首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Cannabinoids reduce fertility of sea urchin sperm   总被引:1,自引:0,他引:1  
Cannabinoids are potent pharmacological substances derived from marihuana. The effects of delta 9-tetrahydrocannabinol (THC), cannabinol (CBN), and cannabidiol (CBD) on fertilization in the sea urchin Strongylocentrotus purpuratus were investigated. Insemination of THC-treated eggs (5-400 microM) with excess sperm did not result in polyspermic fertilization. At minimal sperm densities, THC (0.1-10 microM) inhibited fertilization in a dose-dependent manner. Pretreatment of eggs with THC did not reduce their receptivity to sperm. Pretreatment of sperm with THC reduced their fertilizing capacity. The concentration of THC required to reduce sperm fertility by 50% was 1.1 +/- 1.1 microM. The fertilizing capacity of THC-treated sperm depended on concentration of sperm and duration of pretreatment. The fertility of sperm at minimal densities was reduced by 50% at 129.3 +/- 43 s treatment with 10 microM THC. The adverse effect of THC on sperm fertility was reversible. CBN and CBD at comparable concentrations (0.1-10 microM) inhibited fertilization in a manner similar to THC. First division was not delayed in zygotes that were fertilized with sperm pretreated with 10 microM THC. These studies show that cannabinoids directly affect the process of fertilization in sea urchins by reducing the fertilizing capacity of sperm.  相似文献   

2.
delta 9-Tetrahydrocannabinol (THC) and two other major cannabinoids derived from marihuana--cannabidiol (CBD) and cannabinol (CBN)--inhibit fertilization in the sea urchin Strongylocentrotus purpuratus by reducing the fertilizing capacity of sperm (Schuel et al., 1987). Sperm fertility depends on their motility and on their ability to undergo the acrosome reaction upon encountering the egg's jelly coat. Pretreatment of S. purpuratus sperm with THC prevents triggering of the acrosome reaction by solubilized egg jelly in a dose (0.1-100 microM) and time (0-5 min)-dependent manner. Induction of the acrosome reaction is inhibited in 88.9 +/- 2.3% of sperm pretreated with 100 microM THC for 5 min, while motility of THC-treated sperm is not reduced compared to solvent (vehicle) and seawater-treated controls. The acrosome reaction is inhibited 50% by pretreatment with 6.6 microM THC for 5 min and with 100 microM THC after 20.8 sec. CBN and CBD at comparable concentrations inhibit the acrosome reaction by egg jelly in a manner similar to THC. THC does not inhibit the acrosome reaction artificially induced by ionomycin, which promotes Ca2+ influx, and nigericin, which promotes K+ efflux. THC partially inhibits (20-30%) the acrosome reaction induced by A23187, which promotes Ca2+ influx, and NH4OH, which raises the internal pH of the sperm. Addition of monensin, which promotes Na+ influx to egg jelly or to A23187, does not overcome the THC inhibition. Inhibition of the egg jelly-induced acrosome reaction by THC produces a corresponding reduction in the fertilizing capacity of the sperm. The adverse effects of THC on the acrosome reaction and sperm fertility are reversible.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Delta-9-tetrahydrocannabinol ((?)δ9 THC), the primary psychoactive cannabinoid in marihuana, reduces the fertilizing capacity of sea urchin sperm by blocking the acrosome reaction that normally is stimulated by a specific ligand in the egg's jelly coat. The bicyclic synthetic cannabinoid [ H]CP-55,940 has been used as a ligand to demonstrate the presence of a cannabinoid receptor in mammalian brain. We now report that [ H]CP-55,940 binds to live sea urchin (Strongylocentrotus purpuratus) sperm in a concentration, sperm density, and time-dependent manner. Specific binding of [ H]CP-55,940 to sperm, defined as total binding displaced by (?)δ9 THC, was saturable: KD 5.16 ± 1.02 nM; Hill coefficient 0.98 ± 0.004. This suggests a single class of receptor sites and the absence of significant cooperative interactions. Sea urchin sperm contain 712 ± 122 cannabinoid receptors per cell. Binding of [ H]CP-55,940 to sperm was reduced in a dose-dependent manner by increasing concentrations of CP-55,940, (?)δ9 THC, and (+)δ9 THC. The rank order of potency to inhibit binding of [ H]CP-55,940 to sperm and to block the egg jelly stimulated acrosome reaction was: CP-55,940 > (?)δ9THC > (+)δ9THC. These findings show that sea urchin sperm contain a stereospecific cannabinoid receptor that may play a role in inhibition of the acrosome reaction. The radioligand binding data obtained with live sea urchin sperm are remarkably similar to those previously published by other investigators using [ H]CP-55,940 on mammalian brain and nonneural tissues. The cannabinoid binding properties of this receptor appear to have been highly conserved during evolution. We postulate that the cannabinoid receptor may modulate cellular responses to stimulation. © 1993 Wiley-Liss, Inc.  相似文献   

4.
Ejaculated mammalian sperm require several hours exposure to secretions in female reproductive tracts, or incubation in appropriate culture medium in vitro, before acquiring the capacity to fertilize eggs. Arachidonylethanolamide (AEA), also known as anandamide, is a novel lipid-signal molecule that is an endogenous agonist (endocannabinoid) for cannabinoid receptors. We now report that AEA is present in human seminal plasma, mid-cycle oviductal fluid, and follicular fluid analyzed by high-performance liquid chromatography/mass spectrometry. Sperm are sequentially exposed to these reproductive fluids as they move from the vagina to the site of fertilization in the oviduct. Specific binding of the potent cannabinoid agonist [(3)H]CP-55,940 to human sperm was saturable (K(D) 9.71 +/- 1.04 nM), suggesting that they express cannabinoid receptors. R-methanandamide [AM-356], a potent and metabolically stable AEA analog, and (-)delta(9) tetrahydrocannabinol (THC), the major psychoactive constituent of Cannabis, modulated capacitation and fertilizing potential of human sperm in vitro. AM-356 elicited biphasic effects on the incidence of hyperactivated sperm motility (HA) between 1 and 6 hr of incubation: at (2.5 nM) it inhibited HA, while at (0.25 nM) it stimulated HA. Both AM-356 and THC inhibited morphological alterations over acrosomal caps between 2 and 6 hr (IC(50) 5.9 +/- 0.6 pM and 3.5 +/- 1.5 nM, respectively). Sperm fertilizing capacity, measured in the Hemizona Assay, was reduced 50% by (1 nM) AM-356. These findings suggest that AEA-signaling may regulate sperm functions required for fertilization in human reproductive tracts, and imply that smoking of marijuana could impact these processes. This study has potential medical and public policy ramifications because of the incidence of marijuana abuse by adults in our society, previously documented reproductive effects of marijuana, and the ongoing debate about medicinal use of marijuana and cannabinoids.  相似文献   

5.
Pretreatment of Strongylocentrotus purpuratus sperm with delta 9-tetrahydrocannabinol (THC) prevents the triggering of the acrosome reaction by egg jelly. Examination of THC-treated sperm by transmission electron microscopy reveals that the membrane fusion reaction between the sperm plasma membrane and the acrosomal membrane is completely blocked. Electron-dense deposits are present in the subacrosomal fossa and in the centriolar fossa. The nuclear envelope is fragmented in close proximity to the electron-dense deposits. The electron-dense deposits are not bound by a limiting membrane, stain positively for lipid with thymol and farnesol, and disappear from THC-treated sperm that are extracted with chloroform:methanol (2:1) after glutaraldehyde fixation. The electron-dense deposits are lipid in nature and may be a hydrolytic product of the nuclear envelope. Electron-dense deposits are seen in sperm after 1-10 min treatment with 5-100 microM THC. The electron-dense deposits disappear after removal of THC from the sperm by washing, but the fragmented nuclear envelope in the subacrosomal fossa persists. Cannabidiol (CBD) and cannabinol (CBN) also inhibit the triggering of the acrosome reaction by egg jelly and produce ultrastructural changes in the sperm identical to those elicited by THC. Enhanced phospholipase activity stimulated by THC, CBD, and CBN may be the cause of the accumulation of lipid deposits in the sperm. Metabolites derived from this modification of membrane phospholipids may prevent triggering of the acrosome reaction by egg jelly and thereby inhibit fertilization.  相似文献   

6.
We have examined the relationship between the acrosome reaction, sperm respiration, and fertilization using gametes of the sea urchin Strongylocentrotus purpuratus. The results indicate that when sperm are exposed to jelly coat isolated from homologous eggs, the following sequence of events occurs: (1) Sperm undergo the acrosome reaction within 30 sec with little or no loss in their capacity to fertilize eggs; (2) by 60 sec there is a dramatic decrease in fertilizing capacity which stabilizes after 4 or 5 min at a greatly reduced level; (3) by 1.5 to 2 min a progressive decrease in the rate of mitochondrial respiration becomes detectable and continues for 8 to 10 min, finally stabilizing at a greatly reduced rate. This decrease in respiration rate is paralleled by a decline in sperm motility. The effects of jelly coat on the acrosome reaction, sperm respiration, and motility are species specific. From these results we conclude that sperm which have undergone the acrosome reaction retain full fertilizing capacity for a very short time. The rapid decline in fertilizing capacity is followed by a decrease in respiration rate and motility.  相似文献   

7.
Prevention of polyspermic fertilization in sea urchins (Jaffe, 1976, Nature (Lond.). 261:68-71) and the worm Urechis (Gould-Somero, Jaffe, and Holland, 1979, J. Cell Biol. 82:426-440) involves an electrically mediated fast block. The fertilizing sperm causes a positive shift in the egg's membrane potential; this fertilization potential prevents additional sperm entries. Since in Urechis the egg membrane potential required to prevent fertilization is more positive than in the sea urchin, we tested whether in a cross-species fertilization the blocking voltage is determined by the species of the egg or by the species of the sperm. With some sea urchin (Strongylocentrotus purpuratus) females, greater than or equal to 90% of the eggs were fertilized by Urechis sperm; a fertilization potential occurred, the fertilization envelope elevated, and sometimes decondensing Urechis sperm nuclei were found in the egg cytoplasm. After insemination of sea urchin eggs with Urechis sperm during voltage clamp at +50 mV, fertilization (fertilization envelope elevation) occurred in only nine of twenty trials, whereas, at +20 mV, fertilization occurred in ten of ten trials. With the same concentration of sea urchin sperm, fertilization of sea urchin eggs occurred, in only two of ten trials at +20 mV. These results indicate that the blocking voltage for fertilization in these crosses is determined by the sperm species, consistent with the hypothesis that the fertilization potential may block the translocation within the egg membrane of a positively charged component of the sperm.  相似文献   

8.
9.
A variety of heavy metal chelating agents is known to prolong the fertilizing capacity and motility of sea urchin sperm. We report here that these agents maintain fertilizing capacity by preventing acrosome reactions which occur spontaneously after dilution of sperm into seawater. These chelating agents also inhibit acrosome reactions induced by high pH or egg jelly. Since induction of the acrosome reaction leads to steps that abolish motility, specifically a massive Ca2+ uptake and concomitant acidification of the cytoplasm, motility is prolonged by these chelators. These observations also suggest that heavy metals play a role in controlling the acrosome reaction in sea urchin sperm.  相似文献   

10.
High concentration of inositol 1,4,5-trisphosphate in sea urchin sperm   总被引:1,自引:0,他引:1  
We measured inositol 1,4,5-trisphosphate (InsP3) content of sea urchin gametes by using a specific protein binding assay, and found that a spermatozoon contains 4 x 10(-19) to 1 x 10(-18) moles of InsP3 before the acrosome reaction. Since the acrosome reaction has previously been shown to increase the InsP3 content of sperm severalfold, our measurement indicates that a spermatozoon contains at least 2 x 10(-18) moles of InsP3 at fertilization, corresponding to a concentration in the spermatozoon of about 1 mM. The threshold for activation of eggs by injection of InsP3 dissolved in a much larger volume of solution has been found to be about 3 x 10(-18) moles, corresponding to a concentration in the injectate of 1 microM. This suggests that sea urchin sperm may contain enough InsP3 to activate eggs. With an electroporation method, we also showed that sperm extract acts on eggs only from inside, consistent with a primary messenger role for InsP3.  相似文献   

11.
Interphylum crossing was examined between sea urchin eggs (Temnopleurus hardwicki) and oyster sperm (Crassostrea gigas). The eggs could receive the spermatozoa with or without cortical change. The fertilized eggs that elevated the fertilization envelope began their embryogenesis. Electron microscopy revealed that oyster spermatozoa underwent acrosome reaction on the sea urchin vitelline coat, and their acrosomal membrane fused with the egg plasma membrane after the appearance of an intricate membranous structure in the boundary between the acrosomal process and the egg cytoplasm. Oyster spermatozoa penetrated sometimes into sea urchin eggs without stimulating cortical granule discharge and consequently without fertilization envelope formation. The organelles derived from oyster spermatozoa seemed to be functionally inactive in the eggs whose cortex remained unchanged.  相似文献   

12.
Evidence for sperm-borne proteolytic enzymes exposed during the acrosome reaction in sea urchin sperm has been accumulating. To investigate the possible role(s) such enzymes have in fertilization, we studied the effects of several protease inhibitors on sperm-related events. Soybean trypsin inhibitor, Nα-p-tosyl-l-lysine, chloromethyl ketone, phenylmethylsulfonyl fluoride, and chymostatin neither reduced the number of acrosome reactions nor interfered with gamete binding. p-Nitrophenyl-p′-guanidinobenzoate caused sperm to fuse into irregular clumps, rendering them unable to fertilize eggs. However, l-1-tosylamide-2-phenylethyl chloromethyl ketone (TPCK), an inhibitor of chymotrypsin, prevented the acrosome reaction in Strongylocentrotus purpuratus, S. droebachiensis, and Lytechinus pictus. The effects of TPCK on sperm in subsequent steps of fertilization were also investigated. First, gamete binding assays were performed on fixed eggs. This precluded any effects TPCK might have had on egg-derived secretions (e.g., proteases). Binding of prereacted sperm occurred with both fixed and living eggs. However, fertilization of living eggs in the presence of TPCK was greatly reduced, even though sperm had been prereacted with egg jelly. Vitelline coats were then removed from eggs by trypsin treatment. Eggs in TPCK fertilized and developed normally after the above treatment. These observations are consistent with the hypothesis of a sperm protease participating in the acrosome reaction and the penetration of the egg vitelline coat in the sea urchin.  相似文献   

13.
The exocytotic acrosome reaction (AR), which is required for fertilization, occurs when sea urchin sperm contact the egg jelly (EJ) layer. Among other physiological changes, increases in adenylyl cyclase activity, cAMP and cAMP-dependent protein kinase (PKA) activity occur coincident with the AR. By using inhibitors of PKA, a permeable analog of cAMP and the phosphodiesterase inhibitor IBMX, we show that PKA activity is required for AR induction by EJ. A minimum of six sperm proteins are phosphorylated by PKA upon exposure to EJ, as detected by a PKA substrate-specific antibody. The phosphorylation of these proteins and the percentage of acrosome reacted sperm can be regulated by PKA modulators. The fucose sulfate polymer (FSP), a major component of EJ, is the molecule that triggers sperm PKA activation. Extracellular Ca(2+) is required for PKA activation. Six sperm proteins phosphorylated by PKA were identified by tandem mass spectrometry (MS/MS) utilizing the emerging sea urchin genome. Based on their identities and localizations in sperm head and flagellum, the putative functions of these proteins in sperm physiology and AR induction are discussed.  相似文献   

14.
cAMP is important in sea urchin sperm signaling, yet the molecular nature of the adenylyl cyclases (ACs) involved remained unknown. These cells were recently shown to contain an ortholog of the mammalian soluble adenylyl cyclase (sAC). Here, we show that sAC is present in the sperm head and as in mammals is stimulated by bicarbonate. The acrosome reaction (AR), a process essential for fertilization, is influenced by the bicarbonate concentration in seawater. By using functional assays and immunofluorescence techniques we document that sea urchin sperm also express orthologs of multiple isoforms of transmembrane ACs (tmACs). Our findings employing selective inhibitors for each class of AC indicate that both sAC and tmACs participate in the sperm acrosome reaction.  相似文献   

15.
Sea urchin gametes predominate in molecular studies of fertilization, yet relatively little is known of the subcellular aspects of sperm entry in this group. Accordingly, it seemed desirable to make a detailed examination of sperm entry phenomena in sea urchins with the electron microscope. Gametes of the sea urchins Arbacia punctulata and Lytechinus variegatus were used in this study. Samples of eggs containing 2 to 8 per cent oocytes were selected and fixed with osmium tetroxide in sea water at various intervals after insemination. Fixed specimens were embedded in Epon 812, sectioned, and examined with an electron microscope. An apical vesicle was observed at the anterior end of the acrosome. The presence of this structure, together with other observations, suggested that initiation of the acrosome reaction in sea urchin sperm involves dehiscence of the acrosomal region with the subsequent release of the acrosomal granule. Contact and initial fusion of gamete membranes was observed in mature eggs and oocytes and invariably involved the extended acrosomal tubule of the spermatozoon. Only one spermatozoon normally enters the mature egg. The probability of locating such a sperm in ultrathin sections is exceedingly low. Several sperm do normally enter oocytes. Consequently, observations of sperm entry were primarily restricted to the latter. The manner of sperm entry into oocytes did not resemble phagocytosis. Organelles of the spermatozoon were progressively divested of their plasma membrane as they entered the ground cytoplasm of the oocyte fertilization cone. Initiation of the acrosome reaction, contact and initial fusion of gamete membranes, and sperm entry into oocytes of sea urchins conform to the Hydroides-Saccoglossus pattern of early fertilization events as described by Colwin and Colwin (13).  相似文献   

16.
The effects of seven surfactants on spermatozoa of the sea urchin, Hemicentrotus pulcherrimus, were studied. All these surfactants induced the acrosome reaction and inhibited the fertilizing capacity of spermatozoa. There was a statistically significant correlation between the concentrations that induce the acrosome reaction and inhibit fertilization. The critical micelle concentrations (CMC) of surfactants in sea water were almost even and these values, which are inherent physical properties of surfactants, did not provide a direct measure of their inhibitory effect of fertilization. Among seven surfactants, p-menthanyl-phenol polyoxyethylene (8.8) ether (TS-88) with a characteristic hydrophobes was the most potent both in the induction of acrosome reaction and in the inhibition of fertilization. Various ethylene oxide adducts to p-menthanyl-phenol were also tested for the purpose of comparison. It is suggested that the effects of surfactants on sea urchin spermatozoa at low concentrations reflect their activity associated with the hydrophobic group inherent in each surfactant.  相似文献   

17.
When sea urchin sperm is pretreated with sperm-binding protein prepared from the vitelline membrane of eggs of homologous species, it loses its fertilizing capacity entirely without losing its motility. It is not affected at all by sperm-binding protein from heterologous species. Neither agglutination nor acrosome reaction is evoked by the pretreatment. It is suggested that the sea urchin spermatozoon has on the apical part of its head a component which is complementary to the sperm-binding protein of the egg, and that the observed loss of the fertilizing capacity is caused by antedated interaction of this component with sperm-binding protein added before insemination.  相似文献   

18.
Benzohydroxamic acid (BHA) is a competitive inhibitor of the sea urchin sperm peroxidase. We now report that addition of BHA to fertilization cultures of Arbacia punctulata promotes polyspermy. This effect is dose and sperm density dependent. The cortical reaction (elevation of the fertilization envelope) is not retarded by BHA. BHA must be added to the cultures before the eggs complete the cortical reaction at 60 sec post insemination in order to induce polyspermy. Since sea urchin eggs release H2O2 during the cortical reaction at fertilization, these findings support our hypothesis that the sperm peroxidase has a functional role in helping to prevent polyspermy.  相似文献   

19.
The roles of sperm proteasomes in fertilization were investigated in the sea urchin Pseudocentrotus depressus. Two proteasome inhibitors, MG-132 and MG-115, inhibited fertilization at 100 microM, whereas chymostatin and leupeptin showed no inhibition. Among three proteasome substrates, Z-Leu-Leu-Glu-MCA showed the strongest inhibition toward fertilization. MG-132 inhibited the egg-jelly-induced, but not ionomycin-induced, acrosome reaction. In addition, MG-132, but not E-64-d, inhibited fertilization of dejellied eggs by acrosome-reacted sperm. MG-132 showed no significant inhibition toward the binding of reacted sperm to the vitelline layer. Proteasomes were detected by Western blotting in the acrosomal contents, which are partially released upon exocytosis. We also found that the inhibition pattern of the caspase-like activity of the proteasome in the acrosomal contents by chymostatin and proteasome inhibitors coincided well with their inhibitory abilities toward fertilization. Furthermore, the vitelline layer of unfertilized eggs appears to be ubiquitinated as revealed by immunocytochemistry and Western blotting. Extracellular ATP, required for the degradation of ubiquitinated proteins by the proteasome, was also necessary for fertilization. These results indicate that the sperm proteasome plays a key role not only in the acrosome reaction but also in sperm penetration through the vitelline envelope, most probably as a lysin, during sea urchin fertilization.  相似文献   

20.
Protease inhibitors were used to study certain physiological responses (secretion of the cortical granule protease, altered resceptively to sperm penetration, initiation of cell division and embryogenesis) of sea urchin eggs to stimulation by calcium ionophore A23187. Protease activity in the secretory product released from the eggs 5 min after insemination or parthenogenetic activation with ionophore was completely inhibited by soybean trypsin inhibitor (SBTI), antipain (Ap), and leupeptin (Lp). A barrier was established to prevent subsequently added sperm from penetrating (fertilizing) ionophore-activated eggs, co-incident with the elevation of the fertilization membrane. These processes were retarded by inhibitors of the cortical granule protease in ionophore-activated eggs, just as they are when eggs are initially stimulated by sperm at fertilization. A23187-activated eggs did not divide unless they had been secondarily fertilized by sperm, even if the ionophore was subsequently removed by extensive washing. However, ionophore-activated eggs that were penetrated by a single spermatozoan in SBTI developed into normal larvae under similar conditions. These results suggest that A23187 may be an incomplete parthenogenetic agent because it cannot stimulate eggs to assemble centrioles required to organize the mitotic apparatus. The centrioles are normally provided by the sperm during fertilization. A23187 may also be toxic to the eggs. Furthermore, since cortical granules are secretory organelles, the data suggest a possible functional relationship between calcium ions and protease activation in stimulus-secretion coupling in sea urchin eggs at fertilization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号