首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Our objectives were to compare: (1) conception rates (in early postpartum Japanese Black beef cows) to timed-artificial insemination (timed-AI) among Ovsynch and Ovsynch plus CIDR protocols, and a protocol that used estradiol benzoate (EB) in lieu of the first GnRH of the Ovsynch plus CIDR; and (2) the effects of these protocols on blood concentrations of ovarian steroids. Cows in the control group (Ovsynch; n=35) underwent a standard Ovsynch protocol (GnRH analogue on Day 0, PGF(2 alpha) analogue on Day 7 and GnRH analogue on Day 9), with timed-AI on Day 10, approximately 20 h after the second GnRH treatment. Cows in the Ovsynch+CIDR group (n=31) received a standard Ovsynch protocol plus a CIDR for 7 days (starting on Day 0). Cows in the third treatment group (EB+CIDR+GnRH; n=41) received 2mg of EB on Day 0 in lieu of the first GnRH treatment, followed by the same treatment as in the Ovsynch+CIDR protocol. The conception rate tended to be greater in the Ovsynch+CIDR group (67.7%, P<0.15) and was greater in the EB+CIDR+GnRH (73.2%, P<0.05) and CIDR-combined (both CIDR-treated groups were combined) groups (70.8%, P<0.05) than in the Ovsynch group (48.6%). Plasma progesterone concentrations were higher on Day 7 (P<0.01) and lower on Days 14, 17 and 21 (P<0.001) in the CIDR-combined group than in the Ovsynch group. Plasma estradiol-17beta concentrations were higher on Day 7 in the Ovsynch group of non-pregnant cows than in the CIDR-combined group of non-pregnant cows and in an all-combined group (all treatment groups combined) of pregnant cows (P<0.01). Furthermore, estradiol-17beta concentrations were lower on Day 9 in the Ovsynch and CIDR-combined groups of non-pregnant cows than in the all-combined group of pregnant cows (P<0.05). In conclusion, both protocols using CIDR improved conception rates following timed-AI in early postpartum suckled Japanese Black beef cows relative to the Ovsynch protocol. Treatment with a CIDR may prevent early maturation of follicles observed in non-pregnant cows treated with the Ovsynch protocol, by maintaining elevated blood progesterone concentrations until PGF(2 alpha) treatment.  相似文献   

2.
The primary objective was to determine the effect of supplemental progesterone, administered via an intravaginal device (CIDR), on conception rates to timed-artificial insemination (timed-AI) in postpartum suckled Japanese Black beef cows treated with the Ovsynch protocol. A secondary objective was to compare the effects of treatments on plasma concentrations of progesterone and estradiol. Cows in the control group (Ovsynch, n=38) received a standard Ovsynch protocol (100 microg GnRH analogue on Day 0, 500 microg PGF2alpha analogue on Day 7, and 100 microg GnRH analogue on Day 9), with AI on Day 10, approximately 20 h after the second GnRH treatment. Cows in the treatment group (Ovsynch+CIDR; n=40) received a standard Ovsynch protocol plus a CIDR for 7 days (starting on Day 0). Plasma progesterone concentrations were determined on Days 0, 1, 7, 9, 10, and 17 and plasma estradiol-17beta concentrations were determined on Days 7, 9, 10, and 17. The odds ratio for likelihood of conception was 3.29 times greater (P=0.02) in the Ovsynch+CIDR group compared to Ovsynch group. The conception rate was greater (P=0.03) in the Ovsynch+CIDR group than in the Ovsynch group (72.5% versus 47.7%). Insertion of a CIDR device significantly increased plasma progesterone concentrations only on Days 1 and 7 (P<0.001 and P=0.05, respectively), but had no significant effect on plasma estradiol-17beta concentrations. Including a CIDR with the Ovsynch protocol significantly improved conception rates in postpartum suckled Japanese Black beef cows.  相似文献   

3.
The objective of this study was to compare the effectiveness of the Ovsynch and controlled internal drug releasing (CIDR) protocols under commercial conditions for the treatment of cystic ovarian disease in dairy cattle. A total of 401 lactating dairy cows with ovarian cysts were alternatively allocated to two treatment groups on the day of diagnosis. Cows in the Ovsynch group were treated with GnRH on Day 0, PGF2alpha on Day 7, GnRH on Day 9, with timed insemination 16-20 h later. Cows in the CIDR group were treated with a CIDR insert on Day 0 for 7 days; on Day 7, the CIDR was removed, and cows were treated with PGF2alpha. All cows in the CIDR group were observed for estrus and cows exhibiting estrus within 7 days following removal of the CIDR and PGF2alpha administration were inseminated. The outcomes of interest for this experiment were the likelihood to be inseminated, return to cyclicity (determined by a CL on Day 21), conception and pregnancy rates. Data for these variables were analyzed using logistic regression. The percentage of cows inseminated in the Ovsynch and CIDR groups were 82 and 44%, respectively. Cows in the Ovsynch group were 5.8 times more likely to be inseminated than cows in the CIDR group. Cows with a low BCS were 0.48 times less likely to be inseminated than cows with a high BCS. The percentage of cows with a CL on Day 21 for the Ovsynch and CIDR groups was 83 and 79%, respectively (P > 0.05). Cows with a low BCS were 0.49 times less likely to have CL on Day 21 than cows with a high BCS. Conception and pregnancy rates for cows in the Ovsynch group were 18.3 and 14.4%, respectively. Conception and pregnancy rates for cows in the CIDR group were 23.1 and 9.5%, respectively. There was no significant differences between conception or pregnancy rates in cows in both groups. Primiparous cows were 2.6 times more likely to conceive than multiparous cows. In conclusion, the results of this study suggested that fertility was not different between cows with ovarian cysts treated with either the Ovsynch or the CIDR protocols in this dairy herd. In addition, primiparous cows had an increased likelihood for conception compared to multiparous cows, and cows with a low BCS were less likely to be inseminated or have a CL on Day 21, regardless of treatment.  相似文献   

4.
The aim of this study was to evaluate the effect of presynchronization with or without the detection of estrus on first service pregnancy per artificial insemination (P/AI) and on Ovsynch outcome in lactating dairy cows. A total of 511 cows were divided randomly but unevenly into 3 treatment groups at 44 to 50 days in milk (DIM). Ovsynch was started at the same time (69 to 75 DIM) in all three groups. Cows in the Ovsynch group (CON, N = 126) received no presynchronization before Ovsynch, and all cows were bred by timed AI (TAI). Cows in the presynchronization with estrus detection (PED) and the presynchronization with only TAI (PTAI) groups received two doses of prostaglandin F (PGF) 14 days apart, starting at 44 to 50 DIM. Ovsynch was initiated 11 days after the second PGF treatment. Cows in the PED group (N = 267) received AI if estrus was detected after either PGF injection. Cows that were not determined to be in estrus after PGF injection received Ovsynch and TAI. Cows in the PTAI group (N = 118) were not inseminated to estrus, with all cows receiving TAI after Ovsynch. The ovulatory response to the first GnRH injection administered as part of Ovsynch differed (P = 0.002) among treatment groups (83.1% in PTAI, 72.6% in PED, and 62.7% in CON). However, the ovulatory response to the second injection of GnRH during Ovsynch did not differ among treatment groups. Of the 267 PED cows, a total of 132 (49.4%) exhibited estrus and were inseminated. The P/AI at the 31-day pregnancy diagnosis was similar between the cows in the PED group with AI after estrus detection (37.9%; 50/132) and those bred with TAI (34.1%; 46/135). The P/AI in the CON group (46.8%; 59/126) was greater (P < 0.05) than that in the PED group (36.0%; 96/267). In addition, the P/AI in the CON group was greater (P = 0.04) than that in the PED cows receiving TAI (34.1%; 46/135) but less than that in the PED cows bred to estrus (37.9%; 50/132) (P = 0.16). At the 31-day pregnancy diagnosis, the cows in the PTAI group had greater P/AI (55.9%; 66/118) than both those in the PED group (P < 0.01; either estrus or TAI) and those in the CON group (P = 0.08). Thus, presynchronization with PGF (PTAI) increased the ovulatory response to Ovsynch and improved P/AI in dairy cows. Interestingly, the breeding of cows to estrus during presynchronization reduced fertility to the TAI and overall fertility, including cows bred to estrus and TAI. These results indicate that maximal fertility is obtained when all cows receive TAI after the presynchronization protocol.  相似文献   

5.
Pregnancy per artificial insemination (AI) was evaluated in dairy cows (Bos taurus) subjected to synchronization and resynchronization for timed AI (TAI). Cows (n = 718) received prostaglandin F (PGF) on Days –38 and –24 (Days 39 and 53 postpartum), gonadotropin-releasing hormone (GnRH) on Day –10, PGF on Day –3, and GnRH and TAI on Day 0. Between Days –10 and –3, cows received a progesterone intravaginal insert (CIDR group) or no CIDR (Control group). Between Days 14 and 23, cows received a CIDR (Resynch CIDR group) or no CIDR (Resynch control group), GnRH on Day 23, with pregnancy diagnosis on Day 30. Cows in estrus (between Days 0 and 30) were re-inseminated at detected estrus (RIDE). Nonpregnant cows received PGF on Day 30 and GnRH and TAI on Day 33. Plasma progesterone was determined to be low or high on Days –24 and –10. Pregnancy rates were evaluated 30 and 55 d after AI. The CIDR insert included in the Presynch-Ovsynch protocol did not increase overall pregnancy per AI for first service (36.1% and 33.6% for CIDR; 34.1% and 28.8% for Control) but did decrease pregnancy loss (7.0% for CIDR and 15.6% for Control). The CIDR insert increased pregnancy per AI in cows with high progesterone at the time the CIDR insert was applied. Administration of a CIDR insert between Days 14 and 23 of the estrous cycle after first service did not increase overall pregnancy per AI to second service (24.7% and 22.7% for Resynch CIDR; 28.6% and 25.3% for Resynch control). For second service, RIDE cows had lower pregnancy rates in the Resynch CIDR group than in the Resynch control group. Cows with a CL (corpus luteum) at Day 30 had higher pregnancy rates in the Resynch CIDR group than those in the Resynch control group.  相似文献   

6.
The main aims of the present study were to compare the pregnancy rate (PR), regular returns-to-estrus, and calving interval of a CO-Synch + controlled internal drug release (CIDR) device, commonly used to synchronize ovulations in beef cows, with the classical Ovsynch protocol in high-producing dairy cows. Holstein-Friesian cows (n = 128) from six commercial dairy herds, ≥40 days postpartum and not previously inseminated, were randomly assigned to one of two treatments. Cows submitted to Ovsynch protocol (group OS as control group; n = 66) received 10 μg of a GnRH analogue 7 days before and 48 hours after 25 mg PGF, followed by artificial insemination (AI) 16 hours after the second GnRH administration. Cows submitted to CO-Synch + CIDR (1.38 g of progesterone) inserted for 7 days beginning at the first GnRH administration (group CoS + CD; n = 62) had the second administration of GnRH concurrent with AI, 64 hours after CIDR removal/PGF administration. Nonpregnant cows with return-to-estrus between 18 and 24 days after first AI were reinseminated (second AI). Logistic regressions were used to analyze PR and returns-to-estrus. No effect of group or herd was observed in PR at first timed AI. However, the sum of cows pregnant at first AI and nonpregnant cows with regular returns-to-estrus and the total PR (first + second AI) were influenced by group treatment. Overall, cows of group CoS + CD (total PR = 56.5%) were 2.1 times more likely to became pregnant after AI and until first regular returns-to-estrus than cows of group OS. The calving interval was lower in group CoS + CD (425.9 ± 78.8 days; ±SD) than in group OS (475.3 ± 83.7 days). The CO-Synch + CIDR protocol was reliable to use in dairy herds and provided reproductive advantages when compared with Ovsynch protocol.  相似文献   

7.
Two experiments were conducted to investigate the effects of timing of prostaglandin F2(alpha) (PGF2(alpha)) administration, controlled internal drug release device (CIDR) removal and second gonodotropin releasing hormone (GnRH) administration on the pregnancy outcome in CIDR-based synchronization protocols. In Experiment 1, suckled Angus crossbred beef cows (n = 580) were given 100 microg of GnRH+a CIDR on Day 0. Cows in Group 1 (modified Ovsynch-P) received 25 mg of dinoprost (PGF2(alpha)) and CIDR device removal on Day 8 (AM), 100 microg of GnRH 36 h later on Day 9 (p.m.), and fixed-time AI (FTAI) 16 h later on Day 10 (47.5+/-1.1 h after PGF2(alpha)). Cows in Group 2 (Ovsynch-P) received 25mg of PGF2(alpha) and CIDR device removal on Day 7 (p.m.), 100 microg of GnRH 48 h later on Day 9 and FTAI 16 h later on Day 10 (66.6+/-1.2 h after PGF2(alpha)). Pregnancy rates were 56.5% (170/301) for Group 1 and 55.6% (155/279) for Group 2, respectively (P = 0.47). In Experiment 2, beef cows (n=734) were synchronized with 100 microg of GnRH+CIDR on Day 0, 25 mg of PGF2(alpha) and CIDR device removal on Day 7 and either 100 microg of GnRH 48 h later on Day 9 (Ovsynch-P) and FTAI 16 h later on Day 10 (64.9+/-3.3 h from PGF2(alpha)) or 100 microg of GnRH on Day 10 (CO-Synch-P) at the time of AI (63.2+/-4.2 h from PGF2(alpha)). Pregnancy rates were 48.8% (180/369) for Ovsynch-P and 44.7% (163/365) for CO-synch-P groups, respectively (P = 0.11). In both experiments, there was a locationxtreatment interaction (P<0.05); pregnancy rates between locations were different (P < 0.05) in the Ovsynch-P group. In conclusion, in a CIDR-based Ovsynch synchronization protocol, delaying administration of prostaglandin and CIDR removal by 12 h, or timing of the second GnRH by 16 h, did not affect pregnancy rates to FTAI. Therefore, there may be an opportunity to make changes in synchronization protocols with out adversely affecting FTAI pregnancy rates.  相似文献   

8.
The objective was to compare pregnancy rates and pregnancy losses in lactating dairy cows that were diagnosed not pregnant and re-inseminated following either the Ovsynch or Heatsynch protocols. Also evaluated were the effects of stages of the estrous cycle, ovarian cysts and anestrus on pregnancy rates for both treatments. Non-pregnant cows (n = 332) as determined by ultrasonography on day 27 post-AI (study day 0) were divided into two groups. Cows in the Ovsynch group (n = 166) received GnRH on day 0, PGF2alpha on day 7, GnRH on day 9, and timed AI (TAI) 16 h later (day 10). Cows in the Heatsynch group (n = 166) received GnRH on day 0, PGF2alpha on day 7, estradiol cypionate (ECP) on day 8, and TAI 48 h later (day 10). Cows detected in estrus on days 8 and 9 were inseminated and included in the study. On day 0, cows were classified according to different stages of the estrous cycle, or presence of ovarian cysts or anestrus. Pregnancy rates were evaluated 27, 45 and 90 days after resynchronized AI. Overall, there was no difference in pregnancy rates on days 27, 45 and 90 between cows in the Ovsynch (25.2, 17.5, and 13.9%) and Heatsynch (25.8, 19.9, and 16.1%) groups. There was no difference in pregnancy losses from days 27 to 45 and days 45 to 90 for cows in the Ovsynch (25.0 and 17.9%) and Heatsynch (14.7 and 10.3%) groups. However, pregnancy rates were increased when cows in metestrus were subjected to the Heatsynch protocol and cows with ovarian cysts were subjected to the Ovsynch protocol.  相似文献   

9.
Ovulatory response to the first GnRH of Ovsynch is a very important factor for determining the outcome of a successful synchronization. The aim of the present study was to develop a protocol to increase the percentage of cows that ovulated in response to the first administration of Ovsynch. This study was designed to compare ovulation rates in response to GnRH or hCG at the beginning of Ovsynch and to evaluate the effects of this manipulation on pregnancy. Cows (n = 371) with corpus luteum (CL) and at least one follicle greater than 10 mm diameter size on either ovary were included in the study. Cows were divided into two groups. The Ovsynch protocol began with GnRH (10 μg) in the GPG group (n = 161; GnRH-7d-PGF2α-56h-GnRH-18h-AI), whereas in the HPG group, the first GnRH of the Ovsynch was replaced with 1500 IU hCG (n = 210; hCG-7d-PGF2α-56h-GnRH-18h-AI). Ovarian ultrasonography was performed at the times of GnRH or hCG and of PGF2α administration, at the time of artificial insemination (AI) and seven days after AI, to determine ovulation. Maximal follicle size at the beginning of the Ovsynch did not affect on response to the first GnRH/hCG treatment. Conception rate (31 d) was 0.6 times more likely to be higher (P < 0.001) in cows that responded to the first hormonal administration of Ovsynch than in those that did not respond (95% CI = 0.29-0.71). Conception rate was found to be different between the HPG (37.6%, 79/210) and the GPG groups (48.4%, 78/161). Thus, beginning of the Ovsynch protocol with hCG did not increase ovulation and conception rate in lactating dairy cows, suggesting that hCG is not a suitable replacement of the first GnRH of Ovsynch. However, our results do show that increasing the ovulation rate in response to the first hormonal administration of Ovsynch can have a significant effect on conception rate.  相似文献   

10.
The objective was to compare the timed AI pregnancy rate of Angus-cross beef cows synchronized with a 5-d CO-Synch + CIDR (a progesterone-releasing intravaginal insert) protocol and given two doses of PGF (PGF), with the first dose in conjunction with CIDR withdrawal on Day 5, and the second dose given either early or late relative to the first dose. All cows (N = 1782) at 16 locations received 100 μg of GnRH + CIDR on Day 0. Cows received 25 mg of PGF concurrent with removal of the CIDR on Day 5, and were randomly allocated within locations to receive a second PGF either early (N = 881; from 0.5 to 3.9 h) or late (N = 901; from 4.5 to 8.15 h) relative to the first PGF treatment. On Day 8 (72 h after CIDR removal), all cows were inseminated and concurrently given 100 μg of GnRH. Cows were fitted with a pressure-sensitive mount detection device (Kamar) at CIDR removal. Cows were observed twice daily through Day 7 and at the time of AI on Day 8 for estrus and Kamar status (estrus - red, partial and lost Kamar versus no estrus - white Kamar) was recorded. Accounting for location, season, AI sire, cow observed in estrus or not at or before timed AI, and treatment by cows observed in estrus interaction, timed AI pregnancy rates were greater for the late (6.45 ± 0.03 h) than the early (2.25 ± 0.05 h) interval, 57.2 vs. 52.7%, respectively (P < 0.05). In conclusion, cows that received the second PGF late after the first PGF on the day of CIDR removal in a 5 d CO-Synch + CIDR synchronization protocol had significantly higher timed AI pregnancy rates than those receiving the second PGF early after the first PGF.  相似文献   

11.
Xu ZZ  Burton LJ 《Theriogenology》1998,50(6):905-915
In a previous study we showed that estrus synchronization with 2 treatments of PGF2 alpha 13 d apart reduced conception rate at the synchronized estrus and that this reduction occurred mainly in cows in the early luteal phase at the second PGF2 alpha treatment. The objective of the present study was to determine the efficacy of a synchronization regimen in which PGF2 alpha was administered during the mid- to late-luteal phase to cows that had previously been synchronized with progesterone. Spring-calving cows from 6 dairy herds were used in this study. On Day -32 (Day 1 = the start of the breeding season), cows that had calved 2 or more weeks ago were randomly assigned to a synchronization (S, n = 732) or control (C, n = 731) group. Cows in Group S were treated with an intravaginal progesterone device (CIDR) for 12 d from Day -32 to Day -20, while those in Group C were left untreated. Similar percentages of cows in Group S (80.6%) and C (82.9%) had cycled by Day -7. The CIDR treatment synchronized the onset of estrus, resulting in 92.9% of cows in estrus being detected within 7 d after CIDR removal. Cows in Group S that had cycled by Day -7 were treated with PGF2 alpha (25 mg, i.m., Lutalyse) on Day -2. Cows in both groups that were anestrous on Day -7 were treated with a combination of progesterone and estradiol benzoate (EB) to induce estrus and ovulation (CIDR and a 10 mg EB capsule on Day -7, CIDR removal on Day -2, and injection of 1 mg EB 48 h after CIDR removal). The PGF2 alpha treatment synchronized the onset of estrus in 87.5% of the cows. Group S and C cows had similar conception rates to first (61.0 vs 58.3%) and second (58.4 vs 60.9%) AI; similar pregnancy rates over the AI period (82.8 vs 79.2%) and over the whole breeding season (91.9 vs 90.6%); and required a similar number of services per pregnancy to AI (1.7 vs 1.8). The interval from the start of the breeding season to conception for cows conceiving to AI or to combined AI and natural mating was shorter (P < 0.001) by 5.7 and 6.2 d, respectively, for the Group S cows. It is concluded that the treatment regimen tested in the present study achieved satisfactory estrus synchronization, had no detrimental effect on fertility at the synchronized estrus, and shortened the interval from start of the breeding season to conception.  相似文献   

12.
Pregnancy rates were compared in lactating dairy cows (n = 1083) assigned to protocols for resynchronization of ovulation based on stages of the estrous cycle, or presence of ovarian cysts or anestrus. Cows were detected not pregnant by ultrasonography 30 d after a previous AI (study day 0) and classified as diestrus, metestrus, proestrus, with ovarian cysts or anestrus. Cows in diestrus (January-May) were assigned to either Ovsynch (GnRH day 0, PGF2alpha day 7, GnRH day 9, and timed-AI [TAI] 16 h later; n = 96), or Quicksynch (PGF2alpha day 0, estradiol cypionate [ECP] day 1, AI at detected estrus [AIDE] on day 2, or TAI on day 3; n = 96). Cows in diestrus (June-December) were assigned to either Ovsynch (n = 156) or Modified Quicksynch (PGF2alpha day 0, ECP day 1, AIDE days 2 and 3, and to Ovsynch on day 4 if not detected in estrus; n = 142). Cows in metestrus were assigned either to Ovsynch (n = 68), Heatsynch (GnRH day 0, PGF2alpha day 7, ECP day 8, AIDE day 9, or TAI day 10; n = 62), or GnRH + Ovsynch (GnRH on day 0, followed by Ovsynch on day 8; n = 64). Cows in proestrus, with ovarian cysts, or anestrus were assigned to either Ovsynch (proestrus n = 89, ovarian cysts n = 97, anestrus n = 8) or GnRH + Ovsynch (proestrus n = 87, ovarian cysts n = 109, anestrus n = 9). Pregnancy rate was evaluated 30, 55 and 90 d after resynchronized AI. For cows in diestrus (January-May), pregnancy rates were higher for Ovsynch (35.9, 29.2 and 26.0%) than for Quicksynch (21.7, 16.7 and 15.6%). For cows in diestrus (June-December), pregnancy rates were similar for Ovsynch (34.4, 24.0 and 23.6%) and Modified Quicksynch (27.1, 26.2 and 21.6%). For cows in metestrus, pregnancy rates were higher for GnRH + Ovsynch (33.3, 24.5 and 20.3%) than for Heatsynch (20.3, 12.9 and 9.8%). For cows with ovarian cysts, pregnancy rates were higher for GnRH + Ovsynch (30.3, 26.6 and 22.9%) than for Ovsynch (20.2, 18.5 and 14.7%). Assignment to resynchronization protocols based on the stages of the estrous cycle, or presence of ovarian cysts improved pregnancy rates.  相似文献   

13.
This experiment was conducted to compare pregnancy rates in postpartum beef cows resulting from fixed-time AI (FTAI) after treatment with controlled internal drug release (CIDR)-based protocols to synchronize estrus. Cows assigned to the Show-Me-Synch (n=167) protocol received a CIDR from d 0 to 14, and prostaglandin F(2α) (PGF(2α)) on d 30. Cows assigned to 7-d CO-Synch+CIDR (n=177) received a CIDR and gonadotropin releasing hormone (GnRH) on d 23. On d 30, CIDRs were removed and PGF(2α) was administered. Blood sampling occurred on d -10 and 0 of treatment to determine estrous cyclicity status (progesterone ≥0.5 ng/mL estrous cycling). Treatments were balanced on age, DPP and BCS. Estrous detection was performed using HeatWatch from PGF(2α) to FTAI. Artificial insemination was performed at predetermined fixed times (72 h, Show-Me-Synch; 66h, 7-d CO-Synch+CIDR) and all cows were administered GnRH at FTAI. This experiment was conducted over a two year period; no differences were found between years so the data were pooled for further analysis. Pregnancy rate resulting from FTAI did not differ (P>0.10) between technicians or AI sires. Pregnancy rate resulting from FTAI was similar between treatments (P=0.20); however, cows that exhibited estrus prior to FTAI had a higher pregnancy rate (P<0.01) than for those that did not. Pregnancy rate at the end of the breeding period was similar between treatments (P=0.28). In summary, FTAI pregnancy rates were similar among postpartum beef cows following treatment with either a short- or long-term CIDR-based estrous synchronization protocol.  相似文献   

14.
The objectives were to evaluate the pattern of re-insemination, pregnancy outcomes to re-insemination in estrus and at fixed time, and economic outcomes of lactating Holstein cows submitted to three resynchronization protocols. Cows were enrolled in the Experiment at 32 ± 3 d after pre-enrollment Artificial Insemination (AI), 7 d before pregnancy diagnosis, and randomly assigned to three resynchronization protocols. All cows diagnosed not pregnant at 39 ± 3 d after pre-enrollment AI were submitted to the Cosynch72 (Day 0 GnRH, Day 7 prostaglandin F, and Day 10 GnRH and fixed time AI). Cows assigned to the control treatment received no further treatment, cows assigned to the GGPG treatment received a GnRH injection on Day −7, and cows assigned to the CIDR treatment received a controlled internal drug release (CIDR) insert containing 1.38 g of progesterone from Days 0-7. Cows observed in estrus were re-inseminated on the same day. Pregnancy was diagnosed at 39 ± 3 and 67 ± 3 d after re-insemination. Costs of the resynchronization protocols were calculated for individual cows enrolled in the study and pregnancies generated were given a value of $275. The GGPG treatment resulted in the slowest (P ≤ 0.06) rate of re-insemination. Overall pregnancy per AI (P/AI) at 39 ± 3 (P = 0.50) and 67 ± 3 (P = 0.49) d after re-insemination were not affected by treatment. Although cost of the control protocol was (P < 0.01) the smallest, return per cow resynchronized was (P < 0.01) greater for GGPG and CIDR protocols. We concluded that presynchronizing the estrous cycle of cows with GnRH or treating cows with a CIDR insert during resynchronization altered the pattern of re-insemination and improved the economic return of resynchronized cows.  相似文献   

15.
The objectives were to evaluate changes in endometrial thickness (ET) near the time of a synchronized ovulation and to assess the relationship of ET and fertility in lactating Holstein cows, with or without estrogen supplementation near timed ovulation. In Experiment 1, eight cows were examined with transrectal ultrasonography, once daily for 5 d, starting concurrent with PGF (PGF) treatment during an Ovsynch protocol (GnRH - 7d - PGF - 72h - GnRH). The ET increased rapidly after PGF (from ∼7 to ∼9.5 mm), remained > 9 mm for the next 2 d, then decreased to ∼8 and 7.4 mm, 1 and 2 d, respectively, after the second GnRH. In Experiment 2,642 cows (total of 758 breedings) were subjected to an Ovsynch protocol (GnRH - 7d - PGF - 56h - GnRH - 16h - timed AI); cows received either no further treatment (Ovsynch) or 1 mg of estradiol-17β im 8 h before the second GnRH (Ovsynch + E2). For both uterine horns, ET was measured (∼2 cm from the internal uterine body bifurcation) before E2 treatment (48 h after PGF). In cows with ET ≤ 8 mm vs > 8 mm, rates of ovulation were 86.0% (n = 136) vs 98.1% (n = 472; P < 0.01), respectively, and percentage pregnant per AI (P/AI) were 26.7% (n = 146) vs 42.7% (n = 524; P < 0.01). Treatment with E2 increased P/AI in cows with lower ET (Ovsynch + E2 = 37.0% vs Ovsynch = 23.3%; P = 0.07), but did not significantly improve P/AI in cows with ET > 8 mm (Ovsynch + E2 = 43.4% vs Ovsynch = 42.1%). In conclusion, a single ultrasonographic evaluation of ET in Holstein cows 48 h after PGF treatment in an Ovsynch program was a good predictor of ovulation failure and pregnancy success. Perhaps poor fertility in cows with reduced ET was low peripheral E2 concentrations near AI, poor P4 priming, or luteolysis failure during timed AI procedures.  相似文献   

16.
Peters MW  Pursley JR 《Theriogenology》2003,60(6):1197-1204
Synchronization of ovulation (Ovsynch) is an effective method for controlling time of first and subsequent AI in lactating dairy cows. However, validation of the original Ovsynch program did not include testing the optimal time to deliver the final treatment of GnRH. In Experiment 1, the effect of administering the final dose of GnRH on the same day as prostaglandin F2alpha (PGF2alpha) administration was tested. Lactating dairy cows (n = 218) were randomly assigned to receive either Ovsynch (OV; cows were given 100 microg GnRH, then 7 days later cows were administered 25mg PGF2alpha followed by a subsequent treatment of 100 microg GnRH 2 days after the PGF2alpha or the modified version of Ovsynch (MOV; cows were given 100 microg GnRH, then 7 days later cows were administered 25mg PGF2alpha followed immediately with 100 microg GnRH). In both treatment groups, AI took place 16 h after the final administration of GnRH. In Experiment 2, cows (n = 457) were randomly divided into four treatment groups that were administered GnRH 0, 12, 24 and 36 h following PGF(2alpha). The 36 h treatment group served as control. Pregnancy diagnoses were performed by palpation per rectum 36 days post-AI in Experiment 1 and by ultrasonography on Day 28 in Experiment 2. In Experiment 1, pregnancy rate/AI (PR/AI) was greater (P<0.025) in OV versus MOV. In a subset (n = 85), percentage of cows with both synchronized ovulations and regressed CL following administration of PGF2alpha were similar (P>0.1) between OV and MOV, respectively. All cows that became pregnant in the MOV subset group showed regression of the CL in response to the PGF2alpha. Diameter of the ovulatory follicle at the time of final GnRH administration was greater (P<0.05) in OV versus MOV. In Experiment 2, the synchronization rate was once again similar among treatments (P>0.28). There was a linear effect of treatment on follicle size (P<0.05) and PR/AI (P<0.0001) as time increased between administration of PGF2alpha and GnRH, with the greatest PR/AI at 36 h. There was a trend for a greater percentage of cows with short luteal phases in the 0 h group (P<0.10). In summary, delivering the final treatment of GnRH of the Ovsynch program at the same time as PGF2alpha, or in the 24h following PGF2alpha, resulted in lower fertility compared to controls.  相似文献   

17.
The objective was to compare pregnancy rates to resynchronization and timed AI (TAI) protocols in lactating dairy cows that received GnRH at 23 d and were diagnosed not pregnant at 30 d after the pre-enrollment AI. Nonpregnant cows (624) at ultrasonography on day 30 (study day 0) were classified as diestrus (74.8%), metestrus (5.6%) and without a CL (19.5%). Cows in diestrus were assigned either to the GnRH group (PGF2alpha on day 0, GnRH on day 2 and TAI 16 h later, n = 238) or the estradiol cypionate (ECP) group (PGF2alpha on day 0, ECP on day 1, and TAI 36 h later, n = 229). Cows in metestrus were assigned to the Modified Heatsynch Group (GnRH on day 0, PGF(2alpha) on day 7, ECP on day 8 and TAI on day 9, n = 35). Cows without a CL (n = 122) were classified either as proestrus (10.6%), ovarian cysts (7.5%) or anestrus (1.4%), and assigned to factorial treatments (i.e., use of GnRH versus CIDR) to either the GnRH group (GnRH on day 0, PGF2alpha on day 7, GnRH on day 9 and TAI 16 h later, n = 28), the CIDR group (CIDR insert from days 0 to 7, PGF2alpha on day 7, GnRH on day 9 and TAI 16 h later, n = 34), the GnRH + CIDR group (GnRH on day 0, CIDR insert from days 0 to 7, PGF2alpha on day 7, GnRH on day 9 and TAI 16h later, n = 32), and the control group (PGF2alpha on day 7, GnRH on day 9 and TAI 16 h later, n = 28). For cows without a CL, plasma P4 concentrations were determined on days 0, 7, 10 and 17 and ovarian structures determined on days 0, 7 and 17. Pregnancy rates were evaluated at 30, 55 and 90 d after the resynchronized AI. For cows in diestrus, there were no differences in pregnancy rates on days 30, 55 and 90 for cows in the GnRH (27.5, 26.5 and 24.2%) or ECP (29.1, 25.5 and 24.1%) groups. In addition, there were no differences in pregnancy losses between days 30 and 55 and 55 and 90 between the GnRH (7.0 and 8.6%) and ECP (9.8 and 5.4%) groups. For cows without a CL, GnRH on day 0 increased the proportion of cows with a CL on days 7 and 17 and plasma P4 concentration on day 17 in cows with ovarian cysts but not for cows in proestrus. The CIDR insert increased pregnancy rate in cows with ovarian cysts but reduced pregnancy rate for cows in proestrus.  相似文献   

18.
Kim UH  Suh GH  Nam HW  Kang HG  Kim IH 《Theriogenology》2005,63(1):260-268
This study evaluated the effect of GnRH or estradiol benzoate (EB) on follicular wave emergence and progesterone concentrations, and following a second injection of GnRH, synchrony of ovulation, and pregnancy rates in a controlled internal drug release (CIDR)-based timed AI (TAI) protocol in lactating Holstein cows. Cows received a CIDR device without hormone (controls), with an injection of 100 microg GnRH or with an injection of 4 mg EB. Thereafter, all received PGF(2 alpha) at the time of CIDR removal on Day 7, GnRH on Day 9, and TAI 16 h later. Follicular wave emergence occurred within 7 days in 19/20 GnRH-treated, 14/20 EB-treated and 5/20 control cows (P < 0.05). The interval to wave emergence was the shorter and less variable (P < 0.01) in the GnRH group (2.9 +/- 0.2 days) than in the EB (4.7 +/- 0.5 days) or control (4.8 +/- 1.0 days) groups. Serum progesterone concentrations from Days 4 to 7 were higher (P < 0.01) in the GnRH-treated cows that ovulated than in those that did not ovulate, or in control and EB-treated cows. The diameters of dominant follicle on Day 7 differed among groups (P < 0.01), and the diameters of the preovulatory follicle on Day 9 were larger (P < 0.01) in the control and GnRH groups than in the EB group. The proportion of cows with synchronized ovulations did not differ among groups, but pregnancy rate to TAI was higher (P < 0.05) in the GnRH group (65%; 13/20) than in the control (30%; 6/20) or EB (35%; 7/20) groups. Results suggest that GnRH treatment of CIDR-treated lactating Holstein cows will result in synchronous follicular wave emergence, large preovulatory follicles and synchronous ovulation, resulting in an acceptable pregnancy rates to TAI.  相似文献   

19.
An experiment was designed to evaluate a) the effect of a progesterone-estradiol combined treatment on ovarian follicular dynamics in postpartum beef cows, and b) ovulation and the subsequent luteal activity after short-term calf removal and GnRH agonist treatment. Multiparous Angus cows (25 to 40 d after calving) were assigned to the following treatments: untreated (Control, n = 9); short term calf removal (CR, n = 8); progesterone (CIDR, n = 9) and progesterone plus estradiol-17 beta (CIDR + E-17 beta, n = 9). Progesterone treatment (CIDR) lasted 8 d and the day of device insertion was considered as Day 0. Cows in the CIDR + E-17 beta group also received an i.m. injection of 5 mg of E-17 beta on Day 1. On Day 8, calves were removed for 48 h (CR, CIDR and CIDR + E-17 beta groups) and 6 h before the end of calf removal these cows also received an i.m. injection of 8 micrograms of Busereline (GnRH). Anestrus was confirmed in all cows by the absence of luteal tissue and progesterone concentrations below 1 ng ml-1 at the beginning of the experiment. Although mean (+/- SEM) interval from the beginning of the experiment (Day 0) to wave emergence did not differ (P > 0.05) among treatment groups (Control, 1.9 +/- 1.0, range -2 to 7 d; CR, 3.9 +/- 0.7, range 0 to 6 d; CIDR, 2.8 +/- 0.5, range 0 to 4 d and CIDR + E-17 beta, 4.1 +/- 0.2, range 3 to 5), the variability was less (P < 0.05) in the CIDR + E-17 beta group. The proportion of cows ovulating 24 to 48 h after GnRH administration tended (P = 0.08) to be higher in cows from CIDR + E-17 beta group (8/9) than in those of CR (5/8) or CIDR (6/9) groups, respectively and was associated with a higher proportion (P < 0.05) of CIDR + E-17 beta treated cows (9/9) that had a dominant follicle in the growing/early static phase at the time of GnRH treatment compared to the other GnRH treated groups (5/8, and 4/9 for CR and CIDR groups, respectively). Two CR cows ovulated 0-24 h after GnRH and only one Control cow ovulated the day before the time of GnRH administration. Cows pretreated with progesterone had longer (P < 0.05) luteal lifespan (CIDR, 14.5 +/- 0.7, CIDR + E-17 beta, 13.9 +/- 0.6 d) than those not treated with CIDR (Control, 5, CR, 4.0 +/- 0.4). We conclude that progesterone plus estradiol treatment results in tightly synchronized wave emergence and high GnRH-induced ovulation rate with normal luteal activity in postpartum beef cattle.  相似文献   

20.
Ovsynch protocols are used to increase service rate and decrease days open and cullings for infertility. Recent reports have indicated better results after Ovsynch in primiparous than in older cows. However, this was not observed in all investigations on the subject. The objective of the study was to evaluate differences between primiparous and multiparous cows after synchronization of ovulation with an Ovsynch protocol in six trials. A total of 1584 cows (583 primiparous and 1001 multiparous cows, respectively) on three dairy farms were synchronized with an Ovsynch protocol consisting of a GnRH-analogue at Days 0 and 9, and a prostaglandin F(2alpha) analogue on Day 7. AI was carried out in all cows 16-20 h after the last treatment. Cows were categorized into primiparous and multiparous cows for analysis. Conception rate (CR) to timed AI, to further AI, overall conception rate and proportion of cows pregnant by 200 days in milk were compared between the age groups. Finally, two logistic regression models were calculated with conception to first service and conception by 200 DIM as the outcome variables. Independent variables were trial (categorical) and age group (primiparous versus multiparous). Conception rates to TAI were higher in primiparous than in older cows (37.9% versus 31.6%, P=0.015). Likewise pregnancy rates by 200 DIM were higher in primiparous cows (81.8% versus 75.4%, P=0.003). However, the extent of the difference varied between trials. Results indicate that Ovsynch protocols are more effective in primiparous than in older cows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号