首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
Summary Seasonal dynamics of soil nematodes and root biomass were examined from under western wheatgrass (Agropyron smithii) and little bluestem (Andropogon scoparius) from a heavily grazed prairie dog (Cynomys ludovicianus) colony occupied for 5 to 10 years and an adjacent lightly grazed, uncolonized area in Wind Cave National Park, South Dakota, USA. Nematodes were differentiated into classes of plant-parasitic Tylenchida and Dorylaimida and nonparasitic Dorylamida and Rhabditida. Root-feeding nematodes were generally more numerous from A. smithii than from A. scoparius, while nonparasitic populations were not different in soil from beneath the two plant species. Rhabditida, parasitic Dorylaimida and Tylenchida (from A. scoparius only) were more numerous on the prairie dog colony than from the uncolonized site, but nonparasitic Dorylaimida populations did not differ between the two areas. Mean total (live plus dead) root biomass beneath A. scoparius and A. smithii on the prairie dog colony averaged 71% and 81%, respectively, of values from the uncolonized area. Estimated consumption by root-feeding nematodes averaged 12.6% and 5.8% of annual net root production in the upper 10 cm from the prairie dog colony and uncolonized site, respectively. We conclude that, because of microhabitat modification or reductions in plant resistance to nematodes, heavy grazing by aboveground herbivores apparently facilitates grazing by belowground herbivores. Because heavily grazed plants have less roots than lightly grazed or ungrazed plants, the impact of root-feeding nematodes on primary producers is likely to be greatest in heavily grazed grasslands.  相似文献   

2.
Both bison and prairie dogs have multiple and dramatic effects on grassland landscapes and both are considered by many to be keystone herbivores. Numerous studies have documented their independent or combined impact on grassland ecosystem processes, but there have been few attempts to simultaneously assess the individual and interactive effects of bison and prairie dogs where they co-occur. We began a long-term study in late 1994 in Badlands National Park, South Dakota, USA, to evaluate the ecological consequences of the presence or exclusion of prairie dogs, bison, or both, upon various aspects of plant community dynamics and N cycling. Five different treatments were established at three separate mixed-grass prairie sites in the park: (1) off the prairie dog colony with bison excluded, (2) off colony with continued bison utilization, (3) on colony with bison excluded but continued prairie dog use, (4) on colony with utilization by prairie dogs and bison, and (5) on colony with both excluded. There were few differences in aboveground biomass or plant species composition between the two off-colony treatments or among the three on-colony treatments, even after 3 years of treatment imposition. However, aboveground biomass was >2 times greater in off-colony sites than on-colony sites, primarily due to the near elimination of grasses on prairie dog colonies. Off-colony sites were dominated by a few grass species, resulting in lower plant species diversity, while on-colony sites were dominated by several forb species. Net N mineralization early in the growing season was 4 times greater on prairie dog colonies than at off-colony sites, but all sites exhibited net immobilization by the latter half of the growing season. The results of this study indicate distinct differences in several ecosystem properties between on- and off-colony treatments. Whether these patterns represent relatively stable alternate states or whether distinct changes will emerge in the different herbivore treatments after several additional years is of considerable interest.  相似文献   

3.
The relationship between vegetation cover and soil seed banks was studied in five different ungulate herbivore-prairie dog treatment combinations at three northern mixed-grass prairie sites in Badlands National Park, South Dakota. There were distinct differences in both the seed bank composition and the aboveground vegetation between the off-prairie dog colony treatments and the on-colony treatments. The three on-colony treatments were similar to each other at all three sites with vegetation dominated by the forbs Dyssodia papposa, Hedeoma spp., Sphaeralcea coccinea, Conyza canadensis, and Plantago patagonica and seed banks dominated by the forbs Verbena bracteata and Dyssodia papposa. The two off-colony treatments were also similar to each other at all three sites. Vegetation at these sites was dominated by the grasses Pascopyrum smithii, Bromus tectorum and Bouteloua gracilis and the seed banks were dominated by several grasses including Bromus tectorum, Monroa squarrosa, Panicum capillare, Sporobolus cryptandra and Stipa viridula. A total of 146 seedlings representing 21 species germinated and emerged from off-colony treatments while 3069 seedlings comprising 33 species germinated from on-colony treatments. Fifteen of the forty species found in soil seed banks were not present in the vegetation, and 57 of the 82 species represented in the vegetation were not found in the seed banks. Few dominant species typical of mixed-grass prairie vegetation germinated and emerged from seed banks collected from prairie dog colony treatments suggesting that removal of prairie dogs will not result in the rapid reestablishment of representative mixed-grass prairie unless steps are taken to restore the soil seed bank.  相似文献   

4.
A prairie dog (Cynomys ludovicianus) colony with a known history of habitation was studied to quantify the effects of herbivory on plant species composition, dominance, stature and diversity in a North American mixedgrass prairie. Gradient analysis was used to quantify the relationship between plant community structure, prairie dog density, burrow density and habitation history and to document community-level responses of plants subjected to heavy grazing pressure. The results quantify the type, rate and extent of change which plant populations and communities may undergo in response to the differential grazing of plants variously tolerant of defoliation.Detrended correspondence analysis indicated that 69% of the between-sample floristic variance on the site was attributable to prairie dog habitation. Perennial grasses were rapidly displaced from the site within 3 yr of colonization and were replaced by annual forbs. The net result was an increase in species richness and diversity on the prairie dog colony. Within the colony, however, the number of species was more a function of stand size than colonization history.Significant decreases in canopy stature after 2 yr of habitation resulted from replacement of mid-height grass species by shortgrass species and forbs. In addition, there was a shift from tall growth forms of off-colony species to dwarf growth forms of the same species on the colony. Decreases in litter and increases in bare soil cover were substantial during the first 2 yr of habitation but changed little thereafter.Abbreviations WCC Wind Cave Canyon - DCA Detrended Correspondence Analysis  相似文献   

5.
Summary Above- and belowground biomass of primary producers were estimated by the harvest method on 10 dates in 1969 in a mixed-prairie grassland. A range of estimates of above- and belowground net primary production is established using several methods of calculation. The range for aboveground production is 240 to 302 g·m-2 and 931 to 1221 g·m-2 for belowground production. Correlation analysis indicated that above- and belowground biomass dynamics are significantly (0.05) related to air and soil temperature, soil water, precipitation, and vapor pressure deficit. Analysis of energy flow through primary producers indicates a net storage of energy in the standing dead, litter, and belowground compartments. Accumulation in the standing dead was 63% of inputs, in the litter 8%, and belowground 37%. Belowground decomposition was 57% of belowground production and the same value aboveground was 50%.  相似文献   

6.
Summary Plants with the C4 dicarboxylic acid pathway of photosynthetic CO2 fixation are generally nutritionally inferior to C3 (Calvin cycle) plants as foodstuff for herbivores. A possible contributing factor to this nutritional inferiority is the concentration, in C4 plants, of large quantities of nutritional material in very tough, thick-walled vascular bundle sheath cells which herbivores may not be able to break down. Experiments with 10 species of grass-hoppers from different areas in the United States revealed large numbers of unbroken bundle sheath cells, contents intact, in fecal pellets produced when the grasshoppers were fed C4 vegetation. We conclude that the material stored in C4 bundle sheath cells is at least partially unavailable to herbivores, and that this may contribute to the observed nutritional inferiority of C4 vegetation.  相似文献   

7.
Effects of disturbance on diversity in mixed-grass prairie   总被引:1,自引:0,他引:1  
  相似文献   

8.
Water-level fluctuations in North American prairie wetlands   总被引:1,自引:2,他引:1  
Oscillatory water-level fluctuations are reversible changes in water levels around a long-term mean. Long-term water-level studies in wetlands in the prairie pothole region of North America and proxy data (e.g., tree rings) for water levels in this region indicate that oscillatory water-level fluctuations have occurred for thousands of years. Because there has been no standard set of terms to describe oscillatory water-level fluctuations, some terminology is proposed that is based on previous work on riverine wetlands. Changes in prairie wetland vegetation caused by oscillating water levels are called wet–dry cycles. Field studies indicate that two kinds of vegetation change are common during wet–dry cycles, fluctuations and successions. Fluctuations are changes in the relative abundance of species between the wet and dry phases of the cycles. They occur whenever the range of water levels during a cycle is small (ca. 50 cm), as in seasonal wetlands. Succesions are changes in species composition. They occur wherever the range of water levels is large (ca. 1.5–2.0 m), as in semi-permanent wetlands. During successions, high water levels during the wet phase can typically eliminate most emergent species and low or no water during the dry phase allows emergent species to become re-established from seed and terrestrial annuals to dominate the vegetation. Experimental studies at the ecosystem- and species-level have confirmed observations made during field studies of semi-permanent wetlands, e.g., that water depth tolerance is the primary determinant of distribution of emergent species. Both qualitative and quantitative assembly-rule models of wet–dry cycles have been developed. When adequate data are available, the latest quantitative models can accurately predict changes in composition and distribution of emergent vegetation in semi-permanent wetlands during all or parts of a wet–dry cycle.  相似文献   

9.
Most of North America’s northern Great Plains have been cultivated for crop production, leaving remnants of natural mixed-grass prairie fragmented and threatened by alien plant invasions. The region’s most widespread alien perennial forage crop, crested wheatgrass (Agropyron cristatum sensu amplo), has invaded native grassland and raised concerns regarding its ecological impact. To evaluate impacts at multiple scales of organization, adjacent invaded and uninvaded mixed-grass prairie were sampled at eight widely separated locations. At the population level, native C3 mid-grasses and forbs were less abundant in invaded grasslands, while native C3 and C4 short-grass abundance was not different. At community and landscape levels, diversity was lower in invaded grasslands largely because of lower forb species richness and cover, and crested wheatgrass dominance of both cover (14% basal cover) and seedbank (404 seeds m−2). At the ecosystem level, both vegetation and litter biomass were greater in invaded grasslands, however, below ground organic matter (roots and litter), soil organic carbon, total nitrogen and phosphorus were not different. Crested wheatgrass invasion of mixed-grass prairie was associated with lower diversity within and among plant communities, and appears to simplify the composition of mixed-grass prairie landscapes. Hypotheses for crested wheatgrass dominance and persistence following invasion are suggested.  相似文献   

10.
During the past two decades we have gained much insight into the factors that regulate the productivity of seagrass dominated ecosystems, especially those at low latitudes. Here, we review and reassess the importance of plant-herbivore interactions in seagrass meadows, focusing on recent studies that have examined: 1) grazing on live seagrass leaves; 2) consumption of epiphytic algae growing on seagrass leaves; and 3) consumption of planktonic algae from the waters surrounding seagrass meadows. The major conclusion is that, in contrast to what has been reported in much of the literature on food webs in seagrass meadows, a diverse grazing pathway continues to represent an important conduit for the transfer of energy from the primary producers to higher order consumers. This remains true, although in many areas consumption of seagrasses is reduced in an historical context, owing to the overharvesting of many large species of herbivorous waterfowl, turtles and mammals.We also summarize our view of the important gaps in understanding the broadly defined topic of herbivory in seagrass-dominated ecosystems. We suggest that future studies should focus on: understanding the foraging strategies of seagrass herbivores; quantifying the impact of herbivory on seagrass demography, including effects on sexual reproduction, the fate of flowers, and the production of fruits and seeds; and documenting the commonness of compensatory responses to grazing. In addition, the role of chemical defenses in seagrass species remains inadequately investigated. Studies of the roles of nutritional content (as measured by C/N/P ratios) and chemical defenses are also fertile grounds for future studies of epiphytes and their grazers, as are additional experiments to quantify the relative roles of top-down and bottom-up factors as they determine algal growth and abundance. There is also a need to expand the geographical scope of studies of epiphyte-grazer interactions from cold temperate to sub-tropical and tropical waters. Suspension feeders also need to be studied more broadly, with additional experiments required to quantify their effects on water clarity and their ability to fertilize pore waters, and whether benefits from these activities balances the costs of shading and competition for space that can result from both epifaunal and infaunal suspension feeders.  相似文献   

11.
12.
13.
We explore the impact of plant toxicity on the dynamics of a plant-herbivore interaction, such as that of a mammalian browser and its plant forage species, by studying a mathematical model that includes a toxin-determined functional response. In this functional response, the traditional Holling Type 2 response is modified to include the negative effect of toxin on herbivore growth, which can overwhelm the positive effect of biomass ingestion at sufficiently high plant toxicant concentrations. Two types of consumption decisions of the herbivore are considered. One of these (Case 1) incorporates the adaptation of the herbivore to control its rate of consumption of plant items when that is likely to lead to levels of toxicity that more than offset the marginal gain to the herbivore of consuming more plant biomass, while the other (Case 2) simply assumes that, although the herbivore’s rate of ingestion of plant biomass is negatively affected by increasing ingestion of toxicant relative to the load it can safely deal with, the herbivore is not able to prevent detrimental or even lethal levels of toxicant intake. A primary result of this work is that these differences in behavior lead to dramatically different outcomes, summarized in bifurcation diagrams. In Case 2, a wide variety of dynamics may occur due to the interplay of Holling Type 2 dynamics and the effect of the plant toxicant. These dynamics include the occurrence of bistability, in which both a periodic solution and the herbivore-extinction equilibrium are attractors, as well the possibility of a homoclinic bifurcation. Whether the herbivore goes to extinction in the bistable case depends on initial conditions of herbivore and plant biomasses. For relatively low herbivore resource acquisition rates, the toxicant effect increases the likelihood of ‘paradox of enrichment’ type limit cycle oscillations, but at higher resource acquisition rates, the toxicant may decrease the likelihood of these cycles.  相似文献   

14.
Disturbance frequently is implicated in the spread of invasive exotic plants. Disturbances may be broadly categorized as endogenous (e.g., digging by fossorial animals) or exogenous (e.g., construction and maintenance of roads and trails), just as weedy species may be native or exotic in origin. The objective of this study was to characterize and compare exotic and native weedy plant occurrence in and near three classes of disturbance – digging by prairie dogs (an endogenous disturbance to which native plants have had the opportunity to adapt), paved or gravel roads (an exogenous disturbance without natural precedent), and constructed trails (an exogenous disturbance with a natural precedent in trails created by movement of large mammals) – in three geographically separate national park units. I used plant survey data from the North and South Units of Theodore Roosevelt National Park and Wind Cave National Park in the northern mixed-grass prairie of western North and South Dakota, USA, to characterize the distribution of weedy native and exotic plants with respect to the three disturbance classes as well as areas adjacent to them. There were differences both in the susceptibility of the disturbance classes to invasion and in the distributions of native weeds and exotic species among the disturbance classes. Both exotic and native weedy species richness were greatest in prairie dog towns and community composition there differed most from undisturbed areas. Exotic species were more likely to thrive near roadways, where native weedy species were infrequently encountered. Exotic species were more likely to have spread beyond the disturbed areas into native prairie than were weedy native species. The response of individual exotic plant species to the three types of disturbance was less consistent than that of native weedy species across the three park units. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

15.
16.
Identifying environments where invasive plants are most invasive is key to understanding causes of invasion and developing effective management strategies. In mixed-grass prairie, invasive plants are often successful in relatively wet, nitrogen-rich areas, and areas protected from grazing. Dalmatian toadflax, a common invader of mixed-grass prairie, can also be favored by high water and nitrogen availability, but is thought to be relatively unpalatable to cattle, and therefore favored by grazing. We used spatially-adjusted model selection techniques to quantify relationships between toadflax cover (measured using very high-resolution aerial imagery), and relative snow deposition (estimated with a blowing snow model), slope, aspect, soil texture, and grazing intensity (estimated by proximity to water tanks). Toadflax was common throughout the 400 ha study site, occurring in 742 of 1,861 images. Toadflax cover was high on steeper slopes, particularly those with southern aspects. These two topographic variables were more effective in explaining toadflax distribution than modeled snow deposition, suggesting that factors other than snow deposition cause toadflax invasion on south-facing slopes. Toadflax cover was also high in areas further from water tanks, indicating that grazing may inhibit toadflax invasion. More broadly, this result suggests that grazing can reduce invasion of even relatively unpalatable species in ecosystems with long evolutionary histories of grazing.  相似文献   

17.
1. Geographic gradients in population dynamics may occur because of spatial variation in resources that affect the deterministic components of the dynamics (i.e. carrying capacity, the specific growth rate at small densities or the strength of density regulation) or because of spatial variation in the effects of environmental stochasticity. To evaluate these, we used a hierarchical Bayesian approach to estimate parameters characterizing deterministic components and stochastic influences on population dynamics of eight species of ducks (mallard, northern pintail, blue-winged teal, gadwall, northern shoveler, American wigeon, canvasback and redhead (Anas platyrhynchos, A. acuta, A. discors, A. strepera, A. clypeata, A. americana, Aythya valisineria and Ay. americana, respectively) breeding in the North American prairies, and then tested whether these parameters varied latitudinally. 2. We also examined the influence of temporal variation in the availability of wetlands, spring temperature and winter precipitation on population dynamics to determine whether geographical gradients in population dynamics were related to large-scale variation in environmental effects. Population variability, as measured by the variance of the population fluctuations around the carrying capacity K, decreased with latitude for all species except canvasback. This decrease in population variability was caused by a combination of latitudinal gradients in the strength of density dependence, carrying capacity and process variance, for which details varied by species. 3. The effects of environmental covariates on population dynamics also varied latitudinally, particularly for mallard, northern pintail and northern shoveler. However, the proportion of the process variance explained by environmental covariates, with the exception of mallard, tended to be small. 4. Thus, geographical gradients in population dynamics of prairie ducks resulted from latitudinal gradients in both deterministic and stochastic components, and were likely influenced by spatial differences in the distribution of wetland types and shapes, agricultural practices and dispersal processes. 5. These results suggest that future management of these species could be improved by implementing harvest models that account explicitly for spatial variation in density effects and environmental stochasticity on population abundance.  相似文献   

18.
Questions: Most modern fire‐prone landscapes have experienced disruptions of their historic fire regimes. Are the primary tallgrass prairies of the Flint Hills reflective of a history of continuous fire occurrence? Did fire frequency, severity, size and seasonality change in connection with changes in land use? Has fire occurrence been related to drought conditions? Location: Edges of Cross Timbers forest stands at the Tallgrass Prairie Preserve (TGPP) in the Flint Hills of Osage County, Oklahoma, USA. Methods: Cross‐sections of 76 Quercus stellata were collected from Cross Timbers stands at or near the grassland edge in the TGPP. Dendrochronological methods were used to identify years of formation for tree rings and fire scars. Superposed epoch analysis was used to evaluate the effect of drought conditions on fire occurrence. Results: Fires were recorded in 46.6% of the years between 1729 and 2005. In 41 cross‐sections at one site, the mean fire interval between 1759 and 2003 was 2.59 years, with fire interval decreasing from a mean fire interval of 3.76 years in the early part of the record to 2.13 years in modern times. No extended periods without fire were recorded in the study area. Drought conditions had no significant effect on fire occurrence. Conclusions: In contrast with many fire‐prone landscapes worldwide, the prairies of the Flint Hills have experienced no recent fire suppression or exclusion. Changes in fire frequency mark transitions in land use, primarily from being traditionally used by Native Americans to being managed for cattle production.  相似文献   

19.
The outcomes of grasshopper responses to both vertebrate grazing and fire vary across grassland ecosystems, and are strongly influenced by local climactic factors. Thus, the possible application of grazing and fire as components of an ecologically based grasshopper management strategy must be investigated in regional studies. In this study, we examined the effects of grazing and fire on grasshopper population density and community composition in a northern Great Plains mixed-grass prairie. We employed a large-scale, replicated, and fully-factorial manipulative experimental design across 4 yr to examine the separate and interactive effects of three grazing systems in burned and unburned habitats. Grasshopper densities were low throughout the 4-yr study and 1 yr of pretreatment sampling. There was a significant fire by grazing interaction effect on cumulative density and community composition, resulting from burned season long grazing pastures having higher densities than unburned pastures. Shannon diversity and grasshopper species richness were significantly higher with twice-over rotational livestock grazing. The ability to draw strong conclusions regarding the nature of species composition shifts and population changes in the presence of fire and grazing is complicated by the large site differences and low grasshopper densities. The results reinforce the importance of long-term research to examine the effects of habitat manipulation on grasshopper population dynamics.  相似文献   

20.
Grassland vegetation varies in composition across North America and has been historically influenced by multiple biotic and abiotic drivers, including fire, herbivory, and topography. Yet, the amount of temporal and spatial variability exhibited among grassland pollen assemblages, and the influence of these biotic and abiotic drivers on pollen assemblage composition and diversity has been relatively understudied. Here, we examine 4 years of modern pollen assemblages collected from a series of 28 traps at the Konza Prairie Long‐Term Ecological Research Area in the Flint Hills of Kansas, with the aim of evaluating the influence of these drivers, as well as quantifying the amount of spatial and temporal variability in the pollen signatures of the tallgrass prairie biome. We include all terrestrial pollen taxa in our analyses while calculating four summative metrics of pollen diversity and composition – beta‐diversity, Shannon index, nonarboreal pollen percentage, and Ambrosia:Artemisia – and find different roles of fire, herbivory, and topography variables in relation to these pollen metrics. In addition, we find significant annual differences in the means of three of these metrics, particularly the year 2013 which experienced high precipitation relative to the other 3 years of data. To quantify spatial and temporal dissimilarity among the samples over the 4‐year study, we calculate pairwise squared‐chord distances (SCD). The SCD values indicate higher compositional dissimilarity across the traps (0.38 mean) among all years than within a single trap from year to year (0.31 mean), suggesting that grassland vegetation can have different pollen signatures across finely sampled space and time, and emphasizing the need for additional long‐term annual monitoring of grassland pollen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号