首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Detailed stopped-flow kinetic studies of the association of 2,2-bipyridine, 1,10-phenanthroline, and 5-chloro-1,10-phenanthroline to the zinc ion at the active site of alcohol dehydrogenase have demonstrated that a process with a limiting rate constant of about 200 s?1 restricts the binding of the bidentate chelating agents to the free enzyme. The formation of the enzyme-ligand complexes has been followed by means of the characteristic absorption spectra of the resulting complexes or by the displacement of the fluorescent dye, auramine O. Monodentate ligands, upon binding to the free enzyme or enzyme-NAD+ and enzyme-NADH complexes, do not exhibit a comparable limiting rate. In analogy with simple inorganic systems, these observations have been interpreted in terms of the rate limiting dissociation of an inner sphere water molecule following the rapid formation by the bidentate ligand of an outer sphere complex. The displacement of a water molecule from the zinc ion by 1,10-phenanthroline has been observed in crystallographic studies which have also established that the zinc ion in the enzyme-1,10-phenanthroline complex is pentacoordinate. Monodentate ligands, which are substrate analogs, do not exhibit limiting rates because displacement of water is not required for their addition to a coordinate position which is apparently vacant in the free enzyme. If a water molecule remains bound to the zinc ion in the kinetically competent ternary complex, it could play an essential role in the proton transfer reaction accompanying catalysis.  相似文献   

2.
Horse liver alcohol dehydrogenase (isozyme EE) in the crystalline state was alkylated with iodoacetate under conditions resulting in the single substitution of Cys-46, which is a ligand to the active-site zinc atom. Alkylation was facilitated by the prior formation of a complex with imidazole bound to the zinc atom. Extent and specificity of the reaction were determined by use of 14C-labelled iodoacetate and by analyses of radioactive peptides after cleavage with trypsin. Ternary complexes of the enzyme with coenzymes and inhibitors effectively protected the protein against alkylation. ADP-ribose, Pt(CN)2-/4 , 1,10-phenanthroline, Au(CN)-/2 and AMP also prevented alkylation with decreasing effectiveness. Crystallographic studies of the alkylated enzyme show that the carboyxmethylated sulfur atom of Cys-46 is still liganded to the active-site zinc atom and that the iodide ion liberated during alkylation is bound as the fourth ligand to zinc, displacing imidazole. Crystallographic analyses were also performed of the binding of AMP and Pt(CN2-/4 to the enzyme. It was found that Arg-47 interacts with the phosphate moiety of the nucleotide. Lys-228 and Arg-47 interact in the platinate complex with the bulky anion, the center of which coincides with the position of the nucleotide phosphate. Some of the cyano-ligands to platinum occupy a crevice between the coenzyme phosphate binding site and the active-site zinc atom. The results of the combined studies on primary and tertiary structures confirm previous suggestions that iodoacetate enters the active site via reversible binding to an anion-binding site. This site interacts with the negatively charged groups of the coenzyme as well as with ADP-ribose, Pt(CN2-/4 and to a lesser extent Au(CN)-/2 and AMP, which therefore prevent the reversible binding of iodoacetate. 1,10-Phenanthroline does not block the binding site but interferes with alkylation presumably by changing the coordination of zinc. Identificationof this labelled residue in both chemical and crystallographic studies correlates the primary and tertiary structures. Characterizations of the active-site zinc region and the general anion-binding site are also presented.  相似文献   

3.
The native dimeric form of methionyl-tRNA synthetase of Escherichia coli contains two zinc atoms per dimer, one per subunit. The bound zinc is retained upon trypsin modification which yields a monomer with one zinc atom. The enzymatic activity of both the dimeric forms is reversibly inhibited by 1,10-phenanthroline but not by its non-chelating analogues. In addition, the native enzyme binds two Mn2+ per dimer with a binding constant of approx. 70 micron but no binding is observed with the trypsin-modified monomer.  相似文献   

4.
The binding of four inhibitors--mercuric ion, 3-acetoxymercuri-4-aminobenzenesulfonamide (AMS), acetazolamide (Diamox), and thiocyanate ion--to human carbonic anhydrase II (HCA II) has been studied with X-ray crystallography. The binding of mercury to HCA II at pH 7.0 has been investigated at 3.1 A resolution. Mercuric ions are observed at both nitrogens in the His-64 ring. One of these sites is pointing toward the zinc ion. The only other binding site for mercury is at Cys-206. The binding of the two sulfonamide inhibitors AMS and Diamox, has been reinvestigated at 2.0 and 3.0 A, respectively. Only the nitrogen of the sulfonamide group binds to the zinc ion replacing the hydroxyl ion. The sulfonamide oxygen closest to the zinc ion is 3.1 A away. Thus the tetrahedral geometry of the zinc is retained, refuting earlier models of a pentacoordinated zinc. The structure of the thiocyanate complex has been investigated at pH 8.5 and the structure has been refined at 1.9 A resolution using the least-squares refinement program PROLSQ. The crystallographic R factor is 17.6%. The zinc ion is pentacoordinated with the anion as well as a water molecule bound in addition to the three histidine residues. The nitrogen atom of the SCN- ion is 1.9 A from the zinc ion but shifted 1.3 A with respect to the hydroxyl ion in the native structure and at van der Waals' distance from the O gamma l atom of Thr-199. This is due to the inability of the O gamma l atom of Thr-199 to serve as a hydrogen bond donor, thus repelling the nonprotonated nitrogen. The SCN- molecule reaches into the deep end of the active site cavity where the sulfur atom has displaced the so-called "deep" water molecule of the native enzyme. The zinc-bound water molecule is 2.2 A from the zinc ion and 2.4 A from the SCN- nitrogen. In addition, this water is hydrogen bonded to the O gamma l atom of Thr-199 and to another water molecule. We have observed that solvent and inhibitor molecules have three possible binding sites on the zinc ion and their significance for the catalysis and inhibition of HCA II will be discussed. All available crystallographic data are consistent with a proposed catalytic mechanism in which both the OH moiety and one oxygen of the substrate HCO3- ion are ligated to the zinc ion.  相似文献   

5.
The three-dimensional structure of a ternary complex of horse liver alcohol dehydrogenase with reduced nicotinamide adenine dinucleotide and the inhibitor dimethyl sulfoxide has been determined to 4.5 A resolution independently of the apoenzyme structure. The electron density maps of both structures have been compared. The two coenzyme binding domains which form the center of the dimer molecular have retained their conformation and orientation within the molecule whereas the catalytic domains rotate and narrow the cleft between the domains. The active site becomes shielded from the solution by a combination of this rotation, local movements of a loop from residues 53 to 57 and coenzyme and substrate binding. Both subunits bind coenzyme and inhibitor to the same extent. The nicotinamide ring of the coenzyme is positioned close to the active zinc atom and the inhibitor is bound to this zinc atom. The difference between the two crystallographically independent subunits is small. The proposed mechanisms of action for the enzyme based on the apoenzyme structure are confirmed by the present investigation.  相似文献   

6.
1. DL-alpha-Bromo-beta(5-imidazolyl)-propionic acid is a potential affinity labelling reagent for metallo-enzymes. It has been used with the alcohol dehydrogenases from liver and yeast. The liver enzyme is chemically modified and inactivated in a Michaelis-Menten-type reaction, where one molecule of the reagent is bound per subunit. The enzyme is protected from the inhibitor in a competitive manner by imidazole, 2,2'-dipyridyl, 1,10-phenanthroline and cyclohexanone, which all combine with the active-site zinc. The protection by chloride, acetate and NADH, which are considered to bind at the general anion binding site, is not strictly competitive. Inactivation has an optimum at pH 8.5. For the liver enzyme, the reagent was found to decrease the initial rate of ethanol oxidation. Prior to the irreversible alkylation of Cys-46, reversible binding is shown to occur at the active-site zinc atom. The yeast enzyme was extremely resistant to the reagent and no specific modification was found. 2. The potential affinity labelling and crosslinking reagent, symmetrical 1,3-dibromoacetone although unstable, has also been used for chemical modification. With the liver enzyme, concentrations below 5 mM gave a reaction of the Michaelis-Menten-type at pH 7.0. Several ligands known to complex with the active-site region protect the enzyme against the reagent. Dibromoacetone gave rapid inactivation of the yeast enzyme. Despite the fact that a pseudo-first-order reaction was observed with respect to enzyme as well as inhibitor, no saturating effect was found. In this work, dibromoacetone reacted like a monofunctional reagent.  相似文献   

7.
The inhibition by 1,10-phenanthroline of E. coli DNA polymerase I has recently been attributed to the formation in the assay mixtures of a unique and effective inhibitor, the 2:1 1,10-phenanthroline-cuprous ion complex (1). We have now found that this coordination complex is also an effective inhibitor of E. coli DNA dependent RNA polymerase, Micrococcus luteus DNA dependent DNA polymerase, and T-4 DNA dependent DNA polymerase. This conclusion is based either on the requirement of a thiol for 1,10-phenanthroline inhibition or on the reversal of 1,10-phenanthroline inhibition by the non-inhibitory cuprous ion specific chelating agent 2,9-dimethyl-1,10-phenanthroline. 2,2′,2″-Terpyridine is also very effective at relieving 1,10-phenanthroline inhibition. The reversal of 1,10-phenanthroline inhibition should be attempted before it is claimed that 1,10-phenanthroline inhibits any polymerases by coordinating a zinc ion at the active site.  相似文献   

8.
A crystallographic study to 2.4-A resolution of the ternary complex between horse liver alcohol dehydrogenase (LADH), NADH, and the effector molecule imidazole (Im) (LADH-NADH-Im) is presented. The ligand binding and the changes in the protein structure due to ligand interactions were interpreted from difference electron density maps calculated with phase angles derived from the refined native enzyme model. The complex crystallizes in the orthorhombic space group C2221, and the enzyme structure remains in the apo conformation in which the active-site cleft is not entirely shielded from the solvent. NADH binds in an extended conformation, and the protein-coenzyme interactions are weaker compared to other complexes. The B-stereospecific side of the nicotinamide ring faces the catalytic center (LADH is known to be an A-side-specific enzyme). However, the reactive carbon atom C4 of the ring has a similar position in relation to active-center groups in this structure compared to LADH complexes where the A side of the ring faces the substrate site. The carboxamide group is situated within hydrogen-bonding distance to the sulfur of Cys-46, which is one of the three protein ligands to the active-site zinc atom. The imidazole molecule is directly ligated to the metal ion, which has a roughly tetrahedral geometry in the complex.  相似文献   

9.
1. Yeast alcohol dehydrogenase (EC 1.1.1.1) is inhibited in the presence of 1,10-phenanthroline. 2. A conformational change in the enzyme's structure is induced by 1,10-phenanthroline, and is abolished in the presence of NADH. 1,10-Phenanthroline binds to the enzyme competitively with respect to NADH, with a stoicheiometry of 2 mol of 1,10-phenanthroline/144000g of enzyme. 3. 1,10-Phenanthroline induces a time-dependent dissociation of Zn2+ from the enzyme, which is in correlation with its inhibitions. 4. Spectrophotometric measurement indicates that the dissociation of half (2 zinc atoms/tetramer) of the total zinc content of the enzyme correlates with the full inhibition of its activity. Measurement of the tightly bound Zn2+ by atomic absorption photometry confirms this. 5. A proposition is advanced that the tetrameric molecule of yeast alcohol dehydrogenase possesses an inherent asymmetry, with four monomeric subunits being arranged in two mutually symmetrical pairs.  相似文献   

10.
We have identified a binding site for tissue inhibitors of metalloproteinases 2 (TIMP-2) on human 72-kDa gelatinase that is distinct from the active site. 72-kDa progelatinase is found in a complex with TIMP-2 in the medium of cultured cells and can be activated with organomercurial compounds to yield a gelatinolytic proteinase that remains bound to TIMP-2. Removal of TIMP-2 from 72-kDa progelatinase by reverse-phase high performance liquid chromatography, followed by reconstitution of the progelatinase in neutral pH buffer, results in autocatalytic activation. When samples of autoactivated gelatinase were blotted onto nitrocellulose, then probed with 125I-TIMP-2, we found a 29-kDa peptide that was capable of binding TIMP-2. We isolated this fragment and identified it as the region of gelatinase from amino acid 414 to the carboxyl terminus in the primary amino acid sequence of progelatinase. This portion of the molecule does not contain the putative zinc- or gelatin-binding sites and is proteolytically inactive. Incubation of 125I-TIMP-2 with 72-kDa progelatinase-TIMP-2 complexes resulted in a concentration-dependent exchange of labeled TIMP-2 with unlabeled TIMP-2, in both the presence and absence of the metalloproteinase inhibitor 1,10-phenanthroline. Saturation binding kinetics for the active site of 72-kDa gelatinase were measured in pools of the 43-kDa active fragment that results from the autoactivation of 72-kDa progelatinase; this fragment has no carboxyl-terminal TIMP-2 binding capability. Binding of 125I-TIMP-2 to the active site was completely inhibited by 1,10-phenanthroline. Binding kinetics for the putative stabilization site were determined with isolated 72-kDa progelatinase. In the presence of 1,10-phenanthroline, 72-kDa progelatinase bound 125I-TIMP-2 but not 125I-TIMP-1. Scatchard analysis yielded an approximate dissociation constant (Kd) of 0.72 nM for the active site and 0.42 nM for the stabilization site.  相似文献   

11.
Substitution of the two rapidly exchanging zinc atoms of liver alcohol dehydrogenase by cobalt is biphasic; replacement by the first cobalt occurs at a rate (t12 = 15 minutes) approximately ten times faster than substitution by the second cobalt atom. The hybrid enzyme containing one gram atom of cobalt has a characteristic visible absorption spectrum which is not perturbed by NADH or 1,10-phenanthroline. The fluorescence of NADH or ε-NAD bound to the hybrid is not quenched. These data indicate a previously unrecognized heterogeneity in the rapidly exchanging zinc atoms; one of the exchange labile zinc atoms is located at a structural metal binding site rather than an active site.  相似文献   

12.
High resolution nuclear magnetic resonance spectroscopy has been used to examine the interaction of plastocyanins from French bean (Phaseolus vulgaris) and cucumber (Cucumis sativus) with three complexes—potassium hexacyanochromate(III), hexamminechromium(III) nitrate and tris(1,10-phenanthroline)-chromium(III) perchlorate—which are analogues of inorganic electron transfer reagents. The results indicate a high degree of specificity in the binding of these complexes and two binding sites on the protein are identified. One binding site is situated close to the copper atom and is clearly suited to outer sphere electron transfer through one of the histidine ligands. The other binding site is more distant from the copper atom and this mechanism cannot be operative. Electron transfer via hydrophobic channels or electron tunneling are possible mechanisms of electron transfer.  相似文献   

13.
A conformational change in the DNA plasmid ColE1 appears to occur upon specific binding of the restriction endonuclease EcoRI. Enzyme association alters the chiral discrimination found in binding metallointercalators to DNA sites. The complexes tris(1,10-phenanthroline)ruthenium(II), Ru(phen)3(2+), tris(4,7-diphenyl-1,10-phenanthroline)ruthenium(II), Ru(DIP)3(2+), and tris(4,7-diphenyl-1,10-phenanthroline)cobalt(III), Co(DIP)3(3+), in general, bind stereoselectively to DNA helices, with enantiomers possessing the delta configuration bound preferentially by right-handed B-DNA. In the presence of EcoRI, however, this enantioselectivity is altered. The chiral intercalators, at micromolar concentrations, inhibit the reaction of EcoRI, but for each enantiomeric pair it is the lambda enantiomer, which binds only poorly to a B-DNA helix, that inhibits EcoRI preferentially. Kinetic studies in the presence of lambda-Ru(DIP)3(2+) indicate that the enzyme inhibition occurs as a result of the lambda enantiomer binding to the enzyme-DNA complex as well as to the free enzyme. Furthermore, photolytic strand cleavage experiments using Co(DIP)3(3+) indicate that the metal complex interacts directly at the protein-bound DNA site. Increasing concentrations of bound EcoRI stimulate photoactivated cleavage of the DNA helix by lambda-Co(DIP)3(3+), until a protein concentration is reached where specific DNA recognition sites are saturated with enzyme. Thus, although lambda-Co(DIP)3(3+) does not bind closely to the DNA in the absence of enzyme, specific binding of EcoRI appears to alter the DNA structure so as to permit the close association of the lambda isomer to the DNA helix. Mapping experiments demonstrate that this association leads to photocleavage of DNA by the cobalt complex at or very close to the EcoRI recognition site.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
A binuclear complex [(phen)Cu(mu-bipp)Cu(phen)](ClO(4))(4), where phen=1,10-phenanthroline and bipp=2,9-bis(2-imidazo[4,5-f][1,10]phenanthroline)-1,10-phenanthroline, has been synthesized and its interaction with calf-thymus DNA in the buffer containing 5mM Tris and 50mM NaCl has been studied by means of electronic absorption titration, luminescence titration and viscometric measurements. The absorbance of the complex in the range of 320-400 nm, which is mainly based on bipp showed no obvious change upon addition of DNA, while the peak at 270 nm, which is determined by both phen and bipp decreased by up to 18%. The emission band of the complex around 360 nm decreased remarkably in presence of DNA. The emission quenching of this complex by [Fe(CN)(6)](4-) was depressed greatly when bound to DNA. The relative viscosity of DNA was increased by this complex more significantly than a bipp directed intercalating reagent. These results suggest that this complex binds to calf thymus DNA by intercalation of the two phenanthrolinecopper terminals. The apparent intrinsic binding constant of the complexes with DNA was 1.6 x 10(4)M(-1) as determined by UV-visible titration.  相似文献   

15.
16.
G M?rdh  D S Auld  B L Vallee 《Biochemistry》1987,26(24):7585-7588
Thyroid hormones are potent, instantaneous, and reversible inhibitors of ethanol oxidation catalyzed by isozymes of class I and II human alcohol dehydrogenase (ADH). None of the thyroid hormones inhibits class III ADH. At pH 7.40 the apparent Ki values vary between 55 and 110 microM for triiodothyronine, 35 and greater than 200 microM for thyroxine, and 10 and 23 microM for triiodothyroacetic acid. The inhibition is of a mixed type toward both NAD+ and ethanol. The binding of the thyroid hormone triiodothyronine to beta 1 gamma 1 ADH is mutually exclusive with 1,10-phenanthroline, 4-methylpyrazole, and testosterone, identifying a binding site(s) for the thyroid hormones, which overlap(s) both the 1,10-phenanthroline site near the active site zinc atom and the testosterone binding site, the latter being a regulatory site on the gamma-subunit-containing isozymes and distinct from their catalytic site. The inhibition by thyroid hormones may have implications for regulation of ADH catalysis of ethanol and alcohols in the intermediary metabolism of dopamine, norepinephrine, and serotonin and in steroid metabolism. In concert with other hormonal regulators, e.g., testosterone, the rate of ADH catalysis is capable of being fine tuned in accord with both substrate and modulator concentrations.  相似文献   

17.
Leukotriene A4 hydrolase: a zinc metalloenzyme   总被引:5,自引:0,他引:5  
Purified human leukotriene A4 hydrolase is shown to contain 1 mol of zinc per mol of enzyme, as determined by atomic absorption spectrometry. The enzyme is inhibited dose-dependently by the chelating agents 8-hydroxy-quinoline-5-sulfonic acid, and 1,10-phenanthroline with KI values of about 2 and 8 x 10(-4) M, respectively, whereas dipicolinic acid and EDTA are ineffective in this respect. The inhibition by 1,10-phenanthroline is time-dependent, and at a concentration of 5 mM, 50% inhibition of enzyme (3 x 10(-7) M) occurs after about 15 min. The zinc atom of leukotriene A4 hydrolase can be removed by dialysis against 1,10-phenanthroline which results in loss of enzyme activity. The catalytic activity is almost completely restored by the addition of stoichiometric amounts of Zn2+ or Co2+.  相似文献   

18.
The membrane-permeable intracellular heavy metal chelator, 1,10-phenanthroline, which prevents progesterone-induced germinal vesicle breakdown (GVBD), would be expected to regulate phosphorylation (activation) of the MAP kinase (MAPK) cascade in Xenopus oocytes. Here, our experiments show that 1,10-phenanthroline itself results in the phosphorylation of MAPK in both oocytes and a cell-free system. In contrast, 1,7-phenanthroline, the nonchelating analogue, had no effect. A supplement of zinc (as a heavy metal) given to 1,10-phenanthroline-loaded oocytes suppressed the stimulatory effects of 1,10-phenanthroline, while 1,10-phenanthroline withdrawal caused dephosphorylation of activated MAPK. Further, treatment with a MEK (a MAPK kinase) inhibitor, PD 098059 or U0126, suppressed 1,10-phenanthroline-stimulated MAPK phosphorylation, indicating that 1,10-phenanthroline can phosphorylate MAPK in a MEK-dependent fashion. Our results suggest that phosphorylation of MAPK by 1,10-phenanthroline depends on the interaction of MEK. Thus, the intracellular heavy metal (zinc) regulates MAPK phosphorylation and 1,10-phenanthroline can serve as a unique tool for investigating MAPK phosphorylation mechanism.  相似文献   

19.
2,2′-Bipyridine and 1,10-phenanthroline can be dihydroxylated by copper-mediated solvothermal reactions to form 3,3′-dihydroxy-2,2′-bipyridine and 2,9-dihydroxy-1,10-phenanthroline, which have been isolated and structurally characterized in the pure form and its hexanuclear zinc complex, respectively.  相似文献   

20.
The crystal structure analysis of horse liver alcohol dehydrogenase has been extended to 2.4 Å resolution. From the corresponding electron density map of the apoenzyme we have determined the positions of the 374 amino acids in the polypeptide chain of each subunit.The coenzyme binding domain of the subunit comprises residues 176 to 318. 45% of these residues are helical and 32% are in the central six-stranded pleated sheet structure. The positions and orientations of the helices with respect to the pleated sheet indicate a possible folding mechanism for this part of the subunit structure. The coenzyme analogue ADP-ribose binds to this domain in a position and orientation very similar to coenzyme binding to lactate dehydrogenase. The adenine part binds in a hydrophobic pocket, the adenosine ribose is hydrogen-bonded to the side chain of Asp223, the pyrophosphate is positioned by interaction with Arg47 and the nicotinamide ribose is 6Å away from the catalytic zinc atom.The catalytic domain is mainly built up from three distinct antiparallel pleated-sheet regions. Residues within this domain provide ligands to the catalytic zinc atom; Cys46, His67 and Cys174. An approximate tetrahedral coordination of this zinc is completed by a water molecule or hydroxyl ion depending on the pH. Residues 95 to 113 form a lobe that binds the second zinc atom of the subunit. This zinc is liganded in a distorted tetrahedral arrangement by four sulphur atoms from the cysteine residues 97, 100, 103 and 111. The lobe forms one side of a significant cleft in the enzyme surface suggesting that this region might constitute a second catalytic centre of unknown function.The two domains of the subunit are separated by a crevice that contains a wide and deep hydrophobic pocket. The catalytic zinc atom is at the bottom of this pocket, with the zinc-bound water molecule projecting out into the pocket. This water molecule is hydrogen-bonded to the side chain of Ser48 which in turn is hydrogen-bonded to His51. The pocket which in all probability is the binding site for the substrate and the nicotinamide moiety of the coenzyme, is lined almost exclusively with hydrophobic side chains. Both subunits contribute residues to each of the two substrate binding pockets of the molecule. The only accessible polar groups in the vicinity of the catalytic centre are Ser48 and Thr178 apart from zinc and the zinc-bound water molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号