首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ATP生物发光测定试剂研究进展   总被引:1,自引:0,他引:1  
萤火虫荧光素酶是ATP生物发光试剂的关键组成部分,可通过萤火虫尾提取纯化或基因工程技术制备,酶的活力和纯度决定了ATP生物发光试剂的性能。迄今许多先进技术在ATP生物发光试剂的制备中均有应用,包括酶基因工程改造技术、ATP循环的酶法放大技术、荧光素酶蛋白的活力及发光稳定技术,特异的细胞ATP提取技术等。ATP生物发光试剂的研究焦点主要集中在提高发光试剂的检测灵敏度和性能、增加产品的适应性等方面。  相似文献   

2.
A novel bioluminescent enzymatic cycling assay for ATP and AMP with concomitant use of firefly luciferase and pyruvate orthophosphate dikinase (PPDK) was developed. In this system, AMP and pyrophosphate produced from ATP by firefly luciferase were converted back into ATP by PPDK. This resulted in constant luminescence once the stable phase had been reached. Background luminescence of the reagent was reduced with adenosine phosphate deaminase by degrading ATP and AMP in the reagent. The maximum recycling ratio calculated from the integrated luminescence value was 2.64 cycles/min. The measurable ranges for ATP and AMP were equal and were between 4 x 10(-13) and 4 x 10(-17) mol/assay. The amount of yeast RNA could be estimated in the range of 1 x 10(-8) to 1 x 10(-12) g/assay by estimating the amount of AMP resulting from the degradation of RNA with nuclease P1. Various food samples were subjected to measurement of the amount of ATP + AMP + RNA to provide an index for hygiene monitoring. For beef extract, sensitivity was improved by more than 20 million compared to the previous methods relying only on the amount of ATP as an index.  相似文献   

3.
A reactive ATP analog, N6-(6-bromoacetamidohexyl)-AMP.PCP, was synthesized in an attempt to covalently label the binding sites for adenine nucleotides, especially ATP, of various enzymes which utilize adenine nucleotides as substrates, cofactors, inhibitors or allosteric effectors. This reagent rapidly inactivated rabbit muscle glyceraldehyde 3-phosphate dehydrogenase (GPD), myokinase (MK), and creatine kinase (CK) under very mild conditions. Adenine nucleotide substrates prevented the inactivation. In the case of GPD, complete inactivation was observed when 1 mol of the reagent per mol of enzyme subunit was incorporated into the enzyme. These results indicate that the present ATP analog may be useful as an affinity labeling reagent for various adenine nucleotide-dependent enzymes.  相似文献   

4.
Ribulose-5-phosphate kinase from spinach was rapidly inactivated by N-bromoacetylethanolamine phosphate in a bimolecular fashion with a k2 of 2.0 M-1 S-1 at 2 degrees C and pH 8.0. Ribulose 5-phosphate had little effect on the rate of inactivation, whereas complete protection was afforded by ADP or ATP. The extent of incorporation as determined with 14C-labeled reagent was about 1 molar equivalent per subunit in the presence of ATP with full retention of enzymatic activity, and about 2 molar equivalents per subunit in the completely inactivated enzyme. Amino acid analyses of enzyme derivatized with 14C-labeled reagent reveal that all of the covalently incorporated reagent was associated with cysteinyl residues. Hence two sulfhydryls are reactive, but the inactivation correlates with alkylation of one cysteinyl residue at or near the enzyme's nucleotide binding site. The kinase was also extremely sensitive to the sulfhydryl reagents 5,5'-dithiobis(2-nitrobenzoic acid) and N-ethyl-maleimide. The reactive sulfhydryl groups are likely those generated by reduction of a disulfide during activation.  相似文献   

5.
Nucleotide in monomeric actin regulates the reactivity of the thiol groups   总被引:4,自引:0,他引:4  
A new thiol reagent, 2,4-dinitrophenyl glutathionyl disulfide, allowed the characterization of four thiol groups in monomeric actin by stoichiometric reaction. The number of thiol groups exposed to the reagent was found to depend on the nucleotide bound. In the absence of ATP, G-actin exposed four thiol groups ( G4s ). On the addition of ATP (1 equiv), three of them were shielded. The resulting actin with one thiol group exposed ( G1s ) is the form of monomeric actin normally produced by depolymerization of F-actin in buffers containing ATP. G1s is stable over hours, while G4s , i.e., monomeric actin in ATP-free solution, is not. This must be concluded from the fact that the shielding effect of thiol groups induced by addition of ATP was lost within ca. 30 min probably due to denaturation of G4s to G4s *. Therefore, denaturation of monomeric actin must be understood in terms of loss of thiol shielding, rather than by oxidation of the thiol groups. Addition of equimolar amounts of Ca2+ significantly retarded the denaturation process. ADP (50 equiv) shielded only ca. two of the four thiol groups but, similar to ATP, protected actin from denaturation. Three ATP analogues (10 equiv) were tested but had no shielding effect. In the presence of these analogues actin ( G4s ) rapidly denatured (to G4s *) as in the absence of added nucleotides. It was shown that the thiol-shielding activity and the protective capacity of a nucleotide are interrelated with its binding capability to monomeric actin. G1s was found to be polymerizable as was G approximately 2s on the addition of ATP. No polymerization could be detected for G4s or G4s *.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The release of ATP from somatic cells in milk with the detergent Triton X-100 was optimized for assay with firefly luciferase. A small volume of milk (40 microliters) is added to 0.8 ml of 0.2% Triton X-100 in 100 mM Tris, 4 mm EDTA, pH 7.8. After approximately 1 min, 0.2 ml of luciferase reagent is added and the emission of light is measured in a luminometer. Results are calibrated with an ATP standard. This single method gave high yields of ATP from somatic cells in milk without interference from bacterial ATP. Extracts could be stored or transported prior to assay without deterioration of results. A close correlation was found between somatic cell count and ATP in milk samples collected at a farm as well as in milk samples from a cow with experimental mastitis. Results are promising for future use for diagnosis of mastitis but further work and field testing has to be done before it can be used on a wider scale.  相似文献   

7.
D W Pettigrew 《Biochemistry》1987,26(6):1723-1727
Incubation of Escherichia coli glycerol kinase (EC 2.7.1.30; ATP:glycerol 3-phosphotransferase) with 5'-[p-(fluorosulfonyl)benzoyl]adenosine (FSO2BzAdo) at pH 8.0 and 25 degrees C results in the loss of enzyme activity, which is not restored by the addition of beta-mercaptoethanol or dithiothreitol. The FSO2BzAdo concentration dependence of the inactivation kinetics is described by a mechanism that includes the equilibrium binding of the reagent to the enzyme prior to a first-order inactivation reaction in addition to effects of reagent hydrolysis. The hydrolysis of the reagent has two effects on the observed kinetics. The first effect is deviation from pseudo-first-order kinetic behavior due to depletion of the reagent. The second effect is the novel protection of the enzyme from inactivation due to binding of the sulfonate hydrolysis product. The rate constant for the hydrolysis reaction, determined independently from the kinetics of F- release, is 0.021 min-1 under these conditions. Determinations of the reaction stoichiometry with 3H-labeled FSO2BzAdo show that the inactivation is associated with the covalent incorporation of 1.08 mol of reagent/mol of enzyme subunit. Ligand protection experiments show that ATP, AMP, dAMP, NADH, 5'-adenylyl imidodiphosphate, and the sulfonate hydrolysis product of FSO2BzAdo provide protection from inactivation. The protection obtained with ATP is not dependent on Mg2+. Less protection is obtained with glycerol, GMP, etheno-AMP, and cAMP. No protection is obtained with CMP, UMP, TMP, etheno-CMP, GTP, or fructose 1,6-bisphosphate. The results are consistent with modification by FSO2BzAdo of a single adenine nucleotide binding site per enzyme subunit.  相似文献   

8.
The subunit arrangement of the F0 sector of the Escherichia coli ATP synthase is examined using hydrophilic and hydrophobic (cleavable) cross-linking reagents and the water-soluble labeling reagent [35S] diazoniumbenzenesulfonate ( [35S]DABS). Cross-linking is performed on purified ATP synthase and inverted minicell membranes. ATP synthase incorporated into liposomes is labeled with [35S]DABS. Three cross-linked products involving the F0 subunits (a, b, and c) are observed with the purified ATP synthase in solution: a-b, b2, and c2 dimers. A cross-link between the F0 and F1 is detected and occurs between the a and beta subunits. A cross-linker independent association between the b and beta subunits is also evident, suggesting that the two subunits are close enough to form a disulfide bridge. A cross-linking reagent stable to reducing agents produces a b-beta dimer, as detected by immunoblotting with anti-beta serum. The c subunit does not cross-link with any F1 polypeptide. Minicell membranes containing ATP synthase polypeptides radioactively labeled in vivo similarly show b2 and c2 dimers after cross-linking. [35S]DABS labels the a and b, but not c, subunits, showing that the a and b, but not c, subunits possess hydrophilic domains. Thus, certain domains of subunits a and b extend from the membrane and are in close proximity to one another and the F1 catalytic subunit beta.  相似文献   

9.
ATP-binding properties of P glycoprotein from multidrug-resistant KB cells   总被引:18,自引:0,他引:18  
The photoaffinity reagent 8-azido-alpha-[32P]ATP was used to label a protein of 170 kDa in membrane vesicle preparations from a highly multidrug-resistant cell line, KB-V1, but not from the drug-sensitive parental cell line KB-3-1. The 170-kDa labeled protein was immunoprecipitated with a monoclonal antibody (MRK-16) to P glycoprotein. Both ATP and GTP inhibited labeling by 8-azido-alpha-[32P]ATP. Labeling of P170 was not inhibited by 5 mM ADP, 5 mM ribose-5-phosphate, or 100 microM vinblastine. These data directly demonstrate that P glycoprotein has a nucleotide-binding site that could supply energy for drug transport.  相似文献   

10.
Adenosine phosphates, AMP, ADP and ATP were found to be recognized and extracted from aqueous to an organic phase by the newly prepared lipophilic diammonium salt, N,N'-distearyldiammonium dichloride of 1,4-diazabicyclo [2.2.2] octane 1. ADP and ATP were specifically bound by 1 under the condition of no appreciable binding of AMP. The conventional phase transfer reagent, trioctylmethylammonium chloride 2 was far less effective and lacked selectivity fort the binding of adenosine phosphates. This diammonium salt was used as a specific carrier of ADP in the passive transport through a liquid membrane. A high selectivity was observed in the transport rate of ADP relative to that of AMP.  相似文献   

11.
A method to measure orthophosphate which contaminates samples of ATP was developed. Concentrations of orthophosphate as low as 0.4% of the ATP concentration were determined using a zinc-molybdate reagent [D. A. Bencini, J. R. Wild, and G. A. O'Donovan, Anal. Biochem. 132, 254-258 (1983)] and continuous spectrophotometric monitoring of chromophore formation. Since the rate of ATP hydrolysis was pseudo-first order and was slow compared to the rate of chromophore formation, the initial concentration of phosphate could be readily determined by extrapolation to zero time. The method is rapid and reproducible, and requires a single, stable reagent.  相似文献   

12.
D W Pettigrew 《Biochemistry》1986,25(16):4711-4718
Glycerol kinase (EC 2.7.1.30, ATP:glycerol 3-phosphotransferase) from Escherichia coli is inactivated by 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) and by N-ethylmaleimide (NEM) in 0.1 M triethanolamine at pH 7 and 25 degrees C. The inactivation by DTNB is reversed by dithiothreitol. In the cases of both reagents, the kinetics of activity loss are pseudo first order. The dependencies of the rate constants on reagent concentration show that while the inactivation by NEM obeys second-order kinetics (k2app = 0.3 M-1 s-1), DTNB binds to the enzyme prior to the inactivation reaction; i.e., the pseudo-first-order rate constant shows a hyperbolic dependence on DTNB concentration. Complete inactivation by each reagent apparently involves the modification of two sulfhydryl groups per enzyme subunit. However, analysis of the kinetics of DTNB modification, as measured by the release of 2-nitro-5-thiobenzoate, shows that the inactivation is due to the modification of one sulfhydryl group per subunit, while two other groups are modified 6 and 15 times more slowly. The enzyme is protected from inactivation by the ligands glycerol, propane-1,2-diol, ATP, ADP, AMP, and cAMP but not by Mg2+, fructose 1,6-bisphosphate, or propane-1,3-diol. The protection afforded by ATP or AMP is not dependent on Mg2+. The kinetics of DTNB modification are different in the presence of glycerol or ATP, despite the observation that the degree of protection afforded by both of these ligands is the same.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
We recently developed a novel bioluminescent enzymatic cycling assay for ATP and AMP with the concomitant use of firefly luciferase and pyruvate orthophosphate dikinase (PPDK), where AMP and pyrophosphate produced from ATP by firefly luciferase were converted back into ATP by PPDK. Background luminescence derived from contaminating ATP and AMP in the reagent was reduced using adenosine phosphate deaminase which degrades ATP, ADP, and AMP, resulting in constant and highly amplified bioluminescence with low background luminescence. To detect bacterial cells without cultivation, we applied the above bioluminescent enzymatic cycling reagent to rapid microbe detection system. ATP spots (0.31-5.0 amol/spot) at the level of a single bacterial cell were detected with 5 min signal integration, signifying that integrated luminescence was amplified 43 times in comparison to traditional ATP bioluminescence. Consequently, Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and Lactobacillus brevis in beer were detected without cultivation. Significant correlation was observed between the number of signal spots obtained using this novel system and the colony-forming units observed with the conventional colony-counting method (R(2)=0.973).  相似文献   

14.
The molecular chaperone ClpB can rescue the heat-damaged proteins from an aggregated state in cooperation with other chaperones. It has two nucleotide binding domains (NBD1 and NBD2) and forms a hexamer ring in a manner dependent on ATP binding to NBD1. In the crystal structure of ClpB with both NBDs filled by nucleotides, the linker between two NBDs forms an 85-A-long coiled-coil that extends on the outside of the hexamer and leans to NBD1. To probe the possible motion of the coiled-coil, we tested the accessibility of a labeling reagent, fluorescence change of a labeled dye, and cross-linking between the coiled-coil and NBD1 by using the mutants with defective NBD1 or NBD2. The results suggest that the coiled-coil is more or less parallel to the main body of ClpB in the absence of nucleotide and that ATP binding to NBD1 brings it to the leaning position as seen in the crystal structure. This motion results in stabilization of the hexamer form of ClpB and promotion of ATP hydrolysis at NBD2.  相似文献   

15.
Blue native gel electrophoresis purification and immunoprecipitation of F0F1-ATP synthase from bovine heart mitochondria revealed that cyclophilin (CyP) D associates to the complex. Treatment of intact mitochondria with the membrane-permeable bifunctional reagent dimethyl 3,3-dithiobis-propionimidate (DTBP) cross-linked CyPD with the lateral stalk of ATP synthase, whereas no interactions with F1 sector subunits, the ATP synthase natural inhibitor protein IF1, and the ATP/ADP carrier were observed. The ATP synthase-CyPD interactions have functional consequences on enzyme catalysis and are modulated by phosphate (increased CyPD binding and decreased enzyme activity) and cyclosporin (Cs) A (decreased CyPD binding and increased enzyme activity). Treatment of MgATP submitochondrial particles or intact mitochondria with CsA displaced CyPD from membranes and activated both hydrolysis and synthesis of ATP sustained by the enzyme. No effect of CsA was detected in CyPD-null mitochondria, which displayed a higher specific activity of the ATP synthase than wild-type mitochondria. Modulation by CyPD binding appears to be independent of IF1, whose association to ATP synthase was not affected by CsA treatment. These findings demonstrate that CyPD association to the lateral stalk of ATP synthase modulates the activity of the complex.  相似文献   

16.
Copper is an essential trace mineral required for growth and development. Copper homeostasis within the cell is mediated by the expression of the Cu transporter protein (CTR1), ATPase7A (ATP7A), ATPase7B (ATP7B), Cox17, and Cu chaperone for Cu–Zn superoxide dismutase (CCS) which helps to regulate Cu uptake, export, and intracellular compartmentalization in non-ruminants. Copper also serves as a cofactor of antioxidant, superoxide dismutase1 (SOD1). Liver tissue from eighteen Holstein bull calves (average BW 201?±?58.5 kg, 7.3?±?1.9 months) from a previous experiment were utilized to characterize and identify hepatic mRNA related to Cu metabolism and homeostasis in cattle. Hepatic Cu concentration was determined via flame atomic absorption, and total RNA was extracted using TRI reagent and purified using RNeasy. Hepatic Cu concentrations ranged from 86 to 801 mg of Cu/kg DM. Real-time polymerase chain reaction analysis revealed that CTR1, ATP7A, and ATP7B mRNA expressions were negatively correlated with hepatic Cu concentration, while CCS (P?=?0.0887) and SOD1 had a tendency (P?=?0.0733) to be negatively correlated to hepatic Cu concentration. These data indicate that higher than normal hepatic Cu concentration downregulates gene expression of CTR1, ATP7A, ATP7B, and Cox17, which are involved in bovine liver copper homeostasis.  相似文献   

17.
Treatment of purified ATPase of the thermophilic bacterium PS-3 with the arginine reagent phenylglyoxal or with Woodward's reagent K, gave complete inactivation of the enzyme. The inactivation rates followed apparent first-order kinetics. The apparent order of reaction with respect to inhibitor concentrations gave values near to 1 with both reagents, suggesting that inactivation was a consequence of modifying one arginine or carboxyl group per active site. ADP and ATP strongly protected the thermophilic ATPase against both reagents. GDP and IDP protected less, whilst CTP did not protect. Experiments in which the incorporation of [14C]phenylglyoxal into the enzyme was measured show that extrapolation of incorporation to 100% inactivation of the enzyme gives 8-9 mol [14C]phenylglyoxal per mol ATPase, whilst ADP or ATP prevent modification of about one arginine per mol.  相似文献   

18.
A reactive ATP analog, N6-(6-bromoacetamidohexyl)-AMP-PCP, reacted specifically with the ATP inhibitory site of rabbit skeletal muscle phosphofructokinase without affecting the active site. Modification resulted in the incorporation of 1.01 mol of the reagent per mol of enzyme subunit. The modified enzyme was insensitive to allosteric inhibition by ATP and to activation by AMP at pH 7.2, where the native enzyme exhibits allosteric kinetic behavior. These observations demonstrate that we had succeeded in obtaining PFK fixed in the T state. Using the kinetic parameters of this modified enzyme, the kinetic properties of native enzyme can be quantitatively accounted for by the allosteric model of Monod-Wyman-Changeux. Further, the reagent was shown to have reacted with a specific cysteine residue near or at the ATP inhibitory site, and the sequence around the cysteine was determined as Cys-Lys-Asp-Phe-Arg.  相似文献   

19.
A component of the stator of the yeast ATP synthase (subunit 4 or b) showed many cross-linked products with the homobifunctional reagent dithiobis[succinimidyl propionate], which reacts with the amino group of lysine residues. The positions in subunit 4 that were involved in the cross-linkings were determined by using cysteine-generated mutants constructed by site-directed mutagenesis of ATP4. Cross-linking experiments with the heterobifunctional reagent p-azidophenacyl bromide, which has a spacer arm of 9 A, were performed with mitochondria and crude Triton X-100 extracts containing the solubilized enzyme. Substitution of lysine residues by cysteine residues in the hydrophilic C-terminal part of subunit 4 allowed cross-links with subunit h from C98 and with subunit d from C141, C143, and C151. OSCP was cross-linked from C174 and C209. A cross-linked product, 4+beta, was also obtained from C174. It is concluded that the C-terminus of subunit 4 is distant from the membrane surface and close to F(1) and OSCP. The N-terminal part of subunit 4 is close to subunit g, as demonstrated by the identification of a cross-linked product involving subunit g and the cysteine residues 7 or 14 of subunit 4.  相似文献   

20.
Reports that ATP promotes proteolysis in tissue homogenates were reinvestigated. Although ATP increased production of material reacting with ninhydrin or Folin-phenol reagent, ATP did not stimulate protein degradation in such extracts. AMP and adenosine acted similarly to ATP. Deamination of the added nucleotides to produce ammonia caused the increase in ninhydrin-positive material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号