首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report on the identification of an A.(G.G.G.G).A hexad pairing alignment which involves recognition of the exposed minor groove of opposing guanines within a G.G.G.G tetrad through sheared G.A mismatch formation. This unexpected hexad pairing alignment was identified for the d(G-G-A-G-G-A-G) sequence in 150 mM Na(+) (or K(+)) cation solution where four symmetry-related strands align into a novel dimeric motif. Each symmetric half of the dimeric "hexad" motif is composed of two strands and contains a stacked array of an A.(G.G.G.G).A hexad, a G.G.G.G tetrad, and an A.A mismatch. Each strand in the hexad motif contains two successive turns, that together define an S-shaped double chain reversal fold, which connects the two G-G steps aligned parallel to each other along adjacent edges of the quadruplex. Our studies also establish a novel structural transition for the d(G-G-A-G-G-A-N) sequence, N=T and G, from an "arrowhead" motif stabilized through cross-strand stacking and mismatch formation in 10 mM Na(+) solution (reported previously), to a dimeric hexad motif stabilized by extensive inter-subunit stacking of symmetry-related A.(G.G.G.G).A hexads in 150 mM Na(+) solution. Potential monovalent cation binding sites within the arrowhead and hexad motifs have been probed by a combination of Brownian dynamics and unconstrained molecular dynamics calculations. We could not identify stable monovalent cation-binding sites in the low salt arrowhead motif. By contrast, five electronegative pockets were identified in the moderate salt dimeric hexad motif. Three of these are involved in cation binding sites sandwiched between G.G.G. G tetrad planes and two others, are involved in water-mediated cation binding sites spanning the unoccupied grooves associated with the adjacent stacked A.(G.G.G.G).A hexads. Our demonstration of A.(G. G.G.G).A hexad formation opens opportunities for the design of adenine-rich G-quadruplex-interacting oligomers that could potentially target base edges of stacked G.G.G.G tetrads. Such an approach could complement current efforts to design groove-binding and intercalating ligands that target G-quadruplexes in attempts designed to block the activity of the enzyme telomerase.  相似文献   

2.
Using CD and NMR, we determined the structure of an RNA oligomer, r(GGAGGUUUUGGAGG) (R14), comprising two GGAGG segments joined by a UUUU segment. A modified quadruplex structure was observed for r(GGAGGUUUUGGAGG) in solution even in the absence of K(+). An unusually stable dimeric RNA quadruplex architecture formed from two strands of r(GGAGGUUUUGGAGG) at low K(+) concentration is reported here. In each strand of r(GGAGGUUUUGGAGG), two sets of successive turns in the GGAGG segments and turns at both ends of the UUUU loops drive four G-G steps to align in a parallel manner, a core with two stacked G-tetrads being formed. Two adenine bases bind to two edges of one G:G:G:G tetrad through the sheared G:A mismatch augmenting the tetrad into a G:G(:A):G:G(:A) hexad. Thus, one molecule of r(GGAGGUUUUGGAGG) folds into a modified quadruplex comprising a G:G:G:G tetrad, a UUUU double-chain reversal loop and a G:G(:A):G:G(:A) hexad. Two such molecules further associate by stacking through the dimeric hexad-hexad interface with a rotational symmetry. The ribose rings of most nucleotides take S (close to C2'-endo) puckering, which is unusual for an RNA. K(+) can increase the stability of this quadruplex structure; the number of bound K(+) was estimated from the results of the titration experiment. Besides G:G and G:A mismatches, a network of hydrogen bonds including O4'-NH(2) and C-H..O hydrogen bonds, and the extensive base stacking contribute to the high thermodynamic stability of R14. Our results could provide the stereochemical and thermodynamic basis for elucidating the biological role of the GGAGG-containing RNA segments abundantly existing in various RNAs. Relevance to quadruplex-mediated mRNA-FMRP binding and HIV-1 genome RNA dimerization is discussed.  相似文献   

3.
The structure of d(GGAGGAGGAGGA) containing four tandem repeats of a GGA triplet sequence has been determined under physiological K(+) conditions. d(GGAGGAGGAGGA) folds into an intramolecular quadruplex composed of a G:G:G:G tetrad and a G(:A):G(:A):G(:A):G heptad. Four G-G segments of d(GGAGGAGGAGGA) are aligned parallel with each other due to six successive turns of the main chain at each of the GGA and GAGG segments. Two quadruplexes form a dimer stabilized through a stacking interaction between the heptads of the two quadruplexes. Comparison of the structure of d(GGAGGAGGAGGA) with the reported structure of d(GGAGGAN) (N=G or T) containing two tandem repeats of the GGA triplet revealed that although the two structures resemble each other to some extent, the extension of the repeats of the GGA triplet leads to distinct structural differences: intramolecular quadruplex for 12-mer versus intermolecular quadruplex for 7-mer; heptad versus hexad in the quadruplex; and three sheared G:A base-pairs versus two sheared G:A base-pairs plus one A:A base-pair per quadruplex. It was also suggested that d(GGAGGAGGAGGA) forms a similar quadruplex under low salt concentration conditions. This is in contrast to the case of d(GGAGGAN) (N=G or T), which forms a duplex under low salt concentration conditions. On the basis of these results, the structure of naturally occurring GGA triplet repeat DNA is discussed.  相似文献   

4.
We have designed a DNA sequence, d(G-G-G-T-T-C-A-G-G), which dimerizes to form a 2-fold symmetric G-quadruplex in which G(syn). G(anti).G(syn).G(anti) tetrads are sandwiched between all trans G. (C-A) triads. The NMR-based solution structural analysis was greatly aided by monitoring hydrogen bond alignments across N-H...N and N-H...O==C hydrogen bonds within the triad and tetrad, in a uniformly ((13)C,(15)N)-labeled sample of the d(G-G-G-T-T-C-A-G-G) sequence. The solution structure establishes that the guanine base-pairs with the cytosine through Watson-Crick G.C pair formation and with adenine through sheared G.A mismatch formation within the G.(C-A) triad. A model of triad DNA was constructed that contains the experimentally determined G.(C-A) triad alignment as the repeating stacked unit.  相似文献   

5.
E Wang  S Malek  J Feigon 《Biochemistry》1992,31(20):4838-4846
A 32-base DNA oligonucleotide has been studied by one- and two-dimensional 1H NMR spectroscopy and is shown to form a stable, pyr.pur.pyr, intramolecular triple helical structure, with a four C loop and a TATA loop connecting the Watson-Crick- and Hoogsteen-paired strands, respectively. This triplex contains five T.A.T base triplets, two C+.G.C base triplets, and an unusual G.T.A base triplet which disrupts the pyr.pur.pyr motif. The G.T.A triplet consists of a Watson-Crick T.A base pair, with the T situated in the "purine strand" and the A situated in the "pyrimidine strand" and a G situated in the Hoogsteen-base-paired "pyrimidine strand" hydrogen bonded to the T. The base-pairing structure of the G.T.A triplet has been investigated and has been found to involve a single hydrogen bond from the guanine amino group to the O4 carbonyl of the thymine, leaving the guanine imino proton free. The specific amino proton involved in the hydrogen bond is the H2(2) proton. This orients the guanine such that its sugar is near the thymine methyl group. The guanine sugar adopts an N-type (C3'-endo) sugar pucker in this triplet. The stability of the G.T.A triplet within pyr.pur.pyr triplexes is discussed.  相似文献   

6.
F Aboul-ela  D Koh  I Tinoco  Jr    F H Martin 《Nucleic acids research》1985,13(13):4811-4824
Thermodynamic parameters for double strand formation have been measured for the sixteen double helices of the sequence dCA3XA3G.dCT3YT3G, with each of the bases A, C, G and T at the positions labelled X and Y. The results are analyzed in terms of nearest-neighbors and are compared with thermodynamic parameters for RNA secondary structure. At room temperature the sequence (Formula: see text) is more stable than (Formula: see text) and is similar in stability to (Formula: see text) and (Formula: see text) are least stable. At higher temperatures the sequences containing a G.C base pair become more stable than those containing only A.T. All molecules containing mismatches are destabilized with respect to those with only Watson-Crick pairing, but there is a wide range of destabilization. At room temperature the most stable mismatches are those containing guanine (G.T, G.G, G.A); the least stable contain cytosine (C.A, C.C). At higher temperatures pyrimidine-pyrimidine mismatches become the least stable.  相似文献   

7.
Extracts of two human glioma cell lines (lacking O6-methylguanine DNA-methyltransferase) (i.e., A1235 and its alkylation-resistant derivative A1235-MR4) were examined for their ability to execute strand incision at different base mismatches in model (45-bp) DNA. These heteroduplex substrates were of the same sequence except for the presence, at the same site, of one of three mispairs: G:T, O6-methylguanine:T (m6G:T), and G:U. The parental (A1235) extract, when supplemented with ATP and human thymine DNA glycosylase (TDG), acted proficiently on all three substrates, incising immediately 5' to the mismatched thymine or uracil residue. In contrast, the derivative extract, under the same conditions, recognized only the G:U substrate. The activity of the A1235 extract toward the G:T (or m6G:T) substrate was markedly reduced in the absence of ATP, whereas the G:U substrate was incised rapidly by both extracts irrespective of the addition of ATP. These combined data confirm and extend our earlier findings demonstrating that human cells possess two G:T incision activities, one efficient and ATP-dependent and the other inefficient and ATP-independent. The derivative extract lacks the former activity but retains the latter activity. In substrate competition assays, the G:U substrate inhibited the ATP-dependent G:T incision activity to a greater extent than did the G:T substrate itself. Given the well-known substrate preference of TDG for G:U as compared to G:T, this unexpected result implies that TDG may be an integral component of the ATP-dependent G:T incision machinery in human cells. Finally, the base 5' to the mismatched G in the G:T mispair conferred sequence preference on the A1235 extract in the presence of ATP and TDG, with a pyrimidine (especially cytosine) being much favored over a purine. This latter observation suggests that the ATP-dependent G:T incision activity is designed to repair deaminated 5-methycytosine lesions in CpG islands, the methylation of which is linked to control of gene expression.  相似文献   

8.
Webba da Silva M 《Biochemistry》2003,42(49):14356-14365
The structure formed by the DNA sequence d(GCGGTGGAT) in a 100 mM Na(+) solution has been determined using molecular dynamics calculations constrained by distance and dihedral restraints derived from NMR experiments performed at isotopic natural abundance. The sequence folds into a dimer of dimers. Each symmetry-related half contains two parallel stranded G:G:G:G tetrads flanked by an A:A mismatch and by four-stranded G:C:G:C tetrads. Each of the two juxtaposed G:C:G:C tetrads is composed of alternating antiparallel strands from the two halves of the dimer. For each single strand, a thymine intersperses a double chain reversal connecting the juxtaposed G:G:G:G tetrads. This architecture has potential implications in genetic recombination. It suggests a pathway for oligomerization involving association of quadruplex entities through GpC steps.  相似文献   

9.
Distortions in the DNA sequence such as damages or mispairs are specifically recognized and processed by DNA repair enzymes. A particular challenge for the enzymatic specificity is the recognition of a wrongly-placed native nucleotide such as thymine in T:G mispairs. An important step of substrate binding which is observed in many repair proteins is the flipping of the target base out of the DNA helix into the enzyme’s active site. In this work we investigate how much the intrinsic dynamics of mispaired DNA is changed compared to canonical DNA. Our molecular dynamics simulations of DNA with and without T:G mispairs show significant differences in the conformation of paired and mispaired DNA. The wobble pair T:G shows local distortions such as twist, shear and stretch which deviate from canonical B form values. Moreover, the T:G mispair is found to be kinetically less stable, exhibiting two states with respect to base opening: a closed state comparable to the canonical base pairs, and a more open state, indicating a proneness for base flip. In addition, we observe that the thymine base in a T:G mispair is significantly more probable to be flipped than thymine in a T:A pair or cytosine in a C:G pair. Such local deformations and in particular the existence of a second, more-open state can be speculated to help the target-site recognition by repair enzymes.  相似文献   

10.
DNA polymerase activity is essential for replication, recombination, repair, and mutagenesis. All DNA polymerases studied so far from any biological source synthesize DNA by the Watson-Crick base-pairing rule, incorporating A, G, C, and T opposite the templates T, C, G, and A, respectively. Non-Watson-Crick base pairs would lead to mutations. In this report, we describe the ninth human DNA polymerase, Pol(iota), encoded by the RAD30B gene. We show that human Pol(iota) violates the Watson-Crick base-pairing rule opposite template T. During base selection, human Pol(iota) preferred T-G base pairing, leading to G incorporation opposite template T. The resulting T-G base pair was less efficiently extended by human Pol(iota) compared to the Watson-Crick base pairs. Consequently, DNA synthesis frequently aborted opposite template T, a property we designated the T stop. This T stop restricted human Pol(iota) to a very short stretch of DNA synthesis. Furthermore, kinetic analyses show that human Pol(iota) copies template C with extraordinarily low fidelity, misincorporating T, A, and C with unprecedented frequencies of 1/9, 1/10, and 1/11, respectively. Human Pol(iota) incorporated one nucleotide opposite a template abasic site more efficiently than opposite a template T, suggesting a role for human Pol(iota) in DNA lesion bypass. The unique features of preferential G incorporation opposite template T and T stop suggest that DNA Pol(iota) may additionally play a specialized function in human biology.  相似文献   

11.
G:T mispairs in DNA originate spontaneously via deamination of 5-methylcytosine. Such mispairs are restored to normal G:C pairs by both E. coli K strains and human cells. In this study we have analyzed the repair by human cell extracts of G:T mismatches in various DNA contexts. We performed two sets of experiments. In the first, repair was sequence specific in that G:T mispairs at CpG sites at four different CpG sites were repaired, but a G:T mismatch at a GpG site was not. Cytosine hemimethylation did not block repair of a substrate containing a CpG/GpT mismatch. In the second set of experiments, substrates with a G:T mismatch at a fixed position were constructed with an A, T, G, or C 5' to the mismatched G, and alterations in the complementary strand to allow otherwise perfect Watson-Crick pairing. All were incised just 5' to the mismatched T and competed for repair incision with a G:T substrate in which a C was 5' to the mismatched G. Thus human G:T mismatch activity shows sequence specificity, incising G:T mismatched pairs at some DNA sites, but not at others. At an incisable site, however, incision is little influenced by the base 5' to the mismatched G.  相似文献   

12.
We report on an NMR study of unlabeled and uniformly 13C,15N-labeled d(GAGCAGGT) sequence in 1 M NaCl solution, conditions under which it forms a head-to-head dimeric quadruplex containing sequentially stacked G-C-G-C, G-G-G-G and A-T-A-T tetrads. We have identified, for the first time, a slipped A-T-A-T tetrad alignment, involving recognition of Watson-Crick A-T pairs along the major groove edges of opposing adenine residues. Strikingly, both Watson-Crick G-C and A-T pairings within the direct G-C-G-C and slipped A-T-A-T tetrads, respectively, occur between rather than within hairpin subunits of the dimeric d(GAGCAGGT) quadruplex. The hairpin turns in the head-to-head dimeric quadruplex involve single adenine residues and adds to our knowledge of chain reversal involving edgewise loops in DNA quadruplexes. Our structural studies, together with those from other laboratories, definitively establish that DNA quadruplex formation is not restricted to G(n) repeat sequences, with their characteristic stacked uniform G-G-G-G tetrad architectures. Rather, the quadruplex fold is a more versatile and robust architecture, accessible to a range of mixed sequences, with the potential to facilitate G-C-G-C and A-T-A-T tetrad through major and minor groove alignment, in addition to G-G-G-G tetrad formation. The definitive experimental identification of such major groove-aligned mixed A-T-A-T and G-C-G-C tetrads within a quadruplex scaffold, has important implications for the potential alignment of duplex segments during homologous recombination.  相似文献   

13.
Escherichia coli contains a base mismatch correction system called VSP repair that is known to correct T:G mismatches to C:G when they occur in certain sequence contexts. The preferred sequence context for this process is the site for methylation by the E. coli DNA cytosine methylase (Dcm). For this reason, VSP repair is thought to counteract potential mutagenic effects of deamination of 5-methylcytosine to thymine. We have developed a genetic reversion assay that quantitates the frequency of C to T mutations at Dcm sites and the removal of such mutations by DNA repair processes. Using this assay, we have studied the repair of U: G mismatches in DNA to C: G and have found that VSP repair is capable of correcting these mismatches. Although VSP repair substantially affects the reversion frequency, it may not be as efficient at correcting U: G mismatches as the uracil DNA glycosylase-mediated repair process.  相似文献   

14.
Coman D  Russu IM 《Biochemistry》2002,41(13):4407-4414
Recognition of specific sites in double-helical DNA by triplex-forming oligonucleotides has been limited until recently to sites containing homopurine-homopyrimidine sequences. G*TA and T*CG triads, in which TA and CG base pairs are specifically recognized by guanine or by thymine, have now extended this recognition code to DNA target sites of mixed base sequences. In the present work, we have obtained a characterization of the stabilities of G*TA and T*CG triads, and of the effects of these triads upon canonical triads, in triple-helical DNA. The three DNA triplexes investigated are formed by the folding of the 31-mers d(GAAXAGGT(5)CCTYTTCT(5)CTTZTCC) with X = G, T, or C, Y = C, A, or G, and Z = C, G, or T. We have measured the exchange rates of imino protons in each triad of the three triplexes using nuclear magnetic resonance spectroscopy. The exchange rates are used to map the local free energy of structural stabilization in each triplex. The results indicate that the stability of Watson-Crick base pairs in the G*TA and T*CG triads is comparable to that of Watson-Crick base pairs in canonical triads. The presence of G*TA and T*CG triads, however, destabilizes neighboring canonical triads, two or three positions removed from the G*TA/T*CG site. Moreover, the long-range destabilizing effects induced by the T*CG triad are larger than those induced by the G*TA triad. These findings reveal the molecular basis for the lower overall stability of G*TA- and T*CG-containing triplexes.  相似文献   

15.
Thermodynamic measurements are reported for 51 DNA duplexes with A.A, C.C, G.G, and T.T single mismatches in all possible Watson-Crick contexts. These measurements were used to test the applicability of the nearest-neighbor model and to calculate the 16 unique nearest-neighbor parameters for the 4 single like with like base mismatches next to a Watson-Crick pair. The observed trend in stabilities of mismatches at 37 degrees C is G.G > T.T approximately A.A > C.C. The observed stability trend for the closing Watson-Crick pair on the 5' side of the mismatch is G.C >/= C.G >/= A.T >/= T.A. The mismatch contribution to duplex stability ranges from -2.22 kcal/mol for GGC.GGC to +2.66 kcal/mol for ACT.ACT. The mismatch nearest-neighbor parameters predict the measured thermodynamics with average deviations of DeltaG degrees 37 = 3.3%, DeltaH degrees = 7. 4%, DeltaS degrees = 8.1%, and TM = 1.1 degrees C. The imino proton region of 1-D NMR spectra shows that G.G and T.T mismatches form hydrogen-bonded structures that vary depending on the Watson-Crick context. The data reported here combined with our previous work provide for the first time a complete set of thermodynamic parameters for molecular recognition of DNA by DNA with or without single internal mismatches. The results are useful for primer design and understanding the mechanism of triplet repeat diseases.  相似文献   

16.
Escherichia coli contains a base mismatch correction system called VSP repair that is known to correct T:G mismatches to C:G when they occur in certain sequence contexts. The preferred sequence context for this process is the site for methylation by the E. coli DNA cytosine methylase (Dcm). For this reason, VSP repair is thought to counteract potential mutagenic effects of deamination of 5-methylcytosine to thymine. We have developed a genetic reversion assay that quantitates the frequency of C to T mutations at Dcm sites and the removal of such mutations by DNA repair processes. Using this assay, we have studied the repair of U: G mismatches in DNA to C: G and have found that VSP repair is capable of correcting these mismatches. Although VSP repair substantially affects the reversion frequency, it may not be as efficient at correcting U: G mismatches as the uracil DNA glycosylase-mediated repair process.  相似文献   

17.
The mammalian DNA glycosylase-methyl-CpG binding domain protein 4 (MBD4)-is involved in active DNA demethylation via the base excision repair pathway. MBD4 contains an N-terminal MBD and a C-terminal DNA glycosylase domain. MBD4 can excise the mismatched base paired with a guanine (G:X), where X is uracil, thymine or 5-hydroxymethyluracil (5hmU). These are, respectively, the deamination products of cytosine, 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC). Here, we present three structures of the MBD4 C-terminal glycosylase domain (wild-type and its catalytic mutant D534N), in complex with DNA containing a G:T or G:5hmU mismatch. MBD4 flips the target nucleotide from the double-stranded DNA. The catalytic mutant D534N captures the intact target nucleotide in the active site binding pocket. MBD4 specifically recognizes the Watson-Crick polar edge of thymine or 5hmU via the O(2), N(3) and O(4) atoms, thus restricting its activity to thymine/uracil-based modifications while excluding cytosine and its derivatives. The wild-type enzyme cleaves the N-glycosidic bond, leaving the ribose ring in the flipped state, while the cleaved base is released. Unexpectedly, the C(1)' of the sugar has yet to be hydrolyzed and appears to form a stable intermediate with one of the side chain carboxyl oxygen atoms of D534, via either electrostatic or covalent interaction, suggesting a different catalytic mechanism from those of other DNA glycosylases.  相似文献   

18.
RNA aptamers against bovine prion protein (bPrP) were obtained, most of the obtained aptamers being found to contain the r(GGAGGAGGAGGA) (R12) sequence. Then, it was revealed that R12 binds to both bPrP and its β-isoform with high affinity. Here, we present the structure of R12. This is the first report on the structure of an RNA aptamer against prion protein. R12 forms an intramolecular parallel quadruplex. The quadruplex contains G:G:G:G tetrad and G(:A):G:G(:A):G hexad planes. Two quadruplexes form a dimer through intermolecular hexad–hexad stacking. Two lysine clusters of bPrP have been identified as binding sites for R12. The electrostatic interaction between the uniquely arranged phosphate groups of R12 and the lysine clusters is suggested to be responsible for the affinity of R12 to bPrP. The stacking interaction between the G:G:G:G tetrad planes and tryptophan residues may also contribute to the affinity. One R12 dimer molecule is supposed to simultaneously bind the two lysine clusters of one bPrP molecule, resulting in even higher affinity. The atomic coordinates of R12 would be useful for the development of R12 as a therapeutic agent against prion diseases and Alzheimer''s disease.  相似文献   

19.
We have used circular dichroism and UV absorption spectroscopy to characterize the formation and melting behaviour of an intramolecular DNA triple helix containing parallel T*A:T and G*G:C triplets. Our approach to induce and to stabilize a parallel triplex involves the oligonucleotide 5'-d(G4A4G4[T4]C4T4C4-[T4]G4T4G4) ([T4] represents a stretch of four thymine residues). In a 10 mM sodium cacodylate, 0.2 mM disodium EDTA (pH 7) buffer, we have shown the following significant results. (i) While in the absence of MgCl2 this oligonucleotide adopts an intramolecular hairpin duplex structure prolonged by the single strand extremity 5'-d([T4]G4T4G4), the presence of millimolar concentrations of MgCl2generates an intramolecular triplex (via double hairpin formation). (ii) In contrast to the antiparallel triplex formed by the oligonucleotide 5'-d(G4T4G4[T4]G4A4G4[T4]C4T4C4), the parallel triplex melts in a biphasic manner (a triplex to duplex transition followed by a duplex to coil transition) and is less stable than the antiparallel one. The enthalpy change associated with triplex formation (-37 kcal/mol) is approximately half that of duplex formation (-81 kcal/mol). (iii) The parallel triple helix is disrupted by increasing the concentration of KCl(>10 mM), whereas, under the same conditions, the antiparallel triplex remains stable. (iv) Netropsin, a natural DNA minor groove-binding ligand, binds to the central site A4/T4of the duplex or triplex in an equimolar stoichiometry. Its association constant K is smaller for the parallel triplex ( approximately 1 x 10(7) M-1) than for the antiparallel one ( approximately 1 x 10(8) M-1). In contrast to the antiparallel structure, netropsin binding has no apparent effect on thermal stability of the parallel triple helix.  相似文献   

20.
Hairpin and parallel quartet structures for telomeric sequences.   总被引:16,自引:11,他引:5       下载免费PDF全文
The role of thymine residues in the formation of G-quartet structures for telomeric sequences has been investigated using model oligonucleotides of the type d(G4TnG4), with n = 1-4. Sequences d(G4T3G4) and d(G4T4G4) adopt a G-quartet structure formed by hairpin dimerization in 70 mM NaCl as judged by a characteristic circular dichroism signature with a 295 nm positive and 265 nm negative bands while d(G4TG4) adopts a parallel G-quartet structure like d(G12) which exhibits a strong positive band at 260 nm and a negative band at 240 nm. The sequence d(G4T2G4) exhibits a mixture of both conformations. The stability of hairpin G-quartet structures decreases with decrease in the number of intervening thymine residues. Potassium permanganate, a single strand specific probe has been used to establish the presence of loops composed of T residues in the hairpin G quartet structures formed by the oligonucleotides d(G4TnG4) with n = 2-4 in 70 mM NaCl. The formation of hairpin G quartet structure for the above sequences is further supported by the enhanced electrophoretic mobility observed on non-denaturing polyacrylamide gels. Human telomeric sequence d(TTAGGG)4 which showed enhanced electrophoretic mobility like Tetrahymena telomeric sequence d(T2G4)4 also exhibited a characteristic CD spectrum for a folded-back G-quartet structure. A detailed model for G-quartet structure involving hairpin dimer with alternating syn-anti-syn-anti conformation for the guanine residues both along the chain as well as around the G tetrad with at least two thymine residues in the loop is proposed. Intermolecular association of short telomeric sequences reported here provides a possible model for chromosomal pairing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号