首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To maintain genomic integrity, telomeres must undergo switches from a protected state to an accessible state that allows telomerase recruitment. To better understand how telomere accessibility is regulated in fission yeast, we analysed cell cycle‐dependent recruitment of telomere‐specific proteins (telomerase Trt1, Taz1, Rap1, Pot1 and Stn1), DNA replication proteins (DNA polymerases, MCM, RPA), checkpoint protein Rad26 and DNA repair protein Nbs1 to telomeres. Quantitative chromatin immunoprecipitation studies revealed that MCM, Nbs1 and Stn1 could be recruited to telomeres in the absence of telomere replication in S‐phase. In contrast, Trt1, Pot1, RPA and Rad26 failed to efficiently associate with telomeres unless telomeres are actively replicated. Unexpectedly, the leading strand DNA polymerase ε (Polε) arrived at telomeres earlier than the lagging strand DNA polymerases α (Polα) and δ (Polδ). Recruitment of RPA and Rad26 to telomeres matched arrival of DNA Polε, whereas S‐phase specific recruitment of Trt1, Pot1 and Stn1 matched arrival of DNA Polα. Thus, the conversion of telomere states involves an unanticipated intermediate step where lagging strand synthesis is delayed until telomerase is recruited.  相似文献   

2.
The activity ratio of DNA polymerases delta and alpha in calf thymus was found to be invariably 1:1, irrespective of extraction procedure (8 types) and subcellular localization (cytoplasm, nucleus and microsomes). This was established by separation of the two forms by hydroxyapatite chromatography and by their response to specific inhibitors and monoclonal antibodies. This finding supports the dimeric DNA polymerase model [(1980) J. Biol. Chem. 255, 4290-4303], which proposes that DNA polymerases delta and alpha act coordinately as leading and lagging strand enzymes, respectively, at the replication fork.  相似文献   

3.
G Prelich  B Stillman 《Cell》1988,53(1):117-126
Proliferating cell nuclear antigen (PCNA) is a cell cycle and growth regulated protein required for replication of SV40 DNA in vitro. Its function was investigated by comparison of the replication products synthesized in its presence or absence. In the completely reconstituted replication system that contains PCNA, DNA synthesis initiates at the origin and proceeds bidirectionally on both leading and lagging strands around the template DNA to yield duplex, circular daughter molecules. In contrast, in the absence of PCNA, early replicative intermediates containing short nascent strands accumulate. Replication forks continue bidirectionally from the origin, but surprisingly, only lagging strand products are synthesized. Thus two stages of DNA synthesis have been defined, with the second stage requiring PCNA for coordinated leading and lagging strand synthesis at the replication fork. We suggest that during eukaryotic chromosome replication there is a switch to a PCNA-dependent elongation stage that requires two distinct DNA polymerases.  相似文献   

4.
Duplex DNA is replicated in the 5'-3' direction by coordinated copying of leading and lagging strand templates with somewhat different proteins and mechanics, providing the potential for differences in the fidelity of replication of the two strands. We previously showed that in Saccharomyces cerevisiae, active replication origins establish a strand bias in the rate of base substitutions resulting from replication of unrepaired 8-oxo-guanine (GO) in DNA. Lower mutagenesis was associated with replicating lagging strand templates. Here, we test the hypothesis that this bias is due to more efficient repair of lagging stand mismatches by measuring mutation rates in ogg1 strains with a reporter allele in two orientations at loci on opposite sides of a replication origin on chromosome III. We compare a MMR-proficient strain to strains deleted for the MMR genes MSH2, MSH6, MLH1, or EXOI. Loss of MMR reduces the strand bias by preferentially increasing mutagenesis for lagging strand replication. We conclude that GO-A mismatches generated during lagging strand replication are more efficiently repaired. This is consistent with the hypothesis that 5' ends of Okazaki fragments and PCNA, present at high density during lagging strand replication, are used as strand discrimination signals for mismatch repair in vivo.  相似文献   

5.
A number of DNA repair disorders are known to cause neurological problems. These disorders can be broadly characterised into early developmental, mid-to-late developmental or progressive. The exact developmental processes that are affected can influence disease pathology, with symptoms ranging from early embryonic lethality to late-onset ataxia. The category these diseases belong to depends on the frequency of lesions arising in the brain, the role of the defective repair pathway, and the nature of the mutation within the patient. Using observations from patients and transgenic mice, we discuss the importance of double strand break repair during neuroprogenitor proliferation and brain development and the repair of single stranded lesions in neuronal function and maintenance.  相似文献   

6.
B P Glover  C S McHenry 《Cell》2001,105(7):925-934
The DNA Polymerase III holoenzyme forms initiation complexes on primed DNA in an ATP-dependent reaction. We demonstrate that the nonhydrolyzable ATP analog, ATP gamma S, supports the formation of an isolable leading strand complex that loads and replicates the lagging strand only in the presence of ATP, beta, and the single-stranded DNA binding protein. The single endogenous DnaX complex within DNA polymerase III holoenzyme assembles beta onto both the leading and lagging strand polymerases by an ordered mechanism. The dimeric replication complex disassembles in the opposite order from which it assembled. Upon ATP gamma S-induced dissociation, the leading strand polymerase is refractory to disassembly allowing cycling to occur exclusively on the lagging strand. These results establish holoenzyme as an intrinsic asymmetric dimer with distinguishable leading and lagging strand polymerases.  相似文献   

7.
S Jin  D T Weaver 《The EMBO journal》1997,16(22):6874-6885
Heterodimers of the 70 and 80 kDa Ku autoantigens (Ku70 and Ku80) activate the DNA-dependent protein kinase (DNA-PK). Mutations in any of the three subunits of this protein kinase (Ku70, Ku80 and DNA-PKcs) lead to sensitivity to ionizing radiation (IR) and to DNA double-strand breaks, and V(D)J recombination product formation defects. Here we show that the IR repair, DNA end binding and DNA-PK defects in Ku70-/- embryonic stem cells can be counteracted by introducing epitope-tagged wild-type Ku70 cDNA. Truncations and chimeras of Ku70 were used to identify the regions necessary for DNA end binding and IR repair. Site-specific mutational analysis revealed a core region of Ku70 responsible for DNA end binding and heterodimerization. The propensity for Ku70 to associate with Ku80 and to bind DNA correlates with the ability to activate DNA-PK, although two mutants showed that the roles of Ku70 in DNA-PK activation and IR repair are separate. Mutation of DNA-PK autophosphorylation sites and other structural motifs in Ku70 showed that these sites are not necessary for IR repair in vivo. These studies reveal Ku70 features required for double-strand break repair.  相似文献   

8.
XRCC1 and DNA strand break repair   总被引:16,自引:0,他引:16  
Caldecott KW 《DNA Repair》2003,2(9):955-969
DNA single-strand breaks can arise indirectly, as normal intermediates of DNA base excision repair, or directly from damage to deoxyribose. Because single-strand breaks are induced by endogenous reactive molecules such as reactive oxygen species, these lesions pose a continuous threat to genetic integrity. XRCC1 protein plays a major role in facilitating the repair of single-strand breaks in mammalian cells, via an ability to interact with multiple enzymatic components of repair reactions. Here, the protein-protein interactions facilitated by XRCC1, and the repair processes in which these interactions operate, are reviewed. Models for the repair of single-strand breaks during base excision repair and at direct breaks are presented.  相似文献   

9.
Dianov GL  Parsons JL 《DNA Repair》2007,6(4):454-460
DNA damaging agents generated as a consequence of endogenous metabolism or via exogenous factors can produce a wide variety of lesions in DNA. These include base damage, sites of base loss (abasic sites) and single strand breaks (SSBs). Moreover, reactive oxygen species (ROS) create more diversity by generating SSBs containing modified 3'-ends, such as those containing phosphate, phosphoglycolate and oxidative base damage. Ionising radiation also generates DNA base lesions in close proximity to SSBs. The majority of these non-bulky lesions in DNA are repaired by proteins involved in the base excision repair (BER) pathway. It is apparent that due to the complexity of these lesions, they may require individual subsets of BER proteins for repair. However, the mechanism unravelling the required enzymes and directing damage-specific repair of SSBs is unclear. In this review we will discuss recent studies that identify new enzymes and activities involved in the repair of SSBs containing modified ends and in particular outline the possible mechanisms involved in the co-ordinated repair of "damaged" SSBs that can not be resealed directly and require preliminary processing.  相似文献   

10.
DNA double strand break repair in mammalian cells   总被引:24,自引:0,他引:24  
Human cells can process DNA double-strand breaks (DSBs) by either homology directed or non-homologous repair pathways. Defects in components of DSB repair pathways are associated with a predisposition to cancer. The products of the BRCA1 and BRCA2 genes, which normally confer protection against breast cancer, are involved in homology-directed DSB repair. Defects in another homology-directed pathway, single-strand annealing, are associated with genome instability and cancer predisposition in the Nijmegen breakage syndrome and a radiation-sensitive ataxia-telangiectasia-like syndrome. Many DSB repair proteins also participate in the signaling pathways which underlie the cell's response to DSBs.  相似文献   

11.
In the current model of DNA SSBR, PARP1 is regarded as the sensor of single-strand breaks (SSBs). However, biochemical studies have implicated LIG3 as another possible SSB sensor. Using a laser micro-irradiation protocol that predominantly generates SSBs, we were able to demonstrate that PARP1 is dispensable for the accumulation of different single-strand break repair (SSBR) proteins at sites of DNA damage in live cells. Furthermore, we show in live cells for the first time that LIG3 plays a role in mediating the accumulation of the SSBR proteins XRCC1 and PNKP at sites of DNA damage. Importantly, the accumulation of LIG3 at sites of DNA damage did not require the BRCT domain-mediated interaction with XRCC1. We were able to show that the N-terminal ZnF domain of LIG3 plays a key role in the enzyme''s SSB sensing function. Finally, we provide cellular evidence that LIG3 and not PARP1 acts as the sensor for DNA damage caused by the topoisomerase I inhibitor, irinotecan. Our results support the existence of a second damage-sensing mechanism in SSBR involving the detection of nicks in the genome by LIG3.  相似文献   

12.
13.
14.
To investigate the mechanism of double strand DNA break formation in mammalian cells, an in vitro assay was established using closed circular DNA containing two uracils on opposite DNA strands (18 and 30 base pairs apart) and extracts prepared from human cells. In this assay, formation of double strand breaks was detected by the conversion of circular DNA to linear DNA. Approximately 4-fold more double strand DNA breaks were produced by extracts from cells deficient in DNA ligase I (46BR) relative to those produced by extracts from control cells (MRC5, derived from a clinically normal individual). In parallel with the amount of double strand DNA breaks, extracts from 46BR cells produced longer repair patches (up to 24 bases in length) than those from MRC5 cells (typically <5 bases long). When purified DNA ligase I was added to 46BR extracts to complement the DNA ligase deficiency, only a negligible difference was found between the amount of doublestrand DNA breaks or the repair patch size generated in the assay relative to MRC5 extracts. Together, our data demonstrate that double strand DNA breaks are produced through formation of DNA repair patches. We refer to this process of double strand break formation as the "DNA repair patch-mediated pathway."  相似文献   

15.
To better understand aberrant simian virus 40 DNA replication intermediates produced by exposure of infected cells to the anticancer drug camptothecin, we compared them to forms produced by S1 nuclease digestion of normal viral replication intermediates. All of the major forms were identical in both cases. Thus the aberrant viral replicating forms in camptothecin-treated cells result from DNA strand breaks at replication forks. Linear simian virus 40 forms which are produced by camptothecin exposure during viral replication were identified as detached DNA replication bubbles. This indicates that double strand DNA breaks caused by camptothecin-topoisomerase I complexes occur at both leading and lagging strand replication forks in vivo.  相似文献   

16.
In this study, we analyzed double-strand break (DSB) repair in Arabidopsis (Arabidopsis thaliana) at various developmental stages. To analyze DSB repair, we used a homologous recombination (HR) and point mutation reversion assays based on nonfunctional beta-glucuronidase reporter genes. Activation of the reporter gene through HR or point mutation reversion resulted in the appearance of blue sectors after histochemical staining. Scoring of these sectors at 3-d intervals from 2 to 31 d post germination (dpg) revealed that, although there was a 100-fold increase in the number of genomes per plant, the recombination frequency only increased 30-fold. This translates to a recombination rate at 31 dpg (2.77 x 10(-8)) being only 30% of the recombination rate at 2 dpg (9.14 x 10(-8)). Conversely, the mutation frequency increased nearly 180-fold, resulting in a 1.8-fold increase in mutation rate from 2 to 31 dpg. Additional analysis of DSBs over the early developmental stages revealed a substantial increase in the number of strand breaks per unit of DNA. Furthermore, RNA analysis of Ku70 and Rad51, two key enzymes in two different DSB repair pathways, and further protein analysis of Ku70 revealed an increase in Ku70 levels and a decrease of Rad51 levels in the developing plants. These data suggest that DSB repair mechanisms are developmentally regulated in Arabidopsis, whereby the proportion of breaks repaired via HR substantially decreases as the plants mature.  相似文献   

17.
Now that we have a good understanding of the DNA double strand break (DSB) repair mechanisms and DSB-induced damage signalling, attention is focusing on the changes to the chromatin environment needed for efficient DSB repair. Mutations in chromatin remodelling complexes have been identified in cancers, making it important to evaluate how they impact upon genomic stability. Our current understanding of the DSB repair pathways suggests that each one has distinct requirements for chromatin remodelling. Moreover, restricting the extent of chromatin modifications could be a significant factor regulating the decision of pathway usage. In this review, we evaluate the distinct DSB repair pathways for their potential need for chromatin remodelling and review the roles of ATP-driven chromatin remodellers in the pathways.  相似文献   

18.
Saccharomyces cerevisiae DNA polymerase δ (Pol δ) and DNA polymerase ε (Pol ε) are replicative DNA polymerases at the replication fork. Both enzymes are stimulated by PCNA, although to different levels. To understand why and to explore the interaction with PCNA, we compared Pol δ and Pol ε in physical interactions with PCNA and nucleic acids (with or without RPA), and in functional assays measuring activity and processivity. Using surface plasmon resonance technique, we show that Pol ε has a high affinity for DNA, but a low affinity for PCNA. In contrast, Pol δ has a low affinity for DNA and a high affinity for PCNA. The true processivity of Pol δ and Pol ε was measured for the first time in the presence of RPA, PCNA and RFC on single-stranded DNA. Remarkably, in the presence of PCNA, the processivity of Pol δ and Pol ε on RPA-coated DNA is comparable. Finally, more PCNA molecules were found on the template after it was replicated by Pol ε when compared to Pol δ. We conclude that Pol ε and Pol δ exhibit comparable processivity, but are loaded on the primer-end via different mechanisms.  相似文献   

19.
Organisms are constantly exposed to various environmental insults which could adversely affect the stability of their genome. To protect their genomes against the harmful effect of these environmental insults, organisms have evolved highly diverse and efficient repair mechanisms. Defective DNA repair processes can lead to various kinds of chromosomal and developmental abnormalities. RecQ helicases are a family of evolutionarily conserved, DNA unwinding proteins which are actively engaged in various DNA metabolic processes, telomere maintenance and genome stability. Bacteria and lower eukaryotes, like yeast, have only one RecQ homolog, whereas higher eukaryotes including humans possess multiple RecQ helicases. These multiple RecQ helicases have redundant and/or non-redundant functions depending on the types of DNA damage and DNA repair pathways. Humans have five different RecQ helicases and defects in three of them cause autosomal recessive diseases leading to various kinds of cancer predisposition and/or aging phenotypes. Emerging evidence also suggests that the RecQ helicases have important roles in telomere maintenance. This review mainly focuses on recent knowledge about the roles of RecQ helicases in DNA double strand break repair and telomere maintenance which are important in preserving genome integrity.  相似文献   

20.
The non-homologous end-joining (NHEJ) pathway repairs DNA double-strand breaks (DSBs) in all domains of life. Archaea and bacteria utilize a conserved set of multifunctional proteins in a pathway termed Archaeo-Prokaryotic (AP) NHEJ that facilitates DSB repair. Archaeal NHEJ polymerases (Pol) are capable of strand displacement synthesis, whilst filling DNA gaps or partially annealed DNA ends, which can give rise to unligatable intermediates. However, an associated NHEJ phosphoesterase (PE) resects these products to ensure that efficient ligation occurs. Here, we describe the crystal structures of these archaeal (Methanocella paludicola) NHEJ nuclease and polymerase enzymes, demonstrating their strict structural conservation with their bacterial NHEJ counterparts. Structural analysis, in conjunction with biochemical studies, has uncovered the molecular basis for DNA strand displacement synthesis in AP-NHEJ, revealing the mechanisms that enable Pol and PE to displace annealed bases to facilitate their respective roles in DSB repair.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号