首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Impacts of either elevated CO2 or drought stress on plant growth have been studied extensively, but interactive effects of these on plant carbon and nitrogen allocation is inadequately understood yet. In this study the response of the dominant desert shrub, Caragana intermedia Kuanget H.c.Fu, to the interaction of elevated CO2 (700 ± 20 μmol mol−1) and soil drought were determined in two large environmental growth chambers (18 m2). Elevated CO2 increased the allocation of biomass and carbon into roots and the ratio of carbon to nitrogen (C:N) as well as the leaf soluble sugar content, but decreased the allocation of biomass and carbon into leaves, leaf nitrogen and leaf soluble protein concentrations. Elevated CO2 significantly decreased the partitioning of nitrogen into leaves, but increased that into roots, especially under soil drought. Elevated CO2 significantly decreased the carbon isotope discrimination (Δ) in leaves, but increased them in roots, and the ratio of Δ values between root and leaf, indicating an increased allocation into below-ground parts. It is concluded that stimulation of plant growth by CO2 enrichment may be negated under soil drought, and under the future environment, elevated CO2 may partially offset the negative effects of enhanced drought by regulating the partitioning of carbon and nitrogen.  相似文献   

2.
Liedgens  Markus  Richner  Walter  Stamp  Peter  Soldati  Alberto 《Plant and Soil》2000,220(1-2):89-98
Increased atmospheric carbon dioxide (CO2) concentration will likely cause changes in plant productivity and composition that might affect soil decomposition processes. The objective of this study was to test to what extent elevated CO2 and N fertility-induced changes in residue quality controlled decomposition rates. Cotton (Gossypium hirsutum L.) was grown in 8-l pots and exposed to two concentrations of CO2 (390 or 722 μmol mol-1) and two levels of N fertilization (1.0 or 0.25 g l-1 soil) within greenhouse chambers for 8 wks. Plants were then chemically defoliated and air-dried. Leaf, stem and root residues were assayed for total non-structural carbohydrates (TNC), lignin (LTGA), proanthocyanidins (PA), C and N. Respiration rates of an unsterilized sandy soil (Lakeland Sand) mixed with residues from the various treatments were determined using a soda lime trap to measure CO2 release. At harvest, TNC and PA concentrations were 17 to 45% higher in residues previously treated with elevated CO2 compared with controls. Leaf and stem residue LTGA concentrations were not significantly affected by either the elevated CO2 or N fertilization treatments, although root residue LTGA concentration was 30% greater in plants treated with elevated CO2. The concentration of TNC in leaf residues from the low N fertilization treatment was 2.3 times greater than that in the high N fertilization treatment, although TNC concentration in root and stem residues was suppressed 13 to 23% by the low soil N treatment. PA and LTGA concentrations in leaf, root and stem residues were affected by less than 10% by the low N fertilization treatment. N concentration was 14 to 44% lower in residues obtained from the elevated CO2 and low N fertilization treatments. In the soil microbial respiration assay, cumulative CO2 release was 10 to 14% lower in soils amended with residues from the elevated CO2 and low N fertility treatments, although treatment differences diminished as the experiment progressed. Treatment effects on residue N concentration and C:N ratios appeared to be the most important factors affecting soil microbial respiration. The results of our study strongly suggest that, although elevated CO2 and N fertility may have significant impact on post-harvest plant residue quality of cotton, neither factor is likely to substantially affect decomposition. Thus, C cycling might not be affected in this way, but via simple increases in plant biomass production. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

3.
Kuzyakov  Y.  Domanski  G. 《Plant and Soil》2002,239(1):87-102
A model for rhizodeposition and root respiration was developed and parameterised based on 14C pulse labelling of Lolium perenne. The plants were grown in a two-compartment chamber on a loamy Haplic Luvisol under controlled laboratory conditions. The dynamics of 14CO2 efflux from the soil and 14C content in shoots, roots, micro-organisms, dissolved organic carbon (DOC) and soil were measured during the first 11 days after labelling. Modelled parameters were estimated by fitting on measured 14C dynamics in the different pools. The model and the measured 14C dynamics in all pools corresponded well (r 2=0.977). The model describes well 14CO2 efflux from the soil and 14C dynamics in shoots, roots and soil, but predicts unsatisfactorily the 14C content in micro-organisms and DOC. The model also allows for division of the total 14CO2 efflux from the soil in 14CO2 derived from root respiration and 14CO2 derived from rhizomicrobial respiration by use of exudates and root residues. Root respiration and rhizomicrobial respiration amounted for 7.6% and 6.0% of total assimilated C, respectively, which accounts for 56% and 44% of root-derived 14CO2 efflux from the soil planted with 43-day-old Lolium perenne, respectively. The sensitivity analysis has shown that root respiration rate affected the curve of 14CO2 efflux from the soil mainly during the first day after labelling. The changes in the exudation rate influenced the 14CO2 efflux later than first 24 h after labelling.  相似文献   

4.
We examined the response of mycorrhizal fungi to free-air CO2 enrichment (FACE) and nitrogen (N) fertilization in a warm temperate forest to better understand potential influences over plant nutrient uptake and soil carbon (C) storage. In particular, we hypothesized that mycorrhizal fungi and glomalin would become more prevalent under elevated CO2 but decrease under N fertilization. In addition, we predicted that N fertilization would mitigate any positive effects of elevated CO2 on mycorrhizal abundance. Overall, we observed a 14% increase in ectomycorrhizal (ECM) root colonization under CO2 enrichment, which implies that elevated CO2 results in greater C investments in these fungi. Arbuscular mycorrhizal (AM) hyphal length and glomalin stocks did not respond substantially to CO2 enrichment, and effects of CO2 on AM root colonization varied by date. Nitrogen effects on AM fungi were not consistent with our hypothesis, as we found an increase in AM colonization under N fertilization. Lastly, neither glomalin concentrations nor ECM colonization responded significantly to N fertilization or to an N-by-CO2 interaction. A longer duration of N fertilization may be required to detect effects on these parameters.  相似文献   

5.
Increased biomass production in terrestrial ecosystems with elevated atmospheric CO2 may be constrained by nutrient limitations as a result of increased requirement or reduced availability caused by reduced turnover rates of nutrients. To determine the short-term impact of nitrogen (N) fertilization on plant biomass production under elevated CO2, we compared the response of N-fertilized tallgrass prairie at ambient and twice-ambient CO2 levels over a 2-year period. Native tallgrass prairie plots (4.5 m diameter) were exposed continuously (24 h) to ambient and twice-ambient CO2 from 1 April to 26 October. We compared our results to an unfertilized companion experiment on the same research site. Above- and belowground biomass production and leaf area of fertilized plots were greater with elevated than ambient CO2 in both years. The increase in biomass at high CO2 occurred mainly aboveground in 1991, a dry year, and belowground in 1990, a wet year. Nitrogen concentration was lower in plants exposed to elevated CO2, but total standing crop N was greater at high CO2. Increased root biomass under elevated CO2 apparently increased N uptake. The biomass production response to elevated CO2 was much greater on N-fertilized than unfertilized prairie, particularly in the dry year. We conclude that biomass production response to elevated CO2 was suppressed by N limitation in years with below-normal precipitation. Reduced N concentration in above- and belowground biomass could slow microbial degradation of soil organic matter and surface litter, thereby exacerbating N limitation in the long term.  相似文献   

6.
不同施氮措施对旱作玉米地土壤酶活性及CO2排放量的影响   总被引:5,自引:0,他引:5  
对施用速效氮肥(尿素)和缓释氮肥的旱作夏玉米地土壤酶活性及CO2排放量进行分析。结果表明,与不施肥处理比较,不同氮肥种类和施用量均可显著提高土壤脲酶、蔗糖酶、过氧化氢酶活性和CO2的排放量。在整个生育期,尿素与缓释氮肥处理土壤酶活性和土壤CO2排放量表现出相同变化趋势,尿素和缓释氮肥处理土壤CO2平均排放量分别为459.12 mg·m-·2h-1和427.11 mg·m-·2h-1,两者达到显著差异水平(P<0.5)。相关分析表明,土壤脲酶、蔗糖酶和过氧化氢酶活性与土壤CO2排放量呈显著或极显著正相关,相关系数分别为0.79、0.64和0.80。说明相同施氮量缓释氮肥较尿素能有效提高土壤酶活性并降低土壤碳排放量。  相似文献   

7.
In annual crops, the partitioning of photosynthates to support root growth, respiration and rhizodeposition should be greater during early development than in later reproductive stages due to source/sink relationships in the plant. Therefore, seasonal fluctuations in carbon dioxide (CO2) and nitrous oxide (N2O) production from roots and root-associated soil may be related to resource partitioning by the crop. Greenhouse studies used 13C and 15N stable isotopes to evaluate the carbon (C) partitioning and nitrogen (N) uptake by corn and soybean. We also measured the CO2 and N2O production from planted pots as affected by crop phenology and N fertilization. Specific root-derived respiration was related to the 13C allocated to roots and was greatest during early vegetative growth. Root-derived respiration and rhizodeposition were greater for corn than soybean. The 15N uptake by corn increased between vegetative growth, tasseling and milk stages, but the 15N content in soybean was not affected by phenology. A peak in N2O production was observed with corn at the milk stage, suggesting that the corn rhizosphere supported microbial communities that produced N2O. Most of the 15N-NO3 applied to soybean was not taken up by the plant and negative N2O production during vegetative growth and floral initiation stages suggests that soybean roots supported the reduction of N2O to dinitrogen (N2). We conclude that crop phenology and soil N availability exert important controls on rhizosphere processes, leading to temporal variation in CO2 and N2O production.  相似文献   

8.
It is uncertain whether elevated atmospheric CO2 will increase C storage in terrestrial ecosystems without concomitant increases in plant access to N. Elevated CO2 may alter microbial activities that regulate soil N availability by changing the amount or composition of organic substrates produced by roots. Our objective was to determine the potential for elevated CO2 to change N availability in an experimental plant-soil system by affecting the acquisition of root-derived C by soil microbes. We grew Populus tremuloides (trembling aspen) cuttings for 2 years under two levels of atmospheric CO2 (36.7 and 71.5 Pa) and at two levels of soil N (210 and 970 μg N g–1). Ambient and twice-ambient CO2 concentrations were applied using open-top chambers, and soil N availability was manipulated by mixing soils differing in organic N content. From June to October of the second growing season, we measured midday rates of soil respiration. In August, we pulse-labeled plants with 14CO2 and measured soil 14CO2 respiration and the 14C contents of plants, soils, and microorganisms after a 6-day chase period. In conjunction with the August radio-labeling and again in October, we used 15N pool dilution techniques to measure in situ rates of gross N mineralization, N immobilization by microbes, and plant N uptake. At both levels of soil N availability, elevated CO2 significantly increased whole-plant and root biomass, and marginally increased whole-plant N capital. Significant increases in soil respiration were closely linked to increases in root biomass under elevated CO2. CO2 enrichment had no significant effect on the allometric distribution of biomass or 14C among plant components, total 14C allocation belowground, or cumulative (6-day) 14CO2 soil respiration. Elevated CO2 significantly increased microbial 14C contents, indicating greater availability of microbial substrates derived from roots. The near doubling of microbial 14C contents at elevated CO2 was a relatively small quantitative change in the belowground C cycle of our experimental system, but represents an ecologically significant effect on the dynamics of microbial growth. Rates of plant N uptake during both 6-day periods in August and October were significantly greater at elevated CO2, and were closely related to fine-root biomass. Gross N mineralization was not affected by elevated CO2. Despite significantly greater rates of N immobilization under elevated CO2, standing pools of microbial N were not affected by elevated CO2, suggesting that N was cycling through microbes more rapidly. Our results contained elements of both positive and negative feedback hypotheses, and may be most relevant to young, aggrading ecosystems, where soil resources are not yet fully exploited by plant roots. If the turnover of microbial N increases, higher rates of N immobilization may not decrease N availability to plants under elevated CO2. Received: 12 February 1999 / Accepted: 2 March 2000  相似文献   

9.
张雪  梅莉  宋利豪  刘力诚  赵泽尧 《生态学报》2019,39(6):1917-1925
以2年生马尾松(Pinus massoniana)盆栽苗土壤为对象,通过施氮肥模拟氮沉降对土壤理化性质、微生物群落结构及温室气体释放的影响,探明氮沉降对森林土壤温室气体释放的驱动机制。结果表明,模拟氮沉降处理显著提高了土壤速效氮含量和苗木根系氮含量;土壤微生物碳(SMBC)含量比对照显著下降78%,而土壤微生物氮(SMBN)则提高2.6倍。模拟氮沉降处理显著降低土壤中微生物群落总含量。施氮肥对马尾松土壤N_2O和CO_2的释放速率均有显著影响,增施氮肥不仅显著提高了土壤N_2O的释放速率,而且CO_2释放速率短期内也显著提高,但伴随微生物群落的下降,施肥后期CO_2释放速率表现下降趋势。相关分析表明,土壤CO_2和N_2O释放与土壤pH值、土壤温度、土壤湿度、土壤速效氮含量及SMBC、SMBN相关;逐步回归分析表明,土壤硝态氮含量的变化是驱动土壤温室气体释放的主导因子。3株种植单位土壤体积内根系生物量较高,增加了土壤水分的消耗速率和氮的吸收固定,因而减少N_2O的释放速率。以上研究阐明了氮沉降或过量施肥对土壤氮含量、土壤pH值、根系生物量及氮含量、土壤微生物群落结构等因子的影响,这些因子直接或间接影响土壤温室气体释放速率。氮沉降及施用氮肥是加快土壤温室气体(CO_2和N_2O)排放进程的重要因素。  相似文献   

10.
青藏高原高寒草甸土壤CO2排放对模拟氮沉降的早期响应   总被引:5,自引:0,他引:5  
研究大气氮沉降输入对青藏高原高寒草甸土壤-大气界面CO2交换通量的影响,对于准确评价全球变化背景下区域碳平衡至关重要。通过构建多形态、低剂量的增氮控制试验,利用静态箱-气相色谱法测定土壤CO2排放通量,同时测定相关土壤变量和地上生物量,分析高寒草甸土壤CO2排放特征及其主要驱动因子。研究结果表明:低、高剂量氮输入倾向于消耗土壤水分,而中剂量氮输入有利于土壤水分的保持;施氮初期总体上增加了土壤无机氮含量,铵态氮累积效应更为显著;施氮显著增加地上生物量和土壤CO2排放通量,铵态氮的促进效应显著高于硝态氮。另外,土壤CO2排放通量主要受土壤温度驱动,其次为地上生物量和铵态氮储量。上述结果反映了氮沉降输入短期内可能刺激了植物生长和土壤微生物活性,加剧了土壤-大气界面CO2排放。  相似文献   

11.
This paper examines how elevated CO2 and nitrogen (N) supply affect plant characteristics of loblolly pine (Pinus taeda L.) with an emphasis on root morphology. Seedlings were grown in greenhouses from seeds during one growing season at two atmospheric CO2 concentrations (375 and 710 μL L-1) and two N levels (High and Low). Root morphological characteristics were determined using a scanner and an image analysis program on a Macintosh computer. In the high N treatment, elevated CO2 increased total plant dry weight by 80% and did not modify root to shoot (R/S) dry weight ratio, and leaf and plant N concentration at the end of the growing season. In the low N treatment, elevated CO2 increased total dry weight by 60%. Plant and leaf N concentration declined and R/S ratio tended to increase. Nitrogen uptake rate on both a root length and a root dry weight basis was greater at elevated CO2 in the high N treatment and lower in the low N treatment. We argue that N stress resulting from short exposures to nutrients might help explain the lower N concentrations observed at high CO2 in other experiments; Nitrogen and CO2 levels modified root morphology. High N increased the number of secondary lateral roots per length of first order lateral root and high CO2 increased the length of secondary lateral roots per length of first order lateral root. Number and length of first order lateral roots were not modified by either treatment. Specific root length of main axis, and to a lower degree, of first order laterals, declined at high CO2, especially at high N. Basal stem diameter and first order root diameters increased at high CO2, especially at high N. Elevated CO2 increased the proportion of upper lateral roots within the root system.  相似文献   

12.
Mineral-associated organic matter (MAOM) is a key component of the global carbon (C) and nitrogen (N) cycles, but the processes controlling its formation from plant litter are not well understood. Recent evidence suggests that more MAOM will form from higher quality litters (e.g., those with lower C/N ratios and lower lignocellulose indices), than lower quality litters. Shoots and roots of the same non-woody plant can provide good examples of high and low quality litters, respectively, yet previous work tends to show a majority of soil organic matter is root-derived. We investigated the effect of litter quality on MAOM formation from shoots versus roots using a litter-soil slurry incubation of isotopically labeled (13C and 15N) shoots or roots of Big Bluestem (Andropogon gerardii) with isolated silt or clay soil fractions. The slurry method minimized the influence of soil structure and maximized contact between plant material and soil. We tracked the contribution of shoot- and root-derived C and N to newly formed MAOM over 60 days. We found that shoots contributed more C and N to MAOM than roots. The formation of shoot-derived MAOM was also more efficient, meaning that less CO2 was respired per unit MAOM formed. We suggest that these results are driven by initial differences in litter chemistry between the shoot and root material, while results of studies showing a majority of soil organic matter is root-derived may be driven by alternate mechanisms, such as proximity of roots to mineral surfaces, greater contribution of roots to aggregate formation, and root exudation. Across all treatments, newly formed MAOM had a low C/N ratio compared to the parent plant material, which supports the idea that microbial processing of litter is a key pathway of MAOM formation.  相似文献   

13.
Photosynthesis controls of CO2 efflux from maize rhizosphere   总被引:4,自引:0,他引:4  
The effects of different shading periods of maize plants on rhizosphere respiration and soil organic matter decomposition were investigated by using a 13C natural abundance and 14C pulse labeling simultaneously. 13C was a tracer for total C assimilated by maize during the whole growth period, and 14C was a tracer for recently assimilated C. CO2 efflux from bare soil was 4 times less than the total CO2 efflux from planted soil under normal lighting. Comparing to the normal lighting control (12/12 h day/night), eight days with reduced photosynthesis (12/36 h day/night period) and strongly reduced photosynthesis (12/84 h day/night period) resulted in 39% and 68% decrease of the total CO2 efflux from soil, respectively. The analysis of 13C natural abundance showed that root-derived CO2 efflux accounted for 82%, 68% and 56% of total CO2 efflux from the planted soil with normal, prolonged and strongly prolonged night periods, respectively. Clear diurnal dynamics of the total CO2 efflux from soil with normal day-night period as well as its strong reduction by prolonged night period indicated tight coupling with plant photosynthetic activity. The light-on events after prolonged dark periods led to increases of root-derived and therefore of total CO2 efflux from soil. Any factor affecting photosynthesis, or substrate supply to roots and rhizosphere microorganisms, is an important determinant of root-derived CO2 efflux, and thereby, total CO2 efflux from soils. 14C labeling of plants before the first light treatment did not show any significant differences in the 14CO2 respired in the rhizosphere between different dark periods because the assimilate level in the plants was high. Second labeling, conducted after prolonged night phases, showed higher contribution of recently assimilated C (14C) to the root-derived CO2 efflux by shaded plants. Results from 13C natural abundance showed that the cultivation of maize on Chromic Luvisol decreased soil organic matter (SOM) mineralization compared to unplanted soil (negative priming effect). A more important finding is the observed tight coupling of the negative rhizosphere effect on SOM decomposition with photosynthesis.  相似文献   

14.
Atwell  B.J.  Fillery  I. R. P.  McInnes  K. J.  Smucker  A. J. M. 《Plant and Soil》2002,241(2):259-269
Triticum aestivum L. (cv. Gutha), a short-season wheat, was grown to maturity in large monoliths of duplex soil (sand over sandy-clay) in a daylight phytotron mimicking field conditions. Either 15N-labelled ammonium sulphate ((NH4)2SO4) or urea was banded into the soil at a rate of 30 kg N ha–1: even though roots were about 20% heavier when grown in the presence of (NH4)2SO4 for 86 d (P<0.05), above-ground mass was not affected by the source of nitrogen. At four times through crop development up to grain-filling (50, 56, 70 and 86 d after sowing) shoots were labelled heavily with 14CO2 with two purposes. First, to trace `instantaneous' assimilate movement over 24 h, revealing relative sink strengths throughout plants. This, in turn, allowed precise measurements of live root mass and the proportion of recent photoassimilates deposited in the rhizosphere. Although root systems were sparse, even in surface soil layers, they were strong sinks for photoassimilates early in development (0–50 d), supporting the conversion of inorganic applied nitrogen (N) to soil organic forms. In the presence of roots, up to 28% of 15N was immobilised, whereas only 12% of labelled ammonium sulphate was immobilised in unplanted plots in spite of a favourable moisture status in both treatments. The effect of plants on rates of 15N transformation is ascribed to recently imported photoassimilates sustaining rhizosphere metabolism. Not more than 15% of recently fixed carbon imported by roots was recovered from the rhizoplane, suggesting that a highly localised microbial biomass supported vigorous immobilisation of soil N. Thus, more than twice as much applied N was destined for soil organic fractions as for root material. By these processes, root- and soil-immobilised N become substantial stores of applied N and together with shoot N accounted for all the applied N under dryland conditions.  相似文献   

15.
A. Gorissen 《Plant and Soil》1995,187(2):289-298
It is hypothesized that carbon storage in soil will increase under an elevated atmospheric CO2 concentration due to a combination of an increased net CO2 uptake, a shift in carbon allocation pattern in the plant/soil system and a decreased decomposition rate of plant residues. An overview of several studies, performed in our laboratory, on the effects of elevated CO2 on net carbon uptake, allocation to the soil and decomposition of roots is given to test this hypothesis. The studies included wheat, ryegrass and Douglas-fir and comprised both short-term and long-term studies.Total dry weight of the plants increased up to 62%, but depended on nutrient availability. These results were supported by the data on net 14CO2 uptake. A shift in 14C-carbon distribution from shoots to roots was found in perennial species, although this depended on nutrient availability.The decomposition experiments showed that roots cultivated at 700 L L–1 CO2 were decomposed more slowly than those cultivated at 350 L L–1 CO2. Even after two growing seasons differences up to 13% were observed, although this was found to be dependent on the nitrogen level at which the roots were grown.Both an increased carbon allocation to the soil due to an increased carbon uptake, whether or not combined with a shift in distribution pattern, and a decreased decomposition of root residues will enhance the possibilities of carbon sequestration in soil, thus supporting our hypothesis. However, nutrient availability and the response of the soil microbial biomass (size and activity) play a major role in the processes involved and require attention to clarify plant/soil responses in the long term with regard to sustained stimulation of carbon input into soils and the decomposability of roots and rhizodeposition. Soil texture will also have a strong effect on decomposition rates as a result of differences in the protecting capacity for organic matter. More detailed information on these changes is needed for a proper use of models simulating soil carbon dynamics in the long term.  相似文献   

16.
Interactions between the terrestrial nitrogen (N) and carbon (C) cycles shape the response of ecosystems to global change. However, the global distribution of nitrogen availability and its importance in global biogeochemistry and biogeochemical interactions with the climate system remain uncertain. Based on projections of a terrestrial biosphere model scaling ecological understanding of nitrogen–carbon cycle interactions to global scales, anthropogenic nitrogen additions since 1860 are estimated to have enriched the terrestrial biosphere by 1.3 Pg N, supporting the sequestration of 11.2 Pg C. Over the same time period, CO2 fertilization has increased terrestrial carbon storage by 134.0 Pg C, increasing the terrestrial nitrogen stock by 1.2 Pg N. In 2001–2010, terrestrial ecosystems sequestered an estimated total of 27 Tg N yr−1 (1.9 Pg C yr−1), of which 10 Tg N yr−1 (0.2 Pg C yr−1) are due to anthropogenic nitrogen deposition. Nitrogen availability already limits terrestrial carbon sequestration in the boreal and temperate zone, and will constrain future carbon sequestration in response to CO2 fertilization (regionally by up to 70% compared with an estimate without considering nitrogen–carbon interactions). This reduced terrestrial carbon uptake will probably dominate the role of the terrestrial nitrogen cycle in the climate system, as it accelerates the accumulation of anthropogenic CO2 in the atmosphere. However, increases of N2O emissions owing to anthropogenic nitrogen and climate change (at a rate of approx. 0.5 Tg N yr−1 per 1°C degree climate warming) will add an important long-term climate forcing.  相似文献   

17.
Summary The effects of CO2 enrichment on plant growth, carbon and nitrogen acquisition and resource allocation were investigated in order to examine several hypotheses about the mechanisms that govern dry matter partitioning between shoots and roots. Wild radish plants (Raphanus sativus × raphanistrum) were grown for 25 d under three different atmospheric CO2 concentrations (200 ppm, 330 ppm and 600 ppm) with a stable hydroponic 150 mol 1–1 nitrate supply. Radish biomass accumulation, photosynthetic rate, water use efficiency, nitrogen per unit leaf area, and starch and soluble sugar levels in leaves increased with increasing atmospheric CO2 concentration, whereas specific leaf area and nitrogen concentration of leaves significantly decreased. Despite substantial changes in radish growth, resource acquisition and resource partitioning, the rate at which leaves accumulated starch over the course of the light period and the partitioning of biomass between roots and shoots were not affected by CO2 treatment. This phenomenon was consistent with the hypothesis that root/shoot partitioning is related to the daily rate of starch accumulation by leaves during the photoperiod, but is inconsistent with hypotheses suggesting that root/shoot partitioning is controlled by some aspect of plant C/N balance.  相似文献   

18.
Interspecific variations in carbon (C) allocation and partitioning in the rhizosphere were investigated on 12 Mediterranean species belonging to different family groups (grasses, legumes, non-legume forbs) and having different life cycles. Plants grown individually in artificial soil, in a greenhouse and inoculated with rhizosphere microflora were labelled with 14CO2 for 3 h at the vegetative stage. Rhizosphere respiration was measured during 6 days after which labelled C partitioning between shoots, roots, soil, root washing solution and respiration was estimated. The percentage of assimilated 14C allocated below ground differed significantly between species (41 – 76%) but no significant difference was found between grasses, legumes and non-legume forbs. When expressed as percentage of below-ground 14C, rhizosphere respiration was significantly smaller for non-legume forbs (42%) than for grasses (46%) and legumes (51%). Consequently more 14C was incorporated into root biomass in the former. Half-life of 14CO2 evolution through respiration ranged from 23 h in legumes to 27 h for non-legume forbs and 37 h for grasses. This suggested differences in microbial activities due to quantities and quality of root exuded C. Rhizosphere respiration was positively correlated with the amount of 14C in the solution used to wash the roots on one hand, and root N concentration on the other hand. This led to a functional hierarchy between plant family groups of the overall rhizosphere activity. It went from non-legume forbs being the less active (except Crepis sancta)in terms of respiration and exudation, to grasses and then legumes, the most active but also the richest in nitrogen.  相似文献   

19.
Li  Zhong  Yagi  K.  Sakai  H.  Kobayashi  K. 《Plant and Soil》2004,258(1):81-90
Rice (Oryza sativa) was grown in six sunlit, semi-closed growth chambers for two seasons at 350 L L–1 (ambient) and 650 L L–1 (elevated) CO2 and different levels of nitrogen (N) supplement. The objective of this research was to study the influence of CO2 enrichment and N nutrition on rice plant growth, soil microbial biomass, dissolved organic carbon (DOC) and dissolved CH4. Elevated CO2 concentration ([CO2]) demonstrated a wide range of enhancement to both above- and below-ground plant biomass, in particular to stems and roots (for roots when N was not limiting) in the mid-season (80 days after transplanting) and stems/ears at the final harvest, depending on season and the level of N supplement. Elevated [CO2] significantly increased microbial biomass carbon in the surface 5 cm soil when N (90 kg ha–1) was in sufficient supply. Low N supplement (30 kg ha–1) limited the enhancement of root growth by elevated [CO2], leading consequently to diminished response of soil microbial biomass carbon to CO2 enrichment. The concentration of dissolved CH4 (as well as soil DOC, but to a lesser degree) was observed to be positively related to elevated [CO2], especially at high rate of N application (120 kg ha–1) or at 10 cm depth (versus 5 cm depth) in the later half of the growing season (at 80 kg N ha–1). Root senescence in the late season complicated the assessment of the effect of elevated [CO2] on root growth and soil organic carbon turnover and thus caution should be taken when interpreting respective high CO2 results.  相似文献   

20.
Nitrogen deposition and carbon sequestration in alpine meadows   总被引:6,自引:0,他引:6  
Nitrogen deposition experiments were carried out in alpine meadow ecosystems in Qinghai-Xizang Plateau in China, in order to explore the contribution of nitrogen deposition to carbon sequestration in alpine meadows. Two methods were used in this respect. First, we used the allocation of 15N tracer to soil and plant pools. Second, we used increased root biomass observed in the nitrogen-amended plots. Calculating enhanced carbon storage, we considered the net soil CO2 emissions exposed to nitrogen deposition in alpine meadows. Our results show that nitrogen deposition can enhance the net soil CO2 emissions, and thus offset part of carbon uptake by vegetation and soils. It means that we have to be cautious to draw a conclusion when we estimate the contribution of nitrogen deposition to carbon sequestration based on the partitioning of 15N tracer in terrestrial ecosystems, in particular in N-limited ecosystems. Even if we assess the contribution of nitrogen deposition to carbon sequestration based on increased biomass exposed to nitrogen deposition in terrestrial ecosystems, likewise, we have to consider the effects of nitrogen deposition on the soil CO2 emissions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号