首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The sequence was determined of 6493 nucleotides encompassing the bet genes of Escherichia coli which encode the osmoregulatory choline-glycine betaine pathway. Four open reading frames were identified: betA encoding choline dehydrogenase, a flavoprotein of 61.9kDa; betB encoding betaine aldehyde dehydrogenase (52.8kDa); betT encoding a proton-motive-force-driven, high-affinity transport system for choline (75.8kDa); and betl, capable of encoding a protein of 21.8kDa, implicated as a repressor involved in choline regulation of the bet genes. Identification of the genes was supported by subcloning, physical mapping of lambda placMu53 insertions, amino acid sequence similarity, or N-terminal amino acid sequencing. The bet genes are tightly spaced, with betT located upstream of, and transcribed divergently to, the tandemly linked betIBA genes.  相似文献   

3.
4.
Osmotically stressed Escherichia coli cells synthesize the osmoprotectant glycine betaine by oxidation of choline through glycine betaine aldehyde (choline----glycine betaine aldehyde----glycine betaine; B. Landfald and A.R. Str?m, J. Bacteriol. 165:849-855, 1986. Mutants blocked at the level of choline dehydrogenase were isolated by selection of strains which did not grow at elevated osmotic strength in the presence of choline but grew when supplemented with glycine betaine. A gene governing the choline dehydrogenase activity was named betA. Mapping by P1 transduction, F' complementation, and deletion mutagenesis showed the betA gene to be located at 7.5 min in the argF-codAB region of the chromosome. Mutants carrying deletions of this region also lacked glycine betaine aldehyde dehydrogenase activity and high-affinity uptake activity for choline; these deletions did not influence the activities of glycine betaine uptake or low-affinity choline uptake, both of which were osmotically regulated.  相似文献   

5.
Synechococcus sp. PCC7942, a fresh water cyanobacterium, was transformed by a shuttle plasmid that contains a 9-kb fragment encoding the Escherichia coli bet gene cluster, i.e. betA (choline dehydrogenase), betB (betaine aldehyde dehydrogenase), betI (a putative regulatory protein), and betT (the choline transport system). The expression of these genes was demonstrated in the cyanobacterial cells (bet-containing cells) by northern blot analysis, as well as by the detection of glycine betaine by 1H nuclear magnetic resonance in cells supplemented with choline. Endogenous choline was not detected in either control or bet-containing cells. Both control and bet-containing cyanobacterial cells were found to import choline in an energy-dependent process, although this import was restricted only to bet-containing cells in conditions of salt stress. Glycine betaine was found to accumulate to a concentration of 45 mM in bet-containing cyanobacterial cells, and this resulted in a stabilization of the photosynthetic activities of photosystems I and II, higher phycobilisome contents, and general protective effects against salt stress when compared to control cells. The growth of bet-containing cells was much faster in the presence of 0.375 M NaCl than that of control cells, indicating that the transformant acquired resistance to salt stress.  相似文献   

6.
7.
Glycine betaine and its precursors choline and glycine betaine aldehyde have been found to confer a high level of osmotic tolerance when added exogenously to cultures of Escherichia coli at an inhibitory osmotic strength. In this paper, the following findings are described. Choline works as an osmoprotectant only under aerobic conditions, whereas glycine betaine aldehyde and glycine betaine function both aerobically and anaerobically. No endogenous glycine betaine accumulation was detectable in osmotically stressed cells grown in the absence of the osmoprotectant itself or the precursors. A membrane-bound, O2-dependent, and electron transfer-linked dehydrogenase was found which oxidized choline to glycine betaine aldehyde and aldehyde to glycine betaine at nearly the same rate. It displayed Michaelis-Menten kinetics; the apparent Km values for choline and glycine betaine aldehyde were 1.5 and 1.6 mM, respectively. Also, a soluble, NAD-dependent dehydrogenase oxidized glycine betaine aldehyde. It displayed Michaelis-Menten kinetics; the apparent Km values for the aldehyde, NAD, and NADP were 0.13, 0.06, and 0.5 mM, respectively. The choline-glycine betaine pathway was osmotically regulated, i.e., full enzymic activities were found only in cells grown aerobically in choline-containing medium at an elevated osmotic strength. Chloramphenicol inhibited the formation of the pathway in osmotically stressed cells.  相似文献   

8.
Halomonas sp.BYS-1是一株能矿化苯乙酸的中度嗜盐细菌,该菌能在0~20%NaCl的条件下生长。甜菜碱是其主要渗透保护剂,通过在培养基中添加甜菜碱合成前体(胆碱、甘氨酸)的方法发现它能以胆碱为前体合成甜菜碱。通过PCR的方法克隆了甜菜碱醛脱氢酶基因(betB),测序后在大肠杆菌中进行了高效表达,表达产物占菌体总蛋白的31.5%,酶活为38.5U/mg,为构建耐盐的转基因植物提供了材料。  相似文献   

9.
Glycine betaine plays an important role in some plants, including maize, in conditions of abiotic stress, but different maize varieties vary in their capacity to accumulate glycine betaine. An elite maize inbred line DH4866 was transformed with the betA gene from Escherichia coli encoding choline dehydrogenase (EC 1.1.99.1), a key enzyme in the biosynthesis of glycine betaine from choline. The transgenic maize plants accumulated higher levels of glycine betaine and were more tolerant to drought stress than wild-type plants (non-transgenic) at germination and the young seedling stage. Most importantly, the grain yield of transgenic plants was significantly higher than that of wild-type plants after drought treatment. The enhanced glycine betaine accumulation in transgenic maize provides greater protection of the integrity of the cell membrane and greater activity of enzymes compared with wild-type plants in conditions of drought stress.  相似文献   

10.
Glycine betaine is an osmoprotectant found in many organisms, including bacteria and higher plants. The bacterium Escherichia coli produces glycine betaine by a two-step pathway where choline dehydrogenase (CDH), encoded by betA, oxidizes choline to betaine aldehyde which is further oxidized to glycine betaine by the same enzyme. The second step, conversion of betaine aldehyde into glycine betaine, can also be performed by the second enzyme in the pathway, betaine aldehyde dehydrogenase (BADH), encoded by betB. Transformation of tobacco (Nicotiana tabacum), a species not accumulating glycine betaine, with the E. coli genes for glycine betaine biosynthesis, resulted in transgenic plants accumulating glycine betaine. Plants producing CDH were found to accumulate glycine betaine as did F1 progeny from crosses between CDH- and BADH-producing lines. Plants producing both CDH and BADH generally accumulated higher amounts of glycine betaine than plants producing CDH alone, as determined by 1H NMR analysis. Transgenic tobacco lines accumulating glycine betaine exhibited increased tolerance to salt stress as measured by biomass production of greenhouse-grown intact plants. Furthermore, experiments conducted with leaf discs from glycine betaine-accumulating plants indicated enhanced recovery from photoinhibition caused by high light and salt stress as well as improved tolerance to photoinhibition under low temperature conditions. In conclusion, introduction of glycine betaine production into tobacco is associated with increased stress tolerance probably partly due to improved protection of the photosynthetic apparatus.  相似文献   

11.
Genetics of the Tubulin Gene Families of Physarum   总被引:4,自引:0,他引:4       下载免费PDF全文
The organization of the alpha- and beta-tubulin gene families in Physarum was investigated by Mendelian analysis. Restriction endonuclease-generated DNA fragments homologous to alpha- and beta-tubulin show length polymorphisms that can be used as markers for genetic mapping. Analysis of meiotic assortment among progeny of heterozygotes allowed alpha- and beta-tubulin sequence loci to be defined. There are four unlinked alpha-tubulin sequence loci (altA, altB, altC and altD) and at least three unlinked beta-tubulin sequence loci (betA, betB and betC). The alpha-tubulin loci are not linked to the beta-tubulin loci. --Segregation of tubulin sequence loci with respect to ben mutations that confer resistance to antitubulin benzimidazole drugs was used to investigate whether any members of the alpha- or beta-tubulin gene families are allelic to ben loci. The beta-tubulin sequence locus betB is allelic to the resistance locus benD, the betA locus is probably allelic to benA and the alpha-tubulin sequence locus altC may be allelic to benC. The molecular implications of benzimidazole resistance phenotypes when only one of the expressed beta-tubulin gene family members mutates to drug resistance are discussed in relation to tubulin function.  相似文献   

12.
Pseudomonas aeruginosa uses the quaternary amine choline as a carbon source, osmoprotectant, and macromolecular precursor. The importance of choline in P. aeruginosa physiology is highlighted by the presence of multiple known and putative choline transporters encoded within its genome. This report describes the relative roles of three choline transporters, the ABC transporter CbcXWV and two symporters, BetT1 and BetT3, in P. aeruginosa growth on choline under osmotic conditions that are physiologically relevant to eukaryotic hosts. The increased lag phases exhibited by the ΔbetT1 and ΔbetT1 ΔbetT3 mutants relative to the wild type upon transfer to medium with choline as a sole carbon source suggested roles for BetT1 and BetT3 in cells newly exposed to choline. BetT3 and CbcXWV, but not BetT1, were sufficient to support growth on choline. betT1 and betT3 expression was regulated by the repressor BetI and choline, whereas cbcXWV expression was induced by the activator GbdR and glycine betaine. The data support a model in which, upon transfer to a choline-based medium, the glycine betaine derived from choline taken up by BetT1 and BetT3 promotes subsequent GbdR-mediated cbcXWV induction. Furthermore, growth data indicated that the relative contributions of each transporter varied under different conditions, as BetT1 and CbcXWV were the primary choline transporters under hypo-osmolar conditions whereas BetT3 was the major choline transporter under hyperosmolar conditions. This work represents the first systematic approach to unravel the mechanisms of choline uptake in P. aeruginosa, which has the most complex bacterial choline uptake systems characterized to date.  相似文献   

13.
14.
In Escherichia coli the osmoprotective compound glycine betaine is produced from choline by two enzymes; choline dehydrogenase (CDH) oxidizes choline to betaine aldehyde and then further on to glycine betaine, while betaine aldehyde dehydrogenase (BADH) facilitates the conversion of betaine aldehyde to glycine betaine. To evaluate the importance of BADH, a BADH/CDH fusion enzyme was constructed and expressed in E. coli and in Nicotiana tabacum. The fusion enzyme displayed both enzyme activities, and a coupled reaction could be measured. The enzyme was characterized regarding molecular weight and the dependence of the enzyme activities on environmental factors (salt, pH, and poly(ethylene glycol) addition). At high choline concentrations, E. coli cells expressing BADH/CDH were able to grow to higher final densities and to accumulate more glycine betaine than cells expressing CDH only. The intracellular glycine betaine levels were almost 5-fold higher for BADH/CDH when product concentration was related to CDH activity. Also, after culturing the cells at high NaCl concentrations, more glycine betaine was accumulated. On medium containing 20 mM choline, transgenic tobacco plants expressing BADH/CDH grew considerably faster than vector-transformed control plants.  相似文献   

15.
Escherichia coli KO11 (parent) and LY01 (mutant) have been engineered for the production of ethanol. Gene arrays were used to identify expression changes that occurred in the mutant, LY01, during directed evolution to improve ethanol tolerance (defined as extent of growth in the presence of added ethanol). Expression levels for 205 (5%) of the ORFs were found to differ significantly (p < 0.10) between KO11 and LY01 under each of six different growth conditions (p < 0.000001). Statistical evaluation of differentially expressed genes according to various classification schemes identified physiological areas of importance. A large fraction of differentially expressed ORFs were globally regulated, leading to the discovery of a nonfunctional fnr gene in strain LY01. In agreement with a putative role for FNR in alcohol tolerance, increasing the copy number of fnr(+) in KO11(pGS196) decreased ethanol tolerance but had no effect on growth in the absence of ethanol. Other differences in gene expression provided additional clues that permitted experimentation. Tolerance appears to involve increased metabolism of glycine (higher expression of gcv genes) and increased production of betaine (higher expression of betIBA and betT encoding betaine synthesis from choline and choline uptake, respectively). Addition of glycine (10 mM) increased ethanol tolerance in KO11 but had no effect in the absence of ethanol. Addition of betaine (10 mM) increased ethanol tolerance by over 2-fold in both LY01 and KO11 but had no effect on growth in the absence of ethanol. Both glycine and betaine can serve as protective osmolytes, and this may be the basis of their beneficial action. In addition, the marAB genes encoding multiple antibiotic resistance proteins were expressed at higher levels in LY01 as compared to KO11. Interestingly, overexpression of marAB in KO11 made this strain more ethanol-sensitive. Overexpression of marAB in LY01 had no effect on ethanol tolerance. Increased expression of genes encoding serine uptake (sdaC) and serine deamination (sdaB) also appear beneficial for LY01. Addition of serine increased the growth of LY01 in the presence and absence of ethanol but had no effect on KO11. Changes in the expression of several genes concerned with the synthesis of the cell envelope components were also noted, which may contribute to increased ethanol tolerance.  相似文献   

16.
H Peter  A Burkovski    R Krmer 《Journal of bacteriology》1996,178(17):5229-5234
Corynebacterium glutamicum accumulates glycine betaine under conditions of high osmolarity. Previous work revealed the existence of a high-affinity glycine betaine permease which is osmotically regulated. In the present study, the corresponding gene was cloned. The betP gene, encoding the glycine betaine uptake carrier, was isolated by heterologous complementation of mutant strain Escherichia coli MKH13. From sequence analysis it is predicted to encode a protein of 595 amino acids. This protein shares 36% identity with the choline transport system BetT and 28% identity with the carnitine transport system CaiT of E. coli, as well as 38% identity with a protein with an unknown function from Haemophilus influenzae. Analysis of hydropathy indicated a common structure for all four transport proteins. After heterologous expression of betP in E. coli MKH13, the measured Km values for glycine betaine and the cotransported Na+ were similar to those found in C. glutamicum, whereas the modulation of activity by osmotic gradients was shifted to lower osmotic values.  相似文献   

17.
A sample of colonies from the Clarke-Carbon ColE1-Escherichia coli DNA plasmid gene bank was screened by conjugation for complementation of the lipoamide dehydrogenase lesion of a deletion strain lacking all components of the pyruvate dehydrogenase complex, delta (aroP aceE aceF lpd). Two ColE1-lpd+ hybrid plasmids were identified: pGS2 (ColE1-ace lpd+; 24 kb) and pGS5 (ColE1-lpd+; 14 kb). Enzymological studies confirmed that pGS2 expressed all the activities of the pyruvate dehydrogenase complex, whereas pGS5 expressed the lipoamide dehydrogenase and acetyltransferase activities (the latter from a ColE1 promoter). These and other plasmids were used to construct a 47-site (15 enzymes) restriction map for a 24.2 kb segment of bacterial DNA in the nadC-lpd region. A further 13 sites (six enzymes) were defined in a 5.4 kb sub-segment containing the lpd gene. lambda phage derivatives containing specific fragments were constructed and used in transduction studies which located the ace and lpd genes in a 7.78 kb sub-segment flanked by AccI and NruI sites.  相似文献   

18.
Halobacillus trueperi accumulates glycine betaine under condition of high osmolarity. A fragment of the glycine betaine transporter betH gene was obtained from the genome of H. trueperi with degenerate primers. Through Southern blot hybridization and inverse PCR, a 5.1 kb EcoRI fragment containing the complete betH gene was identified and subsequently sequenced. The betH gene was predicted to encode a 55.2 kDa protein (504 amino acid residues) with 12 transmembrane regions. BetH showed 56% identity to the OpuD of Bacillus subtilis which belongs to the betaine/carnitine/choline transporter (BCCT) family. Its putative promoter region was highly homologous to sigmaB-dependent promoter of B. subtilis. A 2.6 kb fragment containing the betH gene was cloned into pUC18 and transformed into the Escherichia coli MKH13. The accumulation of glycine betaine in transformed E. coli MKH13 bacteria was confirmed using 13C nuclear magnetic resonance spectroscopy.  相似文献   

19.
20.
We present evidence that glycine betaine (betaine) which was synthesized from choline was excreted and reaccumulated in osmoregulating cells of Escherichia coli. Choline which was accumulated in bet mutants defective in betaine synthesis was shown to be excreted in response to betaine uptake. Our data suggest that E. coli has efflux systems for betaine and choline which are independent of the uptake systems for these metabolites. The ProU system of E. coli, but not that of Salmonella typhimurium, can mediate low-affinity choline uptake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号