature-sensitive cse4 alleles in an unbiased genetic screen. Two of the cse4 alleles contain mutations at the Cse4p-H4 interface. One of these requires two widely separated mutations demonstrating long-range cooperative interactions in the structure. The third cse4 allele is mutated at its helix 2-helix 3 interface, a region required for homotypic H3 fold dimerization. Overexpression of wild-type Cse4p and histone H4 confer reciprocal allele-specific suppression of cse4 and hhf1 mutations, providing strong evidence for Cse4p-H4 protein interaction. Overexpression of histone H3 is dosage lethal in cse4 mutants, suggesting that histone H3 competes with Cse4p for histone H4 binding. However, the relative resistance of the Cse4p-H4 pathway to H3 interference argues that centromere chromatin assembly must be highly regulated.  相似文献   

10.
Cse4 is the budding yeast homologue of CENP-A, a modified histone H3 that specifies the base of kinetochores in all eukaryotes. Budding yeast is unique in having only one kinetochore microtubule attachment site per centromere. The centromere is specified by CEN DNA, a sequence-specific binding complex (CBF3), and a Cse4-containing nucleosome. Here we compare the ratio of kinetochore proximal Cse4-GFP fluorescence at anaphase to several standards including purified EGFP molecules in vitro to generate a calibration curve for the copy number of GFP-fusion proteins. Our results yield a mean of ~5 Cse4s, ~3 inner kinetochore CBF3 complexes, and ~20 outer kinetochore Ndc80 complexes. Our calibrated measurements increase 2.5-3-fold protein copy numbers at eukaryotic kinetochores based on previous ratio measurements assuming two Cse4s per budding yeast kinetochore. All approximately five Cse4s may be associated with the CEN nucleosome, but we show that a mean of three Cse4s could be located within flanking nucleosomes at random sites that differ between chromosomes.  相似文献   

11.
The Cse4 nucleosome at each budding yeast centromere must be faithfully assembled each cell cycle to specify the site of kinetochore assembly and microtubule attachment for chromosome segregation. Although Scm3 is required for the localization of the centromeric H3 histone variant Cse4 to centromeres, its role in nucleosome assembly has not been tested. We demonstrate that Scm3 is able to mediate the assembly of Cse4 nucleosomes in vitro, but not H3 nucleosomes, as measured by a supercoiling assay. Localization of Cse4 to centromeres and the assembly activity depend on an evolutionarily conserved core motif in Scm3, but localization of the CBF3 subunit Ndc10 to centromeres does not depend on this motif. The centromere targeting domain of Cse4 is sufficient for Scm3 nucleosome assembly activity. Assembly does not depend on centromeric sequence. We propose that Scm3 plays an active role in centromeric nucleosome assembly.  相似文献   

12.
The stoichiometries of kinetochores and their constituent proteins in yeast and vertebrate cells were determined using the histone H3 variant CENP-A, known as Cse4 in budding yeast, as a counting standard. One Cse4-containing nucleosome exists in the centromere (CEN) of each chromosome, so it has been assumed that each anaphase CEN/kinetochore cluster contains 32 Cse4 molecules. We report that anaphase CEN clusters instead contained approximately fourfold more Cse4 in Saccharomyces cerevisiae and ~40-fold more CENP-A (Cnp1) in Schizosaccharomyces pombe than predicted. These results suggest that the number of CENP-A molecules exceeds the number of kinetochore-microtubule (MT) attachment sites on each chromosome and that CENP-A is not the sole determinant of kinetochore assembly sites in either yeast. In addition, we show that fission yeast has enough Dam1-DASH complex for ring formation around attached MTs. The results of this study suggest the need for significant revision of existing CEN/kinetochore architectural models.  相似文献   

13.
Chromosomes segregate using their kinetochores, the specialized protein structures that are assembled on centromeric DNA and mediate attachment to the mitotic spindle. Because centromeric sequences are not conserved, centromere identity is propagated by an epigenetic mechanism. All eukaryotes contain an essential histone H3 variant (CenH3) that localizes exclusively to centromeres. Because CenH3 is required for kinetochore assembly and is likely to be the epigenetic mark that specifies centromere identity, it is critical to elucidate the mechanisms that assemble and maintain CenH3 exclusively at centromeres. To learn more about the functions and regulation of CenH3, we isolated mutants in the budding yeast CenH3 that are lethal when overexpressed. These CenH3 mutants fall into three unique classes: (I) those that localize to euchromatin but do not alter kinetochore function, (II) those that localize to the centromere and disrupt kinetochore function, and (III) those that no longer target to the centromere but still disrupt chromosome segregation. We found that a class III mutant is specifically defective in the ability of sister kinetochores to biorient and attach to microtubules from opposite spindle poles, indicating that CenH3 mutants defective in kinetochore biorientation can be obtained.  相似文献   

14.
The centromeric histone H3 variant (CenH3) is essential for chromosome segregation in eukaryotes. We identify posttranslational modifications of Saccharomyces cerevisiae CenH3, Cse4. Functional characterization of cse4 phosphorylation mutants shows growth and chromosome segregation defects when combined with kinetochore mutants okp1 and ame1. Using a phosphoserine-specific antibody, we show that the association of phosphorylated Cse4 with centromeres increases in response to defective microtubule attachment or reduced cohesion. We determine that evolutionarily conserved Ipl1/Aurora B contributes to phosphorylation of Cse4, as levels of phosphorylated Cse4 are reduced at centromeres in ipl1 strains in vivo, and in vitro assays show phosphorylation of Cse4 by Ipl1. Consistent with these results, we observe that a phosphomimetic cse4-4SD mutant suppresses the temperature-sensitive growth of ipl1-2 and Ipl1 substrate mutants dam1 spc34 and ndc80, which are defective for chromosome biorientation. Furthermore, cell biology approaches using a green fluorescent protein–labeled chromosome show that cse4-4SD suppresses chromosome segregation defects in dam1 spc34 strains. On the basis of these results, we propose that phosphorylation of Cse4 destabilizes defective kinetochores to promote biorientation and ensure faithful chromosome segregation. Taken together, our results provide a detailed analysis, in vivo and in vitro, of Cse4 phosphorylation and its role in promoting faithful chromosome segregation.  相似文献   

15.
We have employed a novel in vivo approach to study the structure and function of the eukaryotic kinetochore multiprotein complex. RNA interference (RNAi) was used to block the synthesis of centromere protein A (CENP-A) and Clip-170 in human cells. By coexpression, homologous kinetochore proteins from Saccharomyces cerevisiae were then tested for the ability to complement the RNAi-induced phenotypes. Cse4p, the budding yeast CENP-A homolog, was specifically incorporated into kinetochore nucleosomes and was able to complement RNAi-induced cell cycle arrest in CENP-A-depleted human cells. Thus, Cse4p can structurally and functionally substitute for CENP-A, strongly suggesting that the basic features of centromeric chromatin are conserved between yeast and mammals. Bik1p, the budding yeast homolog of human CLIP-170, also specifically localized to kinetochores during mitosis, but Bik1p did not rescue CLIP-170 depletion-induced cell cycle arrest. Generally, the newly developed in vivo complementation assay provides a powerful new tool for studying the function and evolutionary conservation of multiprotein complexes from yeast to humans.  相似文献   

16.
The centromere protein A homologue Cse4p is required for kinetochore assembly and faithful chromosome segregation in Saccharomyces cerevisiae. It has been regarded as the exquisite hallmark of centromeric chromatin. We demonstrate that Cse4 resides at the partitioning locus STB of the 2-microm plasmid. Cse4p-STB association is absolutely dependent on the plasmid partitioning proteins Rep1p and Rep2p and the integrity of the mitotic spindle. The kinetochore mutation ndc10-1 excludes Cse4p from centromeres without dislodging it from STB. Cse4p-STB association lasts from G1/S through late telophase during the cell cycle. The release of Cse4p from STB chromatin is likely mediated through spindle disassembly. A lack of functional Cse4p disrupts the remodeling of STB chromatin by the RSC2 complex, negates Rep2p binding and cohesin assembly at STB, and causes plasmid missegregation. Poaching of a specific histone variant by the plasmid to mark its partitioning locus with a centromere tag reveals yet another one of the molecular trickeries it performs for achieving chromosome- like fidelity in segregation.  相似文献   

17.
The kinetochore is a complex multiprotein structure located at centromeres that is essential for proper chromosome segregation. Budding-yeast Cse4 is an essential evolutionarily conserved histone H3 variant recruited to the centromere by an unknown mechanism. We have identified Scm3, an inner kinetochore protein that immunopurifies with Cse4. Scm3 is essential for viability and localizes to all centromeres. Construction of a conditional SCM3 allele reveals that depletion results in metaphase arrest, with duplicated spindle poles, short spindles, and unequal DNA distribution. The metaphase arrest is mediated by the mitotic spindle checkpoint being dependent on Mad1 and the Aurora kinase B homolog Ipl1. Scm3 interacts with both Ndc10 and Cse4 and is essential to establish centromeric chromatin after DNA replication. In addition, Scm3 is required to maintain kinetochore function throughout the cell cycle. We propose a model in which Ndc10/Scm3 binds to centromeric DNA, which is in turn essential for targeting Cse4 to centromeres.  相似文献   

18.
Henikoff S  Henikoff JG 《Genetics》2012,190(4):1575-1577
The "point" centromere of budding yeast is genetically defined by an ≈ 125-bp sequence. Recent fluorescence measurements of kinetochore clusters have suggested that this sequence specifies multiple centromere histone 3 (CenH3) nucleosomes. However, high-resolution mapping demonstrates that there is only one CenH3 nucleosome per centromere, providing biochemical confirmation of the point centromere model.  相似文献   

19.
The kinetochore (centromeric DNA and associated proteins) is a key determinant for high fidelity chromosome transmission. Evolutionarily conserved Scm3p is an essential component of centromeric chromatin and is required for assembly and function of kinetochores in humans, fission yeast, and budding yeast. Overexpression of HJURP, the mammalian homolog of budding yeast Scm3p, has been observed in lung and breast cancers and is associated with poor prognosis; however, the physiological relevance of these observations is not well understood. We overexpressed SCM3 and HJURP in Saccharomyces cerevisiae and HJURP in human cells and defined domains within Scm3p that mediate its chromosome loss phenotype. Our results showed that the overexpression of SCM3 (GALSCM3) or HJURP (GALHJURP) caused chromosome loss in a wild-type yeast strain, and overexpression of HJURP led to mitotic defects in human cells. GALSCM3 resulted in reduced viability in kinetochore mutants, premature separation of sister chromatids, and reduction in Cse4p and histone H4 at centromeres. Overexpression of CSE4 or histone H4 suppressed chromosome loss and restored levels of Cse4p at centromeres in GALSCM3 strains. Using mutant alleles of scm3, we identified a domain in the N-terminus of Scm3p that mediates its interaction with CEN DNA and determined that the chromosome loss phenotype of GALSCM3 is due to centromeric association of Scm3p devoid of Cse4p/H4. Furthermore, we determined that similar to other systems the centromeric association of Scm3p is cell cycle regulated. Our results show that altered stoichiometry of Scm3p/HJURP, Cse4p, and histone H4 lead to defects in chromosome segregation. We conclude that stringent regulation of HJURP and SCM3 expression are critical for genome stability.  相似文献   

20.
Domains required for CENP-C assembly at the kinetochore.   总被引:8,自引:1,他引:7       下载免费PDF全文
Chromosomes segregate at mitosis along microtubules attached to the kinetochore, an organelle that assembles at the centromere. Despite major advances in defining molecular components of the yeast segregation apparatus, including discrete centromere sequences and proteins of the kinetochore, relatively little is known of corresponding elements in more complex eukaryotes. We show here that human CENP-C, a human autoantigen previously localized to the kinetochore, assembles at centromeres of divergent species, and that the specificity of this targeting is maintained by an inherent destruction mechanism that prevents the accumulation of CENP-C and toxicity of mistargeted CENP-C. The N-terminus of CENP-C is not only required for CENP-C destruction but renders unstable proteins that otherwise possess long half-lives. The conserved targeting of CENP-C is underscored by the discovery of significant homology between regions of CENP-C and Mif2, a protein of Saccharomyces cerevisiae required for the correct segregation of chromosomes. Mutations in the Mif2 homology domain of CENP-C impair the ability of CENP-C to assemble at the kinetochore. Together, these data indicate that essential elements of the chromosome segregation apparatus are conserved in eukaryotes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号